aboutsummaryrefslogtreecommitdiff
path: root/libbuild2/context.hxx
blob: 12b11d595f462af9cf3e292de941f523404f980e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// file      : libbuild2/context.hxx -*- C++ -*-
// license   : MIT; see accompanying LICENSE file

#ifndef LIBBUILD2_CONTEXT_HXX
#define LIBBUILD2_CONTEXT_HXX

#include <libbuild2/types.hxx>
#include <libbuild2/forward.hxx>
#include <libbuild2/utility.hxx>

// NOTE: this file is included by pretty much every other build state header
//       (scope, target, variable, etc) so including any of them here is most
//       likely a non-starter.
//
#include <libbuild2/action.hxx>
#include <libbuild2/operation.hxx>
#include <libbuild2/scheduler.hxx>

#include <libbuild2/export.hxx>

namespace build2
{
  class file_cache;
  class module_libraries_lock;

  class LIBBUILD2_SYMEXPORT run_phase_mutex
  {
  public:
    // Acquire a phase lock potentially blocking (unless already in the
    // desired phase) until switching to the desired phase is possible.
    // Return false on failure.
    //
    bool
    lock (run_phase);

    // Release the phase lock potentially allowing (unless there are other
    // locks on this phase) switching to a different phase.
    //
    void
    unlock (run_phase);

    // Switch from one phase to another. Return nullopt on failure (so can be
    // used as bool), true if switched from a different phase, and false if
    // joined/switched to the same phase (this, for example, can be used to
    // decide if a phase switching housekeeping is really necessary). Note:
    // currently only implemented for the load phase (always returns true
    // for the others).
    //
    optional<bool>
    relock (run_phase unlock, run_phase lock);

    // Return true if the mutex is unlocked, meaning we are in the initial
    // load phase.
    //
    bool
    unlocked () const;

    // Statistics.
    //
  public:
    size_t contention      = 0; // # of contentious phase (re)locks.
    size_t contention_load = 0; // # of contentious load phase locks.

  private:
    friend class context;

    run_phase_mutex (context& c)
      : ctx_ (c), fail_ (false), lc_ (0), mc_ (0), ec_ (0) {}

  private:
    friend struct phase_lock;
    friend struct phase_unlock;
    friend struct phase_switch;

    // We have a counter for each phase which represents the number of threads
    // in or waiting for this phase.
    //
    // We use condition variables to wait for a phase switch. The load phase
    // is exclusive so we have a separate mutex to serialize it (think of it
    // as a second level locking).
    //
    // When the mutex is unlocked (all three counters become zero), the phase
    // is always changed to load (this is also the initial state).
    //
    context& ctx_;

    mutable mutex m_;

    bool fail_;

    size_t lc_;
    size_t mc_;
    size_t ec_;

    condition_variable lv_;
    condition_variable mv_;
    condition_variable ev_;

    mutex lm_;
  };

  // Context-wide mutexes and mutex shards.
  //
  class global_mutexes
  {
  public:

    // Variable cache mutex shard (see variable.hxx for details).
    //
    size_t                     variable_cache_size;
    unique_ptr<shared_mutex[]> variable_cache;

    explicit
    global_mutexes (size_t vc)
    {
      init (vc);
    }

    global_mutexes () = default; // Create uninitialized instance.

    void
    init (size_t vc)
    {
      variable_cache_size = vc;
      variable_cache.reset (new shared_mutex[vc]);
    }
  };

  // Match-only level.
  //
  // See the --match-only and --load-only options for background.
  //
  enum class match_only_level
  {
    alias, // Match only alias{} targets.
    all    // Match all targets.
  };

  // A build context encapsulates the state of a build. It is possible to have
  // multiple build contexts provided they are non-overlapping, that is, they
  // don't try to build the same projects (note that this is currently not
  // enforced).
  //
  // One context can be preempted to execute another context (we do this, for
  // example, to update build system modules). When switching to such a nested
  // context you may want to cutoff the diagnostics stack (and maybe insert
  // your own entry), for example:
  //
  //   diag_frame::stack_guard diag_cutoff (nullptr);
  //
  // As well as suppress progress which would otherwise clash (maybe in the
  // future we can do save/restore but then we would need some indication that
  // we have switched to another task).
  //
  // Note that sharing the same scheduler between multiple top-level contexts
  // can currently be problematic due to operation-specific scheduler tuning
  // as all as phase pushing/popping (perhaps this suggest that we should
  // instead go the multiple communicating schedulers route, a la the job
  // server).
  //
  // The module_libraries state (module.hxx) is shared among all the contexts
  // (there is no way to have multiple shared library loading "contexts") and
  // is protected by module_libraries_lock. A nested context should normally
  // inherit this lock value from its outer context.
  //
  // Note also that any given thread should not participate in multiple
  // schedulers at the same time (see scheduler::join/leave() for details).
  //
  // @@ CTX TODO:
  //
  //   - Move verbosity level to context (see issue in import_module()).
  //
  //   - Scheduler tunning and multiple top-level contexts.
  //
  //   - Detect overlapping contexts (could be expensive).
  //
  class LIBBUILD2_SYMEXPORT context
  {
  public:
    // In order to perform each operation the build system goes through the
    // following phases:
    //
    // load     - load the buildfiles
    // match    - search prerequisites and match rules
    // execute  - execute the matched rule
    //
    // The build system starts with a serial "initial load" phase and then
    // continues with parallel match and execute. Match, however, can be
    // interrupted both with load and execute.
    //
    // Match can be interrupted with a (serial) "interrupting load" in order
    // to load additional buildfiles. Similarly, it can be interrupted with
    // (parallel) execute in order to build targetd required to complete the
    // match (for example, generated source code or source code generators
    // themselves).
    //
    // Such interruptions are performed by phase change that is protected by
    // phase_mutex (which is also used to synchronize the state changes
    // between phases).
    //
    // Initial load can perform arbitrary changes to the build state.
    // Interrupting load, however, can only perform what we call "island
    // appends". That is, it can create new "nodes" (variables, scopes, etc)
    // but not (semantically) change already existing nodes or invalidate any
    // references to such (the idea here is that one should be able to load
    // additional buildfiles as long as they don't interfere with the existing
    // build state). The "islands" are identified by the load_generation
    // number (1 for the initial load). It is incremented in case of a phase
    // switch and can be stored in various "nodes" to verify modifications are
    // only done "within the islands". Another example of invalidation would
    // be insertion of a new scope "under" an existing target thus changing
    // its scope hierarchy (and potentially even its base scope). This would
    // be bad because we may have made decisions based on the original
    // hierarchy, for example, we may have queried a variable which in the new
    // hierarchy would "see" a new value from the newly inserted scope.
    //
    // The special load_generation value 0 indicates initialization before
    // anything has been loaded. Currently, it is changed to 1 at the end of
    // the context constructor. Note also that subsequent operations in a
    // batch may trigger loading of additional buildfiles, in fact, entire new
    // projects. As a result, load_generation is also incremented after each
    // operation in a batch. If you need to detect the initial load in each
    // operation, check that phase_mutex is unlocked.
    //
    // Note must come (and thus initialized) before the data_ member.
    //
    run_phase phase = run_phase::load;
    size_t load_generation = 0;

  private:
    struct data;
    unique_ptr<data> data_;

  public:
    // These are only NULL for the "bare minimum" context (see below).
    //
    scheduler*      sched;
    global_mutexes* mutexes;
    file_cache*     fcache;

    // Match only flag/level (see --{load,match}-only but also dist).
    //
    // See also dry_run, which is in some sense a weaker version of match-
    // only: the target is executed but nothing is actually being done (unless
    // executed during match or load, that is).
    //
    optional<match_only_level> match_only;

    // Skip booting external modules flag (see --no-external-modules).
    //
    bool no_external_modules;

    // Dry run flag (see --dry-run|-n).
    //
    // This flag is set (based on dry_run_option) only for the final execute
    // phase (as opposed to those that interrupt match) by the perform meta
    // operation's execute() callback.
    //
    // Note that for this mode to function properly we have to use fake
    // mtimes. Specifically, a rule that pretends to update a target must set
    // its mtime to system_clock::now() and everyone else must use this cached
    // value. In other words, there should be no mtime re-query from the
    // filesystem. The same is required for "logical clean" (i.e., dry-run
    // 'clean update' in order to see all the command lines).
    //
    // At first, it may seem like we should also "dry-run" changes to depdb.
    // But that would be both problematic (some rules update it in apply()
    // during the match phase) and wasteful (why discard information). Also,
    // depdb may serve as an input to some commands (for example, to provide
    // C++ module mapping) which means that without updating it the commands
    // we print might not be runnable (think of the compilation database).
    //
    // One thing we need to be careful about if we are updating depdb is to
    // not render the target up-to-date. But in this case the depdb file will
    // be older than the target which in our model is treated as an
    // interrupted update (see depdb for details).
    //
    // Note also that sometimes it makes sense to do a bit more than
    // absolutely necessary or to discard information in order to keep the
    // rule logic sane. And some rules may choose to ignore this flag
    // altogether. In this case, however, the rule should be careful not to
    // rely on functions (notably from filesystem) that respect this flag in
    // order not to end up with a job half done.
    //
    // Finally, sometimes you may need to know during match whether there will
    // be a non-dry-run execute and use the dry_run_option for that. This can
    // be problematic because even when dry_run_option is true, the target may
    // end up being executed in the non-dry-run mode during load or match. As
    // a result, any logic that is based on dry_run_option should be capable
    // of functioning correctly in the non-dry-run execute.
    //
    // See also match_only, which is in some sense a stronger version of
    // dry-run: the target is not executed at all, again, unless during match
    // or load.
    //
    bool dry_run = false;
    bool dry_run_option;

    // Diagnostics buffering flag (--no-diag-buffer).
    //
    bool no_diag_buffer;

    // Keep going flag.
    //
    // Note that setting it to false is not of much help unless we are running
    // serially: in parallel we queue most of the things up before we see any
    // failures.
    //
    bool keep_going;

    // Targets to trace (see the --trace-* options).
    //
    // Note that these must be set after construction and must remain valid
    // for the lifetime of the context instance.
    //
    const vector<name>* trace_match = nullptr;
    const vector<name>* trace_execute = nullptr;

    // A "tri-mutex" that keeps all the threads in one of the three phases.
    // When a thread wants to switch a phase, it has to wait for all the other
    // threads to do the same (or release their phase locks). The load phase
    // is exclusive.
    //
    // The interleaving match and execute is interesting: during match we read
    // the "external state" (e.g., filesystem entries, modifications times,
    // etc) and capture it in the "internal state" (our dependency graph).
    // During execute we are modifying the external state with controlled
    // modifications of the internal state to reflect the changes (e.g.,
    // update mtimes). If you think about it, it's pretty clear that we cannot
    // safely perform both of these actions simultaneously. A good example
    // would be running a code generator and header dependency extraction
    // simultaneously: the extraction process may pick up headers as they are
    // being generated. As a result, we either have everyone treat the
    // external state as read-only or write-only.
    //
    // There is also one more complication: if we are returning from a load
    // phase that has failed, then the build state could be seriously messed
    // up (things like scopes not being setup completely, etc). And once we
    // release the lock, other threads that are waiting will start relying on
    // this messed up state. So a load phase can mark the phase_mutex as
    // failed in which case all currently blocked and future lock()/relock()
    // calls return false. Note that in this case we still switch to the
    // desired phase. See the phase_{lock,switch,unlock} implementations for
    // details.
    //
    run_phase_mutex phase_mutex;

    // Current action (meta/operation).
    //
    // The names unlike info are available during boot but may not yet be
    // lifted. The name is always for an outer operation (or meta operation
    // that hasn't been recognized as such yet).
    //
    string current_mname;
    string current_oname;

    const meta_operation_info* current_mif;

    const operation_info* current_inner_oif;
    const operation_info* current_outer_oif;

    action
    current_action () const
    {
      return action (current_mif->id,
                     current_inner_oif->id,
                     current_outer_oif != nullptr ? current_outer_oif->id : 0);
    }

    // Check whether this is the specified meta-operation during bootstrap
    // (when current_mif may not be yet known).
    //
    bool
    bootstrap_meta_operation (const char* mo) const
    {
      return ((current_mname == mo  ) ||
              (current_mname.empty () && current_oname == mo));
    };

    // Operation callbacks.
    //
    // An entity (module, core) can register a function that will be called
    // when an action is executed on a set of targets. The pre callback is
    // called before any recipes for the action are matched and the post --
    // after all have been executed. The post callback is called even if
    // execution has failed.
    //
    // The callback should only be registered during the load phase. Note
    // that it's registered for the inner action, meaning that it will be
    // called for any outer action (which is discernible from the first
    // argument of the callback). Note also that meta-operations other than
    // perform never actually execute any recipes and it probably only makes
    // sense to register these callbacks for the perform_* actions.
    //
    // Note that the callbacks will also be called when building a build
    // system module or an ad hoc C++ recipe. See create_module_context() for
    // details.
    //
    // Note also that if the callbacks are registered from a module load
    // function, then there are nuances with interrupted load phases. See the
    // compilation database handling in the cc module for details.
    //
    // See also scope::operation_callback.
    //
    struct operation_callback
    {
      using pre_callback =
        void (context&, action, const action_targets&);

      using post_callback =
        void (context&, action, const action_targets&, bool failed);

      function<pre_callback> pre;
      function<post_callback> post;
    };

    using operation_callback_map = multimap<action_id, operation_callback>;

    operation_callback_map operation_callbacks;

    // Meta/operation-specific context-global auxiliary data storage.
    //
    // Normally set by meta/operation-specific callbacks from
    // [mata_]operation_info. The operation data is cleared by
    // current_operation() below.
    //
    // Note also: watch out for MT-safety in the data itself.
    //
    static void
    null_current_data_deleter (void* p) { assert (p == nullptr); }

    using current_data_ptr = unique_ptr<void, void (*) (void*)>;

    current_data_ptr current_mdata        = {nullptr, null_current_data_deleter};
    current_data_ptr current_inner_odata  = {nullptr, null_current_data_deleter};
    current_data_ptr current_outer_odata  = {nullptr, null_current_data_deleter};

    // Current operation number (1-based) in the meta-operation batch.
    //
    size_t current_on;

    // Note: we canote use the corresponding target::offeset_* values.
    //
    size_t count_base     () const {return 5 * (current_on - 1);}

    size_t count_touched  () const {return 1 + count_base ();}
    size_t count_tried    () const {return 2 + count_base ();}
    size_t count_matched  () const {return 3 + count_base ();}
    size_t count_applied  () const {return 4 + count_base ();}
    size_t count_executed () const {return 5 + count_base ();}
    size_t count_busy     () const {return 6 + count_base ();}

    // Execution mode.
    //
    execution_mode current_mode;

    // Some diagnostics (for example output directory creation/removal by the
    // fsdir rule) is just noise at verbosity level 1 unless it is the only
    // thing that is printed. So we can only suppress it in certain situations
    // (e.g., dist) where we know we have already printed something.
    //
    bool current_diag_noise;

    // Total number of dependency relationships and targets with non-noop
    // recipe in the current action.
    //
    // Together with target::dependents the dependency count is incremented
    // during the rule search & match phase and is decremented during
    // execution with the expectation of it reaching 0. Used as a sanity
    // check.
    //
    // The target count is incremented after a non-noop recipe is matched and
    // decremented after such recipe has been executed. If such a recipe has
    // skipped executing the operation, then it should increment the skip
    // count. These two counters are used for progress monitoring and
    // diagnostics. The resolve count keeps track of the number of targets
    // matched but not executed as a result of the resolve_members() calls
    // (see also target::resolve_counted).
    //
    atomic_count dependency_count;
    atomic_count target_count;
    atomic_count skip_count;
    atomic_count resolve_count;

    // Build state (scopes, targets, variables, etc).
    //
    const scope_map& scopes;
    target_set& targets;
    const variable_pool& var_pool;           // Public variables pool.
    const variable_patterns& var_patterns;   // Public variables patterns.
    const variable_overrides& var_overrides; // Project and relative scope.
    function_map& functions;

    // Current targets with post hoc prerequisites.
    //
    // Note that we don't expect many of these so a simple mutex should be
    // sufficient. Note also that we may end up adding more entries as we
    // match existing so use list for node and iterator stability. See
    // match_poshoc() for details.
    //
    struct posthoc_target
    {
      struct prerequisite_target
      {
        const build2::target* target;
        uint64_t              match_options;
      };

      build2::action                          action;
      reference_wrapper<const build2::target> target;
      vector<prerequisite_target>             prerequisite_targets;
    };

    list<posthoc_target> current_posthoc_targets;
    mutex                current_posthoc_targets_mutex;

    // Global scope.
    //
    const scope& global_scope;
    const target_type_map& global_target_types;
    variable_override_cache& global_override_cache;
    const strings& global_var_overrides;

    // Cached values (from global scope).
    //
    const target_triplet* build_host; // build.host

    // Cached variables.
    //

    // Note: consider printing in info meta-operation if adding anything here.
    //
    const variable* var_src_root;
    const variable* var_out_root;
    const variable* var_src_base;
    const variable* var_out_base;
    const variable* var_forwarded;

    const variable* var_project;
    const variable* var_amalgamation;
    const variable* var_subprojects;
    const variable* var_version;

    // project.url
    //
    const variable* var_project_url;

    // project.summary
    //
    const variable* var_project_summary;

    // import.* and export.*
    //
    const variable* var_import_build2;
    const variable* var_import_target;

    // The import.metadata export stub variable and the --build2-metadata
    // executable option are used to pass the metadata compatibility version.
    //
    // This serves both as an indication that the metadata is required (can be
    // useful, for example, in cases where it is expensive to calculate) as
    // well as the maximum version we recognize. The exporter may return it in
    // any version up to and including this maximum. And it may return it even
    // if not requested (but only in version 1). The exporter should also set
    // the returned version as the target-specific export.metadata variable.
    //
    // The export.metadata value should start with the version followed by the
    // metadata variable prefix (for example, cli in cli.version).
    //
    // The following metadata variable names have pre-defined meaning for
    // executable targets (exe{}; see also process_path_ex):
    //
    //   <var-prefix>.name = [string]         # Stable name for diagnostics.
    //   <var-prefix>.version = [string]      # Version for diagnostics.
    //   <var-prefix>.checksum = [string]     # Checksum for change tracking.
    //   <var-prefix>.environment = [strings] # Envvars for change tracking.
    //
    // If the <var-prefix>.name variable is missing, it is set to the target
    // name as imported.
    //
    // Note that the same mechanism is used for library user metadata (see
    // cc::pkgconfig_{load,save}() for details).
    //
    const variable* var_import_metadata;
    const variable* var_export_metadata;

    // [string] target visibility
    //
    const variable* var_extension;

    // This variable can only be specified as prerequisite-specific (see the
    // `include` variable for details).
    //
    // [string] prerequisite visibility
    //
    // Valid values are `true` and `false`. Additionally, some rules (and
    // potentially only for certain types of prerequisites) may support the
    // `unmatch` (match but do not update, if possible), `match` (update
    // during match), and `execute` (update during execute, as is normally)
    // values (the `execute` value may be useful if the rule has the `match`
    // semantics by default). Note that if unmatch is impossible, then the
    // prerequisite is treated as ad hoc.
    //
    const variable* var_update;

    // Note that this variable can also be specified as prerequisite-specific
    // (see the `include` variable for details).
    //
    // [bool] target visibility
    //
    const variable* var_clean;

    // Forwarded configuration backlink mode. The value has two components
    // in the form:
    //
    // <mode> [<print>]
    //
    // Valid <mode> values are:
    //
    // false     - no link.
    // true      - make a link using appropriate mechanism.
    // symbolic  - make a symbolic link.
    // hard      - make a hard link.
    // copy      - make a copy.
    // overwrite - copy over but don't remove on clean.
    // group     - inherit the group mode (only valid for group members).
    //
    // While the <print> component should be either true or false and can be
    // used to suppress printing of specific ad hoc group members at verbosity
    // level 1. Note that it cannot be false for the primary member.
    //
    // Note that this value can be set by a matching rule as a rule-specific
    // variable.
    //
    // Note also that the overwrite mode was originally meant for handling
    // pregenerated source code. But in the end this did not pan out for
    // the following reasons:
    //
    // 1. This would mean that the pregenerated and regenerated files end up
    //    in the same place (e.g., depending on the develop mode) and it's
    //    hard to make this work without resorting to a conditional graph.
    //
    //    This could potentially be addressed by allowing backlink to specify
    //    a different location (similar to dist).
    //
    // 2. This support for pregenerated source code would be tied to forwarded
    //    configurations.
    //
    // Nevertheless, there may be a kernel of an idea here in that we may be
    // able to provide a built-in "post-copy" mechanism which would allow one
    // to have a pregenerated setup even when using non-ad hoc recipes
    // (currently we just manually diff/copy stuff at the end of a recipe).
    // (Or maybe we should stick to ad hoc recipes with post-diff/copy and
    // just expose a mechanism to delegate to a different rule, which we
    // already have).
    //
    // [names] target visibility
    //
    const variable* var_backlink;

    // Prerequisite inclusion/exclusion. Valid values are:
    //
    // false  - exclude.
    // true   - include.
    // adhoc  - include but treat as an ad hoc input.
    //
    // If a rule uses prerequisites as inputs (as opposed to just matching
    // them with the "pass-through" semantics), then the adhoc value signals
    // that a prerequisite is an ad hoc input. A rule should match and execute
    // such a prerequisite (whether its target type is recognized as suitable
    // input or not) and assume that the rest will be handled by the user
    // (e.g., it will be passed via a command line argument or some such).
    // Note that this mechanism can be used to both treat unknown prerequisite
    // types as inputs (for example, linker scripts) as well as prevent
    // treatment of known prerequisite types as such while still matching and
    // executing them (for example, plugin libraries).
    //
    // A rule with the "pass-through" semantics should treat the adhoc value
    // the same as true.
    //
    // Sometimes it may be desirable to apply exclusions only to specific
    // operations. The initial idea was to extend this value to allow
    // specifying the operation (e.g., clean@false). However, later we
    // realized that we could reuse the "operation-specific variables"
    // (update, clean, install, test; see project_operation_info) with a more
    // natural-looking and composable result. Plus, this allows for
    // operation-specific "modifiers", for example, "unmatch" and "update
    // during match" logic for update (see var_update for details) or
    // requiring explicit install=true to install exe{} prerequisites (see
    // install::file_rule::filter()).
    //
    // To query this value and its operation-specific override if any, the
    // rule implementations use the include() helper.
    //
    // Note that there are also related (but quite different) for_<operation>
    // variables for operations that act as outer (e.g., test, install).
    //
    // [string] prereq visibility
    //
    const variable* var_include;

    // The build.* namespace.
    //
    // .meta_operation
    //
    const variable* var_build_meta_operation;

    // Known meta-operation and operation tables.
    //
    build2::meta_operation_table meta_operation_table;
    build2::operation_table operation_table;

    // Import cache (see import_load()).
    //
    struct import_key
    {
      dir_path out_root; // Imported project's out root.
      name     target;   // Imported target (unqualified).
      uint64_t metadata; // Metadata version (0 if none).

      friend bool
      operator< (const import_key& x, const import_key& y)
      {
        int r;
        return ((r = x.out_root.compare (y.out_root)) != 0 ? r < 0 :
                (r = x.target.compare (y.target))     != 0 ? r < 0 :
                x.metadata < y.metadata);
      }
    };

    map<import_key, pair<names, const scope&>> import_cache;

    // The old/new src_root remapping for subprojects.
    //
    dir_path old_src_root;
    dir_path new_src_root;

    // NULL if this context hasn't already locked the module_libraries state.
    //
    const module_libraries_lock* modules_lock;

    // Nested context for updating build system modules and ad hoc recipes.
    //
    // Note that such a context itself should normally have modules_context
    // setup to point to itself (see import_module() for details).
    //
    context* module_context;
    optional<unique_ptr<context>> module_context_storage;

  public:
    // If module_context is absent, then automatic updating of build system
    // modules and ad hoc recipes is disabled. If it is NULL, then the context
    // will be created lazily if and when necessary. Otherwise, it should be a
    // properly setup context (including, normally, a self-reference in
    // modules_context).
    //
    // The var_override_function callback can be used to parse ad hoc project-
    // wide variable overrides (see parse_variable_override()). This has to
    // happen at a specific point during context construction (see the
    // implementation for details).
    //
    // Note: see also the trace_* data members that, if needed, must be set
    // separately, after construction.
    //
    struct reserves
    {
      size_t targets;
      size_t variables;

      reserves (): targets (0), variables (0) {}
      reserves (size_t t, size_t v): targets (t), variables (v) {}
    };

    using var_override_function = void (context&, size_t&);

    context (scheduler&,
             global_mutexes&,
             file_cache&,
             optional<match_only_level> match_only = nullopt,
             bool no_external_modules = false,
             bool dry_run = false,
             bool no_diag_buffer = false,
             bool keep_going = true,
             const strings& cmd_vars = {},
             reserves = {0, 160},
             optional<context*> module_context = nullptr,
             const module_libraries_lock* inherited_modules_lock = nullptr,
             const function<var_override_function>& = nullptr);

    // Special context with bare minimum of initializations. It is only
    // guaranteed to be sufficiently initialized to call extract_variable().
    //
    // Note that for this purpose you may omit calls to init_diag() and
    // init().
    //
    context ();

    // Reserve elements in containers to avoid re-allocation/re-hashing. Zero
    // values are ignored (that is, the corresponding container reserve()
    // function is not called). Can only be called in the load phase.
    //
    void
    reserve (reserves);

    // Parse a variable override returning its type in the first half of the
    // pair. Index is the variable index (used to derive unique name) and if
    // buildspec is true then assume `--` is used as a separator between
    // variables and buildscpec and issue appropriate diagnostics.
    //
    // Note: should only be called from the var_override_function constructor
    // callback.
    //
    pair<char, variable_override>
    parse_variable_override (const string& var, size_t index, bool buildspec);

    // Enter project-wide (as opposed to global) variable overrides.
    //
    // If the amalgamation scope is specified, then use it instead of
    // rs.weak_scope() to set overrides with global visibility (make sure you
    // understand the implications before doing this).
    //
    void
    enter_project_overrides (scope& rs,
                             const dir_path& out_base,
                             const variable_overrides&,
                             scope* amalgamation = nullptr);

    // Set current meta-operation and operation.
    //
    // Remember to also increment load_generation for subsequent operations in
    // a batch if additional buildfiles are loaded between them.
    //
    // Note that the context instance is not to be re-used between different
    // meta-operations.
    //
    void
    current_meta_operation (const meta_operation_info&);

    void
    current_operation (const operation_info& inner,
                       const operation_info* outer = nullptr,
                       bool diag_noise = true);

    context (context&&) = delete;
    context& operator= (context&&) = delete;

    context (const context&) = delete;
    context& operator= (const context&) = delete;

    ~context ();
  };

  // Grab a new phase lock releasing it on destruction. The lock can be
  // "owning" or "referencing" (recursive).
  //
  // On the referencing semantics: If there is already an instance of
  // phase_lock in this thread, then the new instance simply references it.
  //
  // The reason for this semantics is to support the following scheduling
  // pattern (in actual code we use wait_guard to RAII it):
  //
  // atomic_count task_count (0);
  //
  // {
  //   phase_lock l (run_phase::match);                    // (1)
  //
  //   for (...)
  //   {
  //     sched.async (task_count,
  //                  [] (...)
  //                  {
  //                    phase_lock pl (run_phase::match);  // (2)
  //                    ...
  //                  },
  //                  ...);
  //   }
  // }
  //
  // sched.wait (task_count);                              // (3)
  //
  // Here is what's going on here:
  //
  // 1. We first get a phase lock "for ourselves" since after the first
  //    iteration of the loop, things may become asynchronous (including
  //    attempts to switch the phase and modify the structure we are iteration
  //    upon).
  //
  // 2. The task can be queued or it can be executed synchronously inside
  //    async() (refer to the scheduler class for details on this semantics).
  //
  //    If this is an async()-synchronous execution, then the task will create
  //    a referencing phase_lock. If, however, this is a queued execution
  //    (including wait()-synchronous), then the task will create a top-level
  //    phase_lock.
  //
  //    Note that we only acquire the lock once the task starts executing
  //    (there is no reason to hold the lock while the task is sitting in the
  //    queue). This optimization assumes that whatever else we pass to the
  //    task (for example, a reference to a target) is stable (in other words,
  //    such a reference cannot become invalid).
  //
  // 3. Before calling wait(), we release our phase lock to allow switching
  //    the phase.
  //
  struct LIBBUILD2_SYMEXPORT phase_lock
  {
    explicit phase_lock (context&, run_phase);
    ~phase_lock ();

    phase_lock (phase_lock&&) = delete;
    phase_lock (const phase_lock&) = delete;

    phase_lock& operator= (phase_lock&&) = delete;
    phase_lock& operator= (const phase_lock&) = delete;

    context& ctx;
    phase_lock* prev; // From another context.
    run_phase phase;
  };

  // Assuming we have a lock on the current phase, temporarily release it
  // and reacquire on destruction.
  //
  struct LIBBUILD2_SYMEXPORT phase_unlock
  {
    explicit phase_unlock (context*, bool delay = false);
    explicit phase_unlock (context& ctx, bool delay = false)
      : phase_unlock (&ctx, delay) {}

    ~phase_unlock () noexcept (false);

    void
    unlock ();

    void
    lock ();

    context* ctx;
    phase_lock* lock_;
  };

  // Assuming we have a lock on the current phase, temporarily switch to a
  // new phase and switch back on destruction.
  //
  // The second constructor can be used for a switch with an intermittent
  // unlock:
  //
  // phase_unlock pu;
  // phase_lock pl;
  // phase_switch ps (move (pu), move (pl));
  //
  // @@ Need to re-confirm it does the right thing if/when we need it.
  //
  struct LIBBUILD2_SYMEXPORT phase_switch
  {
    phase_switch (context&, run_phase);
    //phase_switch (phase_unlock&&, phase_lock&&);
    ~phase_switch () noexcept (false);

    run_phase old_phase, new_phase;
  };

  // Wait for a task count optionally and temporarily unlocking the phase.
  //
  struct wait_guard
  {
    ~wait_guard () noexcept (false);

    wait_guard (); // Empty.

    wait_guard (context&,
                atomic_count& task_count,
                bool unlock_phase = false);

    wait_guard (context&,
                size_t start_count,
                atomic_count& task_count,
                bool unlock_phase = false);

    void
    wait (bool work_queue = true);

    // Note: move-assignable to empty only.
    //
    wait_guard (wait_guard&&) noexcept;
    wait_guard& operator= (wait_guard&&) noexcept;

    wait_guard (const wait_guard&) = delete;
    wait_guard& operator= (const wait_guard&) = delete;

    context* ctx;
    size_t start_count;
    atomic_count* task_count;
    bool phase;
  };
}

#include <libbuild2/context.ixx>

#endif // LIBBUILD2_CONTEXT_HXX