1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
|
// file : libbuild2/cc/windows-manifest.cxx -*- C++ -*-
// license : MIT; see accompanying LICENSE file
#include <libbuild2/scope.hxx>
#include <libbuild2/target.hxx>
#include <libbuild2/context.hxx>
#include <libbuild2/variable.hxx>
#include <libbuild2/filesystem.hxx>
#include <libbuild2/diagnostics.hxx>
#include <libbuild2/cc/link-rule.hxx>
using namespace std;
using namespace butl;
namespace build2
{
namespace cc
{
// Translate the compiler target CPU value to the processorArchitecture
// attribute value.
//
const char*
windows_manifest_arch (const string& tcpu)
{
const char* pa (tcpu == "x86_64" ? "amd64" :
tcpu == "i386" || tcpu == "i686" ? "x86" :
tcpu == "aarch64" ? "arm64" :
nullptr);
if (pa == nullptr)
fail << "unable to translate CPU " << tcpu << " to manifest "
<< "processor architecture";
return pa;
}
// Generate a Windows manifest and if necessary create/update the manifest
// file corresponding to the exe{} target. Return the manifest file path
// and its timestamp if unchanged or timestamp_nonexistent otherwise.
//
pair<path, timestamp> link_rule::
windows_manifest (const file& t, bool rpath_assembly) const
{
tracer trace (x, "link_rule::windows_manifest");
const scope& rs (t.root_scope ());
const char* pa (windows_manifest_arch (cast<string> (rs[x_target_cpu])));
string m;
m += "<?xml version='1.0' encoding='UTF-8' standalone='yes'?>\n";
m += "<assembly xmlns='urn:schemas-microsoft-com:asm.v1'\n";
m += " manifestVersion='1.0'>\n";
// Program name, version, etc.
//
string name (t.path ().leaf ().string ());
m += " <assemblyIdentity name='"; m += name; m += "'\n";
m += " type='win32'\n";
m += " processorArchitecture='"; m += pa; m += "'\n";
m += " version='0.0.0.0'/>\n";
// Our rpath-emulating assembly.
//
if (rpath_assembly)
{
m += " <dependency>\n";
m += " <dependentAssembly>\n";
m += " <assemblyIdentity name='"; m += name; m += ".dlls'\n";
m += " type='win32'\n";
m += " processorArchitecture='"; m += pa; m += "'\n";
m += " language='*'\n";
m += " version='0.0.0.0'/>\n";
m += " </dependentAssembly>\n";
m += " </dependency>\n";
}
// UAC information. Without it Windows will try to guess, which, as you
// can imagine, doesn't end well.
//
m += " <trustInfo xmlns='urn:schemas-microsoft-com:asm.v3'>\n";
m += " <security>\n";
m += " <requestedPrivileges>\n";
m += " <requestedExecutionLevel level='asInvoker' uiAccess='false'/>\n";
m += " </requestedPrivileges>\n";
m += " </security>\n";
m += " </trustInfo>\n";
m += "</assembly>\n";
// If the manifest file exists, compare to its content. If nothing
// changed (common case), then we can avoid any further updates.
//
// The potentially faster alternative would be to hash it and store an
// entry in depdb. This, however, gets a bit complicated since we will
// need to avoid a race between the depdb and .manifest updates.
//
path mf (t.path () + ".manifest");
timestamp mt (mtime (mf));
if (mt != timestamp_nonexistent)
{
try
{
ifdstream is (mf);
if (is.read_text () == m)
return make_pair (move (mf), mt);
}
catch (const io_error&)
{
// Whatever the reason we failed for, let's rewrite the file.
}
}
if (verb >= 3)
text << "cat >" << mf;
if (!t.ctx.dry_run)
{
auto_rmfile rm (mf);
try
{
ofdstream os (mf);
os << m;
os.close ();
rm.cancel ();
}
catch (const io_error& e)
{
fail << "unable to write to " << mf << ": " << e;
}
}
return make_pair (move (mf), timestamp_nonexistent);
}
}
}
|