summaryrefslogtreecommitdiff
path: root/mysql/extra/yassl/taocrypt/src/rabbit.cpp
blob: 5e32f383493830c905f99cd5f41deb4ff60ccac4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
/*
   Copyright (c) 2000, 2014, Oracle and/or its affiliates. All rights reserved.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; version 2 of the License.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; see the file COPYING. If not, write to the
   Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,
   MA  02110-1301  USA.
*/


#include "runtime.hpp"
#include "rabbit.hpp"



namespace TaoCrypt {


#define U32V(x)  (word32)(x)


#ifdef BIG_ENDIAN_ORDER
    #define LITTLE32(x) ByteReverse((word32)x)
#else
    #define LITTLE32(x) (x)
#endif


// local
namespace {


/* Square a 32-bit unsigned integer to obtain the 64-bit result and return */
/* the upper 32 bits XOR the lower 32 bits */
word32 RABBIT_g_func(word32 x)
{
    /* Temporary variables */
    word32 a, b, h, l;

    /* Construct high and low argument for squaring */
    a = x&0xFFFF;
    b = x>>16;

    /* Calculate high and low result of squaring */
    h = (((U32V(a*a)>>17) + U32V(a*b))>>15) + b*b;
    l = x*x;

    /* Return high XOR low */
    return U32V(h^l);
}


} // namespace local


/* Calculate the next internal state */
void Rabbit::NextState(RabbitCtx which)
{
    /* Temporary variables */
    word32 g[8], c_old[8], i;

    Ctx* ctx;

    if (which == Master)
        ctx = &masterCtx_;
    else
        ctx = &workCtx_;

    /* Save old counter values */
    for (i=0; i<8; i++)
        c_old[i] = ctx->c[i];

    /* Calculate new counter values */
    ctx->c[0] = U32V(ctx->c[0] + 0x4D34D34D + ctx->carry);
    ctx->c[1] = U32V(ctx->c[1] + 0xD34D34D3 + (ctx->c[0] < c_old[0]));
    ctx->c[2] = U32V(ctx->c[2] + 0x34D34D34 + (ctx->c[1] < c_old[1]));
    ctx->c[3] = U32V(ctx->c[3] + 0x4D34D34D + (ctx->c[2] < c_old[2]));
    ctx->c[4] = U32V(ctx->c[4] + 0xD34D34D3 + (ctx->c[3] < c_old[3]));
    ctx->c[5] = U32V(ctx->c[5] + 0x34D34D34 + (ctx->c[4] < c_old[4]));
    ctx->c[6] = U32V(ctx->c[6] + 0x4D34D34D + (ctx->c[5] < c_old[5]));
    ctx->c[7] = U32V(ctx->c[7] + 0xD34D34D3 + (ctx->c[6] < c_old[6]));
    ctx->carry = (ctx->c[7] < c_old[7]);
   
    /* Calculate the g-values */
    for (i=0;i<8;i++)
        g[i] = RABBIT_g_func(U32V(ctx->x[i] + ctx->c[i]));

    /* Calculate new state values */
    ctx->x[0] = U32V(g[0] + rotlFixed(g[7],16) + rotlFixed(g[6], 16));
    ctx->x[1] = U32V(g[1] + rotlFixed(g[0], 8) + g[7]);
    ctx->x[2] = U32V(g[2] + rotlFixed(g[1],16) + rotlFixed(g[0], 16));
    ctx->x[3] = U32V(g[3] + rotlFixed(g[2], 8) + g[1]);
    ctx->x[4] = U32V(g[4] + rotlFixed(g[3],16) + rotlFixed(g[2], 16));
    ctx->x[5] = U32V(g[5] + rotlFixed(g[4], 8) + g[3]);
    ctx->x[6] = U32V(g[6] + rotlFixed(g[5],16) + rotlFixed(g[4], 16));
    ctx->x[7] = U32V(g[7] + rotlFixed(g[6], 8) + g[5]);
}


/* IV setup */
void Rabbit::SetIV(const byte* iv)
{
    /* Temporary variables */
    word32 i0, i1, i2, i3, i;
      
    /* Generate four subvectors */
    i0 = LITTLE32(*(word32*)(iv+0));
    i2 = LITTLE32(*(word32*)(iv+4));
    i1 = (i0>>16) | (i2&0xFFFF0000);
    i3 = (i2<<16) | (i0&0x0000FFFF);

    /* Modify counter values */
    workCtx_.c[0] = masterCtx_.c[0] ^ i0;
    workCtx_.c[1] = masterCtx_.c[1] ^ i1;
    workCtx_.c[2] = masterCtx_.c[2] ^ i2;
    workCtx_.c[3] = masterCtx_.c[3] ^ i3;
    workCtx_.c[4] = masterCtx_.c[4] ^ i0;
    workCtx_.c[5] = masterCtx_.c[5] ^ i1;
    workCtx_.c[6] = masterCtx_.c[6] ^ i2;
    workCtx_.c[7] = masterCtx_.c[7] ^ i3;

    /* Copy state variables */
    for (i=0; i<8; i++)
        workCtx_.x[i] = masterCtx_.x[i];
    workCtx_.carry = masterCtx_.carry;

    /* Iterate the system four times */
    for (i=0; i<4; i++)
        NextState(Work);
}


/* Key setup */
void Rabbit::SetKey(const byte* key, const byte* iv)
{
    /* Temporary variables */
    word32 k0, k1, k2, k3, i;

    /* Generate four subkeys */
    k0 = LITTLE32(*(word32*)(key+ 0));
    k1 = LITTLE32(*(word32*)(key+ 4));
    k2 = LITTLE32(*(word32*)(key+ 8));
    k3 = LITTLE32(*(word32*)(key+12));

    /* Generate initial state variables */
    masterCtx_.x[0] = k0;
    masterCtx_.x[2] = k1;
    masterCtx_.x[4] = k2;
    masterCtx_.x[6] = k3;
    masterCtx_.x[1] = U32V(k3<<16) | (k2>>16);
    masterCtx_.x[3] = U32V(k0<<16) | (k3>>16);
    masterCtx_.x[5] = U32V(k1<<16) | (k0>>16);
    masterCtx_.x[7] = U32V(k2<<16) | (k1>>16);

    /* Generate initial counter values */
    masterCtx_.c[0] = rotlFixed(k2, 16);
    masterCtx_.c[2] = rotlFixed(k3, 16);
    masterCtx_.c[4] = rotlFixed(k0, 16);
    masterCtx_.c[6] = rotlFixed(k1, 16);
    masterCtx_.c[1] = (k0&0xFFFF0000) | (k1&0xFFFF);
    masterCtx_.c[3] = (k1&0xFFFF0000) | (k2&0xFFFF);
    masterCtx_.c[5] = (k2&0xFFFF0000) | (k3&0xFFFF);
    masterCtx_.c[7] = (k3&0xFFFF0000) | (k0&0xFFFF);

    /* Clear carry bit */
    masterCtx_.carry = 0;

    /* Iterate the system four times */
    for (i=0; i<4; i++)
        NextState(Master);

    /* Modify the counters */
    for (i=0; i<8; i++)
        masterCtx_.c[i] ^= masterCtx_.x[(i+4)&0x7];

    /* Copy master instance to work instance */
    for (i=0; i<8; i++) {
        workCtx_.x[i] = masterCtx_.x[i];
        workCtx_.c[i] = masterCtx_.c[i];
    }
    workCtx_.carry = masterCtx_.carry;

    if (iv) SetIV(iv);    
}


/* Encrypt/decrypt a message of any size */
void Rabbit::Process(byte* output, const byte* input, word32 msglen)
{
    /* Temporary variables */
    word32 i;

    /* Encrypt/decrypt all full blocks */
    while (msglen >= 16) {
        /* Iterate the system */
        NextState(Work);

        /* Encrypt/decrypt 16 bytes of data */
        *(word32*)(output+ 0) = *(word32*)(input+ 0) ^
                   LITTLE32(workCtx_.x[0] ^ (workCtx_.x[5]>>16) ^
                   U32V(workCtx_.x[3]<<16));
        *(word32*)(output+ 4) = *(word32*)(input+ 4) ^
                   LITTLE32(workCtx_.x[2] ^ (workCtx_.x[7]>>16) ^
                   U32V(workCtx_.x[5]<<16));
        *(word32*)(output+ 8) = *(word32*)(input+ 8) ^
                   LITTLE32(workCtx_.x[4] ^ (workCtx_.x[1]>>16) ^
                   U32V(workCtx_.x[7]<<16));
        *(word32*)(output+12) = *(word32*)(input+12) ^
                   LITTLE32(workCtx_.x[6] ^ (workCtx_.x[3]>>16) ^
                   U32V(workCtx_.x[1]<<16));

        /* Increment pointers and decrement length */
        input  += 16;
        output += 16;
        msglen -= 16;
    }

    /* Encrypt/decrypt remaining data */
    if (msglen) {

        word32 tmp[4];
        byte*  buffer = (byte*)tmp;

        memset(tmp, 0, sizeof(tmp));   /* help static analysis */

        /* Iterate the system */
        NextState(Work);

        /* Generate 16 bytes of pseudo-random data */
        tmp[0] = LITTLE32(workCtx_.x[0] ^
                  (workCtx_.x[5]>>16) ^ U32V(workCtx_.x[3]<<16));
        tmp[1] = LITTLE32(workCtx_.x[2] ^ 
                  (workCtx_.x[7]>>16) ^ U32V(workCtx_.x[5]<<16));
        tmp[2] = LITTLE32(workCtx_.x[4] ^ 
                  (workCtx_.x[1]>>16) ^ U32V(workCtx_.x[7]<<16));
        tmp[3] = LITTLE32(workCtx_.x[6] ^ 
                  (workCtx_.x[3]>>16) ^ U32V(workCtx_.x[1]<<16));

        /* Encrypt/decrypt the data */
        for (i=0; i<msglen; i++)
            output[i] = input[i] ^ buffer[i];
    }
}


}  // namespace