aboutsummaryrefslogtreecommitdiff
path: root/bbot/agent/agent.cxx
blob: ff380c8853106ebf454bc72f02ce5fcbe6484799 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
// file      : bbot/agent/agent.cxx -*- C++ -*-
// license   : MIT; see accompanying LICENSE file

#include <bbot/agent/agent.hxx>

#include <pwd.h>       // getpwuid()
#include <limits.h>    // PATH_MAX
#include <signal.h>    // signal(), kill()
#include <stdlib.h>    // rand_r(), strto[u]ll()
#include <string.h>    // strchr()
#include <unistd.h>    // sleep(), getpid(), getuid(), fsync(), [f]stat()
#include <ifaddrs.h>   // getifaddrs(), freeifaddrs()
#include <sys/types.h> // stat, pid_t
#include <sys/stat.h>  // [f]stat()
#include <sys/file.h>  // flock()

#include <net/if.h>     // ifreq
#include <netinet/in.h> // sockaddr_in
#include <arpa/inet.h>  // inet_ntop()
#include <sys/ioctl.h>
#include <sys/socket.h>

#include <map>
#include <atomic>
#include <chrono>
#include <thread>       // thread::hardware_concurrency()
#include <random>
#include <iomanip>      // setw()
#include <numeric>      // iota()
#include <iostream>
#include <system_error> // generic_category()

#include <libbutl/pager.hxx>
#include <libbutl/base64.hxx>
#include <libbutl/sha256.hxx>
#include <libbutl/openssl.hxx>
#include <libbutl/filesystem.hxx> // dir_iterator, try_rmfile(), readsymlink()
#include <libbutl/semantic-version.hxx>

#include <libbbot/manifest.hxx>

#include <bbot/types.hxx>
#include <bbot/utility.hxx>
#include <bbot/diagnostics.hxx>

#include <bbot/machine-manifest.hxx>
#include <bbot/bootstrap-manifest.hxx>

#include <bbot/agent/tftp.hxx>
#include <bbot/agent/machine.hxx>
#include <bbot/agent/http-service.hxx>

using namespace butl;
using namespace bbot;

using std::cout;
using std::endl;

// If RAM minimum is not specified for a machine, then let's assume something
// plausible like 256MiB. This way we won't end up with degenerate cases where
// we attempt to start a machine with some absurd amount of RAM.
//
const std::uint64_t default_ram_minimum = 262144;

static inline std::uint64_t
effective_ram_minimum (const machine_header_manifest& m)
{
  // Note: neither ram_minimum nor ram_maximum should be 0.
  //
  assert ((!m.ram_minimum || *m.ram_minimum != 0) &&
          (!m.ram_maximum || *m.ram_maximum != 0));

  return (m.ram_minimum
          ? *m.ram_minimum
          : (m.ram_maximum && *m.ram_maximum < default_ram_minimum
             ? *m.ram_maximum
             : default_ram_minimum));
}

static std::mt19937 rand_gen (std::random_device {} ());

// According to the standard, atomic's use in the signal handler is only safe
// if it's lock-free.
//
#if !defined(ATOMIC_INT_LOCK_FREE) || ATOMIC_INT_LOCK_FREE != 2
#error int is not lock-free on this architecture
#endif

// While we can use memory_order_relaxed in a single-threaded program, let's
// use consume/release in case this process becomes multi-threaded in the
// future.
//
static std::atomic<unsigned int> sigurs1;

using std::memory_order_consume;
using std::memory_order_release;

extern "C" void
handle_signal (int sig)
{
  switch (sig)
  {
  case SIGHUP:  exit (3); // Unimplemented feature.
  case SIGTERM: exit (0);
  case SIGUSR1: sigurs1.fetch_add (1, std::memory_order_release); break;
  default:      assert (false);
  }
}

namespace bbot
{
  agent_options ops;

  const string bs_prot ("1");

  string           tc_name;
  uint16_t         tc_num;
  path             tc_lock; // Empty if no locking.
  standard_version tc_ver;
  string           tc_id;

  uint16_t inst;     // 1-based.
  uint16_t inst_max; // 0 if priority monitoring is disabled.

  uint16_t offset;

  string hname;
  string hip;
  uid_t  uid;
  string uname;
}

static void
file_sync (const path& f)
{
  auto_fd fd (fdopen (f, fdopen_mode::in));
  if (fsync (fd.get ()) != 0)
    throw_system_error (errno);
}

static bool
file_not_empty (const path& f)
{
  if (file_exists (f))
  {
    file_sync (f);
    return !file_empty (f);
  }
  return false;
}

// The btrfs tool likes to print informational messages, like "Created
// snapshot such and such". Luckily, it writes them to stdout while proper
// diagnostics goes to stderr.
//
template <typename... A>
inline void
run_btrfs (tracer& t, A&&... a)
{
  if (verb >= 4)
    run_io (t, fdopen_null (), 2, 2, "btrfs", forward<A> (a)...);
  else
    run_io (t, fdopen_null (), fdopen_null (), 2, "btrfs", forward<A> (a)...);
}

template <typename... A>
inline butl::process_exit::code_type
btrfs_exit (tracer& t, A&&... a)
{
  return verb >= 4
    ? run_io_exit (t, fdopen_null (), 2, 2, "btrfs", forward<A> (a)...)
    : run_io_exit (t,
                   fdopen_null (), fdopen_null (), 2,
                   "btrfs", forward<A> (a)...);
}

// Bootstrap a build machine. Return the bootstrapped machine manifest if
// successful and nullopt otherwise (in which case the caller should clean up
// the machine directory and ignore the machine for now).
//
static optional<bootstrapped_machine_manifest>
bootstrap_build_machine (const dir_path& md,
                         const machine_manifest& mm,
                         optional<bootstrapped_machine_manifest> obmm)
{
  tracer trace ("bootstrap_build_machine", md.string ().c_str ());

  bootstrapped_machine_manifest r {
    mm,
    toolchain_manifest {tc_id.empty () ? "bogus" : tc_id},
    bootstrap_manifest {
      bootstrap_manifest::versions_type {
        {"bbot",    standard_version (BBOT_VERSION_STR)},
        {"libbbot", standard_version (LIBBBOT_VERSION_STR)},
        {"libbpkg", standard_version (LIBBPKG_VERSION_STR)},
        {"libbutl", standard_version (LIBBUTL_VERSION_STR)}
      }
    }
  };

  if (ops.fake_bootstrap ())
  {
    r.machine.mac = "de:ad:be:ef:de:ad";
  }
  else
  try
  {
    // Note: similar code in bootstrap_auxiliary_machine().

    // Start the TFTP server (server chroot is --tftp). Map:
    //
    // GET requests to .../toolchains/<toolchain>/*
    // PUT requests to .../bootstrap/<toolchain>-<instance>/*
    //
    const string in_name (tc_name + '-' + to_string (inst));
    auto_rmdir arm ((dir_path (ops.tftp ()) /= "bootstrap") /= in_name);
    try_mkdir_p (arm.path);

    // Bootstrap result manifest.
    //
    path mf (arm.path / "bootstrap.manifest");
    try_rmfile (mf);

    // @@ TMP BC: also check for the old manifest name until we migrate all
    //    the machines.
    //
    path mfo (arm.path / "manifest");
    try_rmfile (mfo);

    // Note that unlike build, here we use the same VM snapshot for retries,
    // which is not ideal.
    //
    for (size_t retry (0);; ++retry)
    {
      tftp_server tftpd ("Gr  ^/?(.+)$  /toolchains/" + tc_name + "/\\1\n" +
                         "Pr  ^/?(.+)$  /bootstrap/" + in_name + "/\\1\n",
                         ops.tftp_port () + offset + 0 /* build machine */);

      l3 ([&]{trace << "tftp server on port " << tftpd.port ();});

      // Start the machine.
      //
      unique_ptr<machine> m (
        start_machine (md,
                       mm,
                       0 /* machine_num (build) */,
                       ops.cpu (),
                       ops.build_ram (),
                       obmm ? obmm->machine.mac : nullopt,
                       ops.bridge (),
                       tftpd.port (),
                       false /* pub_vnc */));

      {
        // If we are terminating with an exception then force the machine down.
        // Failed that, the machine's destructor will block waiting for its
        // completion.
        //
        auto mg (
          make_exception_guard (
            [&m, &md] ()
            {
              if (m != nullptr)
              {
                info << "trying to force machine " << md << " down";
                try {m->forcedown (false);} catch (const failed&) {}
              }
            }));

        // What happens if the bootstrap process hangs? The simple thing would
        // be to force the machine down after some timeout and then fail. But
        // that won't be very helpful for investigating the cause. So instead
        // the plan is to suspend it after some timeout, issue diagnostics
        // (without failing and which Build OS monitor will relay to the
        // operator), and wait for the external intervention.
        //
        auto soft_fail = [&md, &m] (const char* msg)
        {
          {
            diag_record dr (error);
            dr << msg << " for machine " << md << ", suspending";
            m->print_info (dr);
          }

          try
          {
            m->suspend (false);
            m->wait (false);
            m->cleanup ();
            info << "resuming after machine suspension";

            // Note: snapshot cleaned up by the caller.
          }
          catch (const failed&) {}

          return nullopt;
        };

        // Check whether the machine is still running issuing diagnostics and
        // returning false if it unexpectedly terminated.
        //
        auto check_machine = [&md, &m] ()
        {
          try
          {
            size_t t (0);
            if (!m->wait (t /* seconds */, false /* fail_hard */))
              return true; // Still running.

            // Exited successfully.
          }
          catch (const failed&)
          {
            // Failed, exit code diagnostics has already been issued.
          }

          diag_record dr (error);
          dr << "machine " << md << " exited unexpectedly";
          m->print_info (dr);

          return false;
        };

        // The first request should be the toolchain download. Wait for up to
        // 5 minutes (by default) for that to arrive. In a sense we use it as
        // an indication that the machine has booted and the bootstrap process
        // has started. Why wait so long you may wonder? Well, we may be using
        // a new MAC address and operating systems like Windows may need to
        // digest that.
        //
        size_t to;
        const size_t startup_to   (ops.bootstrap_startup ());
        const size_t bootstrap_to (ops.bootstrap_timeout ());
        const size_t shutdown_to  (5 * 60);

        // Wait periodically making sure the machine is still alive.
        //
        for (to = startup_to; to != 0; )
        {
          if (tftpd.serve (to, 2))
            break;

          if (!check_machine ())
          {
            return nullopt; // Note: snapshot cleaned up by the caller.
          }
        }

        // This can mean two things: machine mis-configuration or what we
        // euphemistically call a "mis-boot": the VM failed to boot for some
        // unknown/random reason. Mac OS is particularly know for suffering
        // from this. So the strategy is to retry it a couple of times and
        // then suspend for investigation.
        //
        if (to == 0)
        {
          if (retry > ops.bootstrap_retries ())
            return soft_fail ("bootstrap startup timeout");

          // Note: keeping the logs behind (no cleanup).

          diag_record dr (warn);
          dr << "machine " << mm.name << " mis-booted, retrying";
          m->print_info (dr);

          try {m->forcedown (false);} catch (const failed&) {}
          m = nullptr; // Disable exceptions guard above.
          continue;
        }

        l3 ([&]{trace << "completed startup in " << startup_to - to << "s";});

        // Next the bootstrap process may download additional toolchain
        // archives, build things, and then upload the result manifest. So on
        // our side we serve TFTP requests while periodically checking for the
        // manifest file. To workaround some obscure filesystem races (the
        // file's mtime/size is updated several seconds later; maybe tmpfs
        // issue?), we periodically re-check.
        //
        for (to = bootstrap_to; to != 0; )
        {
          if (tftpd.serve (to, 2))
            continue;

          if (!check_machine ())
          {
            // The exit/upload is racy so we re-check.
            //
            if (!(file_not_empty (mf) || file_not_empty (mfo)))
            {
              return nullopt; // Note: snapshot cleaned up by the caller.
            }
          }

          bool old (false);
          if (file_not_empty (mf) || (old = file_not_empty (mfo)))
          {
            if (old)
              mf = move (mfo);

            // Wait for 5 seconds of inactivity. This is our desperate attempt
            // at handling interrupted uploads.
            //
            if (!tftpd.serve (to, 5))
              break;
          }
        }

        if (to == 0)
          return soft_fail ("bootstrap timeout");

        l3 ([&]{trace << "completed bootstrap in " << bootstrap_to - to << "s";});

        // Shut the machine down cleanly.
        //
        if (!m->shutdown ((to = shutdown_to)))
          return soft_fail ("bootstrap shutdown timeout");

        l3 ([&]{trace << "completed shutdown in " << shutdown_to - to << "s";});

        m->cleanup ();
      }

      // Parse the result manifest.
      //
      r.bootstrap = parse_manifest<bootstrap_manifest> (mf, "bootstrap");

      r.machine.mac = m->mac; // Save the MAC address.

      break;
    }
  }
  catch (const system_error& e)
  {
    fail << "bootstrap error: " << e;
  }

  serialize_manifest (r, md / "manifest", "bootstrapped machine");
  return r;
}

// Bootstrap an auxiliary machine. Return the bootstrapped machine manifest if
// successful and nullopt otherwise (in which case the caller should clean up
// the machine directory and ignore the machine for now).
//
static vector<size_t>
divide_auxiliary_ram (const vector<const machine_header_manifest*>&);

static optional<bootstrapped_machine_manifest>
bootstrap_auxiliary_machine (const dir_path& md,
                             const machine_manifest& mm,
                             optional<bootstrapped_machine_manifest> obmm)
{
  tracer trace ("bootstrap_auxiliary_machine", md.string ().c_str ());

  bootstrapped_machine_manifest r {
    mm,
    toolchain_manifest {}, // Unused for auxiliary,
    bootstrap_manifest {}  // Unused for auxiliary.
  };

  if (ops.fake_bootstrap ())
  {
    r.machine.mac = "de:ad:be:ef:de:ad";
  }
  else
  try
  {
    // Similar to bootstrap_build_machine() except here we just wait for the
    // upload of the environment.

    // Start the TFTP server (server chroot is --tftp). Map:
    //
    // GET requests to /dev/null
    // PUT requests to .../bootstrap/<toolchain>-<instance>/*
    //
    const string in_name (tc_name + '-' + to_string (inst));
    auto_rmdir arm ((dir_path (ops.tftp ()) /= "bootstrap") /= in_name);
    try_mkdir_p (arm.path);

    // Environment upload.
    //
    path ef (arm.path / "environment");
    try_rmfile (ef);

    // Note that unlike build, here we use the same VM snapshot for retries,
    // which is not ideal.
    //
    for (size_t retry (0);; ++retry)
    {
      tftp_server tftpd ("Gr  ^/?(.+)$  " + string ("/dev/null") + '\n' +
                         "Pr  ^/?(.+)$  /bootstrap/" + in_name + "/\\1\n",
                         ops.tftp_port () + offset + 1 /* auxiliary machine */);

      l3 ([&]{trace << "tftp server on port " << tftpd.port ();});

      // If the machine specified RAM minimum, use that to make sure the
      // machine can actually function with this amount of RAM. Otherwise, use
      // the minium of RAM maximum (if specified) and the available auxiliary
      // RAM (so we know this machine will at least work alone). For the
      // latter case use divide_auxiliary_ram() to be consistent with the
      // build case (see that function implementation for nuances).
      //
      size_t ram;
      if (mm.ram_minimum)
        ram = *mm.ram_minimum;
      else
      {
        vector<size_t> rams (divide_auxiliary_ram ({&mm}));
        assert (!rams.empty ()); // We should have skipped such a machine.
        ram = rams.front ();
      }

      // Start the machine.
      //
      unique_ptr<machine> m (
        start_machine (md,
                       mm,
                       1 /* machine_num (first auxiliary) */,
                       ops.cpu (),
                       ram,
                       obmm ? obmm->machine.mac : nullopt,
                       ops.bridge (),
                       tftpd.port (),
                       false /* pub_vnc */));

      {
        // NOTE: see bootstrap_build_machine() for comments.

        auto mg (
          make_exception_guard (
            [&m, &md] ()
            {
              if (m != nullptr)
              {
                info << "trying to force machine " << md << " down";
                try {m->forcedown (false);} catch (const failed&) {}
              }
            }));

        auto soft_fail = [&md, &m] (const char* msg)
        {
          {
            diag_record dr (error);
            dr << msg << " for machine " << md << ", suspending";
            m->print_info (dr);
          }

          try
          {
            m->suspend (false);
            m->wait (false);
            m->cleanup ();
            info << "resuming after machine suspension";

            // Note: snapshot cleaned up by the caller.
          }
          catch (const failed&) {}

          return nullopt;
        };

        auto check_machine = [&md, &m] ()
        {
          try
          {
            size_t t (0);
            if (!m->wait (t /* seconds */, false /* fail_hard */))
              return true; // Still running.

            // Exited successfully.
          }
          catch (const failed&)
          {
            // Failed, exit code diagnostics has already been issued.
          }

          diag_record dr (error);
          dr << "machine " << md << " exited unexpectedly";
          m->print_info (dr);

          return false;
        };

        // Wait up to the specified timeout for the auxiliary machine to
        // bootstrap. Note that such a machine may do extra setup work on the
        // first boot (such as install some packages, etc) which may take some
        // time.
        //
        size_t to;
        const size_t bootstrap_to (ops.bootstrap_auxiliary ());
        const size_t shutdown_to  (5 * 60);

        // Serve TFTP requests while periodically checking for the environment
        // file.
        //
        for (to = bootstrap_to; to != 0; )
        {
          if (tftpd.serve (to, 2))
            continue;

          if (!check_machine ())
          {
            if (!file_not_empty (ef))
            {
              return nullopt; // Note: snapshot cleaned up by the caller.
            }
          }

          if (file_not_empty (ef))
          {
            if (!tftpd.serve (to, 5))
              break;
          }
        }

        if (to == 0)
        {
          if (retry > ops.bootstrap_retries ())
            return soft_fail ("bootstrap timeout");

          // Note: keeping the logs behind (no cleanup).

          diag_record dr (warn);
          dr << "machine " << mm.name << " mis-booted, retrying";
          m->print_info (dr);

          try {m->forcedown (false);} catch (const failed&) {}
          m = nullptr; // Disable exceptions guard above.
          continue;
        }

        l3 ([&]{trace << "completed bootstrap in " << bootstrap_to - to << "s";});

        // Shut the machine down cleanly.
        //
        if (!m->shutdown ((to = shutdown_to)))
          return soft_fail ("bootstrap shutdown timeout");

        l3 ([&]{trace << "completed shutdown in " << shutdown_to - to << "s";});

        m->cleanup ();
      }

      r.machine.mac = m->mac; // Save the MAC address.

      break;
    }
  }
  catch (const system_error& e)
  {
    fail << "bootstrap error: " << e;
  }

  serialize_manifest (r, md / "manifest", "bootstrapped machine");
  return r;
}

// Global toolchain lock.
//
// The overall locking protocol is as follows:
//
// 1. Before enumerating the machines each agent instance acquires the global
//    toolchain lock.
//
// 2. As the agent enumerates over the machines, it tries to acquire the lock
//    for each machine.
//
// 3. If the agent encounters a machine that it needs to bootstrap, it
//    releases all the other machine locks followed by the global lock,
//    proceeds to bootstrap the machine, releases its lock, and restarts the
//    process from scratch.
//
// 4. Otherwise, upon receiving a task response for one of the machines (plus,
//    potentially, a number of auxiliary machines), the agent releases all the
//    other machine locks followed by the global lock, proceeds to perform the
//    task on the selected machine(s), releases their locks, and restarts the
//    process from scratch.
//
// One notable implication of this protocol is that the machine locks are
// only acquired while holding the global toolchain lock but can be released
// while not holding this lock.
//
// (Note that because of this implication it can theoretically be possible
// to omit acquiring all the machine locks during the enumeration process,
// instead only acquiring the lock of the machine we need to bootstrap or
// build. However, the current approach is simpler since we still need
// to detect machines that are already locked, which entails acquiring
// the lock anyway.)
//
// Note that unlike the machine lock below, here we don't bother with removing
// the lock file.
//
class toolchain_lock
{
public:
  toolchain_lock () = default; // Empty lock.

  // Note: returns true if locking is disabled.
  //
  bool
  locked () const
  {
    return tc_lock.empty () || fl_;
  }

  void
  unlock (bool ignore_errors = false)
  {
    if (fl_)
    {
      fl_ = false; // We have tried.

      if (flock (fd_.get (), LOCK_UN) != 0 && !ignore_errors)
        throw_generic_error (errno);
    }
  }

  ~toolchain_lock ()
  {
    unlock (true /* ignore_errors */);
  }

  toolchain_lock            (toolchain_lock&&) = default;
  toolchain_lock& operator= (toolchain_lock&&) = default;

  toolchain_lock            (const toolchain_lock&) = delete;
  toolchain_lock& operator= (const toolchain_lock&) = delete;

  // Implementation details.
  //
public:
  explicit
  toolchain_lock (auto_fd&& fd)
      : fd_ (move (fd)), fl_ (true) {}

private:
  auto_fd fd_;
  bool    fl_ = false;
};

// Note: returns empty lock if toolchain locking is disabled.
//
static optional<toolchain_lock>
lock_toolchain (unsigned int timeout)
{
  if (tc_lock.empty ())
    return toolchain_lock ();

  auto_fd fd (fdopen (tc_lock, fdopen_mode::out | fdopen_mode::create));

  for (; flock (fd.get (), LOCK_EX | LOCK_NB) != 0; sleep (1), --timeout)
  {
    if (errno != EWOULDBLOCK)
      throw_generic_error (errno);

    if (timeout == 0)
      return nullopt;
  }

  return toolchain_lock (move (fd));
}

// Per-toolchain machine lock.
//
// We use flock(2) which is straightforward. The tricky part is cleaning the
// file up. Here we may have a race when two processes are trying to open &
// lock the file that is being unlocked & removed by a third process. In this
// case one of these processes may still open the old file. To resolve this,
// after opening and locking the file, we verify that a new file hasn't
// appeared by stat'ing the path and file descriptor and comparing the inodes.
//
// Note that converting a lock (shared to exclusive or vice versa) is not
// guaranteed to be atomic (in case later we want to support exclusive
// bootstrap and shared build).
//
// Note also that we per-toolchain lock auxiliary machines even though they
// are not toolchain-specific. Doing it this way allows us to handle both
// types of machines consistently with regards to priorities, interrupts, etc.
// It also means we will have each auxiliary machine available per-toolchain
// rather than a single machine shared between all the toolchains, which is
// a good thing.
//
class machine_lock
{
public:
  // A lock is either locked by this process or it contains information about
  // the process holding the lock.
  //
  pid_t              pid;  // Process using the machine.
  optional<uint64_t> prio; // Task priority (absent means being bootstrapped
                           // or have been suspended).

  machine_lock () = default; // Uninitialized lock.

  bool
  locked () const
  {
    return fl_;
  }

  void
  unlock (bool ignore_errors = false)
  {
    if (fl_)
    {
      fl_ = false; // We have tried.

      if (fd_ != nullfd)
      {
        try_rmfile (fp_, ignore_errors);

        if (flock (fd_.get (), LOCK_UN) != 0 && !ignore_errors)
          throw_generic_error (errno);
      }
    }
  }

  // Write the holding process information to the lock file.
  //
  // Must be called while holding the toolchain lock (see the lock_machine()
  // implementation for rationale).
  //
  void
  bootstrap (const toolchain_lock& tl)
  {
    assert (tl.locked () && fl_);

    if (fd_ != nullfd)
      write (nullopt);
  }

  void
  perform_task (const toolchain_lock& tl, uint64_t prio)
  {
    assert (tl.locked () && fl_);

    if (fd_ != nullfd)
      write (prio);
  }

  // Truncate the holding process information after the call to perform_task()
  // so that it doesn't contain the priority, marking the machine as being
  // suspended.
  //
  // Note that this one can be called without holding the toolchain lock.
  //
  void
  suspend_task ()
  {
    assert (fl_);

    if (fd_ != nullfd)
    {
      assert (tp_ != 0); // Must be called after perform_task().

      // While there is no direct statement to this effect in POSIX, the
      // consensus on the internet is that truncation is atomic, in a sense
      // that the reader shouldn't see a partially truncated content. Feels
      // like should be doubly so when actually truncating as opposed to
      // extending the size, which is what we do.
      //
      fdtruncate (fd_.get (), tp_);
    }
  }

  ~machine_lock ()
  {
    unlock (true /* ignore_errors */);
  }

  machine_lock            (machine_lock&&) = default;
  machine_lock& operator= (machine_lock&&) = default;

  machine_lock            (const machine_lock&) = delete;
  machine_lock& operator= (const machine_lock&) = delete;

  // Implementation details.
  //
public:
  // If fd is nullfd, treat it as a fake lock (used for fake machines).
  //
  machine_lock (path&& fp, auto_fd&& fd)
      : fp_ (move (fp)), fd_ (move (fd)), fl_ (true) {}

  machine_lock (pid_t pi, optional<uint64_t> pr)
      : pid (pi), prio (pr), fl_ (false) {}

private:
  void
  write (optional<uint64_t> prio)
  {
    pid_t pid (getpid ());

    string l (to_string (pid));

    if (prio)
    {
      tp_ = l.size (); // Truncate position.

      l += ' ';
      l += to_string (*prio);
    }

    auto n (fdwrite (fd_.get (), l.c_str (), l.size ()));

    if (n == -1)
      throw_generic_ios_failure (errno);

    if (static_cast<size_t> (n) != l.size ())
      throw_generic_ios_failure (EFBIG);
  }

private:
  path     fp_;
  auto_fd  fd_;
  bool     fl_ = false;
  uint64_t tp_ = 0; // Truncate position.
};

// Try to lock the machine given its -<toolchain> directory. Return unlocked
// lock with pid/prio if already in use. Must be called while holding the
// toolchain lock.
//
static machine_lock
lock_machine (const toolchain_lock& tl, const dir_path& tp)
{
  assert (tl.locked ());

  path fp (tp + ".lock"); // The -<toolchain>.lock file.

  for (;;)
  {
    auto_fd fd (fdopen (fp, (fdopen_mode::in  |
                             fdopen_mode::out |
                             fdopen_mode::create)));

    if (flock (fd.get (), LOCK_EX | LOCK_NB) != 0)
    {
      if (errno == EWOULDBLOCK)
      {
        // The file should contain a line in the following format:
        //
        // <pid>[ <prio>]
        //
        char buf[64]; // Sufficient for 2 64-bit numbers (20 decimals max).

        auto sn (fdread (fd.get (), buf, sizeof (buf)));

        if (sn == -1)
          throw_generic_ios_failure (errno);

        size_t n (static_cast<size_t> (sn));

        // While there would be a race between locking the file then writing
        // to it in one process and reading from it in another process, we are
        // protected by the global toolchain lock, which must be held by both
        // sides during this dance.
        //
        assert (n > 0 && n < sizeof (buf));
        buf[n] = '\0';

        // Note also that it's possible that by the time we read the pid/prio
        // the lock has already been released. But this case is no different
        // from the lock being released after we have read pid/prio but before
        // acting on this information (e.g., trying to interrupt the other
        // process), which we have to deal with anyway.
        //
        pid_t pid;
        optional<uint64_t> prio;
        {
          char* p (strchr (buf, ' '));
          char* e;

          {
            errno = 0;
            pid = strtoll (buf, &e, 10); // Note: pid_t is signed.
            assert (errno != ERANGE &&
                    e != buf        &&
                    (p != nullptr ? e == p : *e == '\0'));
          }

          if (p != nullptr)
          {
            ++p;
            errno = 0;
            prio = strtoull (p, &e, 10);
            assert (errno != ERANGE && e != p && *e == '\0');
          }
        }

        return machine_lock (pid, prio);
      }

      throw_generic_error (errno);
    }

    struct stat st1, st2;

    if (fstat (fd.get (),             &st1) != 0 ||
        stat  (fp.string ().c_str (), &st2) != 0 )   // Both should succeed.
      throw_generic_error (errno);

    if (st1.st_ino == st2.st_ino)
      return machine_lock (move (fp), move (fd));

    // Retry (note: lock is unlocked by auto_fd::close()).
  }
}

// Given the toolchain directory (-<toolchain>) return the snapshot path in
// the <name>-<toolchain>-<xxx> form.
//
// We include the instance number into <xxx> for debuggability.
//
static inline dir_path
snapshot_path (const dir_path& tp)
{
  return tp.directory () /=
    path::traits_type::temp_name (tp.leaf ().string () + '-' +
                                  to_string (inst));
}

// Compare bbot and library versions returning -1 if older, 0 if the same,
// and +1 if newer.
//
static int
compare_bbot (const bootstrap_manifest& m)
{
  auto cmp = [&m] (const string& n, const char* v) -> int
  {
    standard_version sv (v);
    auto i = m.versions.find (n);

    return (i == m.versions.end () || i->second < sv
            ? -1
            : i->second > sv ? 1 : 0);
  };

  // Start from the top assuming a new dependency cannot be added without
  // changing the dependent's version.
  //
  int r;
  return (
    (r = cmp ("bbot",       BBOT_VERSION_STR)) != 0 ? r :
    (r = cmp ("libbbot", LIBBBOT_VERSION_STR)) != 0 ? r :
    (r = cmp ("libbpkg", LIBBPKG_VERSION_STR)) != 0 ? r :
    (r = cmp ("libbutl", LIBBUTL_VERSION_STR)) != 0 ? r : 0);
};

// Return the global toolchain lock and the list of available machines,
// (re-)bootstrapping them if necessary.
//
// Note that this function returns both machines that this process managed to
// lock as well as the machines locked by other processes (including those
// that are being bootstrapped or that have been suspended), in case the
// caller needs to interrupt one of them for a higher-priority task. In the
// latter case, the manifest is empty if the machine is bootstrapping or
// suspended and only has the machine_manifest information otherwise. (The
// bootstrapping/suspended machines have to be returned to get the correct
// count of currently active instances for the inst_max comparison.)
//
// Note that both build and auxiliary machines are returned. For auxiliary,
// toolchain and bootstrap manifests are unused and therefore always empty.
//
struct bootstrapped_machine
{
  machine_lock                  lock;
  const dir_path                path;
  bootstrapped_machine_manifest manifest;
};
using bootstrapped_machines = vector<bootstrapped_machine>;

static pair<toolchain_lock, bootstrapped_machines>
enumerate_machines (const dir_path& machines)
try
{
  tracer trace ("enumerate_machines", machines.string ().c_str ());

  for (;;) // From-scratch retry loop for after bootstrap (see below).
  {
    pair<toolchain_lock, bootstrapped_machines> pr;

    {
      optional<toolchain_lock> l;
      while (!(l = lock_toolchain (60 /* seconds */)))
      {
        // One typical situation where this can happen is when another agent
        // takes a while to request a task (e.g., due to network issues). So
        // this is an info as opposed to a warning.
        //
        info << "unable to acquire global toolchain lock " << tc_lock
             << " for 60s";
      }
      pr.first = move (*l);
    }

    toolchain_lock& tl (pr.first);
    bootstrapped_machines& r (pr.second);

    if (ops.fake_machine_specified ())
    {
      auto mh (
        parse_manifest<machine_header_manifest> (
          ops.fake_machine (), "machine header"));

      r.push_back (
        bootstrapped_machine {
          machine_lock (path (), nullfd),        // Fake lock.
          dir_path (ops.machines ()) /= mh.name, // For diagnostics.
          bootstrapped_machine_manifest {
            machine_manifest {
              move (mh.id),
              move (mh.name),
              move (mh.summary),
              machine_type::kvm,
              string ("de:ad:be:ef:de:ad"),
              nullopt,
              strings ()},
            toolchain_manifest {tc_id},
            bootstrap_manifest {}}});

      return pr;
    }

    // Notice and warn if there are no build machines (as opposed to all of
    // them being busy).
    //
    bool none (true);

    // We used to (re)-bootstrap machines as we are iterating. But with the
    // introduction of the priority monitoring functionality we need to
    // respect the --instance-max value. Which means we first need to try to
    // lock all the machines in order to determine how many of them are busy
    // then check this count against --instance-max, and only bootstrap if we
    // are not over the limit. Which means we have to store all the
    // information about a (first) machine that needs bootstrapping until
    // after we have enumerated all of them.
    //
    struct pending_bootstrap
    {
      machine_lock ml;
      dir_path tp; // -<toolchain>
      dir_path xp; // -<toolchain>-<xxx>
      machine_manifest mm;
      optional<bootstrapped_machine_manifest> bmm;
    };
    optional<pending_bootstrap> pboot;

    // The first level are machine volumes.
    //
    for (const dir_entry& ve: dir_iterator (machines, dir_iterator::no_follow))
    {
      const string vn (ve.path ().string ());

      // Ignore hidden directories.
      //
      if (ve.type () != entry_type::directory || vn[0] == '.')
        continue;

      const dir_path vd (dir_path (machines) /= vn);

      // Inside we have machines.
      //
      try
      {
        for (const dir_entry& me: dir_iterator (vd, dir_iterator::no_follow))
        {
          const string mn (me.path ().string ());

          if (me.type () != entry_type::directory || mn[0] == '.')
            continue;

          const dir_path md (dir_path (vd) /= mn);

          // Our endgoal here is to obtain a bootstrapped snapshot of this
          // machine while watching out for potential race conditions (other
          // instances as well as machines being added/upgraded/removed; see
          // the manual for details).
          //
          // So here is our overall plan:
          //
          // 1. Resolve current subvolume link for our bootstrap protocol.
          //
          // 2. Lock the machine. This excludes any other instance from trying
          //    to perform the following steps.
          //
          // 3. If there is no link, cleanup old bootstrap (if any) and ignore
          //    this machine.
          //
          // 4. Try to create a snapshot of current subvolume (this operation
          //    is atomic). If failed (e.g., someone changed the link and
          //    removed the subvolume in the meantime), retry from #1.
          //
          // 5. Compare the snapshot to the already bootstrapped version (if
          //    any) and see if we need to re-bootstrap. If so, use the
          //    snapshot as a starting point. Rename to bootstrapped at the
          //    end (atomic).
          //
          dir_path lp (dir_path (md) /= (mn + '-' + bs_prot)); // -<P>
          dir_path tp (dir_path (md) /= (mn + '-' + tc_name)); // -<toolchain>

          auto delete_bootstrapped = [&tp, &trace] () // Delete -<toolchain>.
          {
            run_btrfs (trace, "property", "set", "-ts", tp, "ro", "false");
            run_btrfs (trace, "subvolume", "delete", tp);
          };

          for (size_t retry (0);; ++retry)
          {
            if (retry != 0)
              sleep (1);

            // Resolve the link to subvolume path.
            //
            dir_path sp; // <name>-<P>.<R>

            try
            {
              sp = path_cast<dir_path> (readsymlink (lp));

              if (sp.relative ())
                sp = md / sp;
            }
            catch (const system_error& e)
            {
              // Leave the subvolume path empty if the subvolume link doesn't
              // exist and fail on any other error.
              //
              if (e.code ().category () != std::generic_category () ||
                  e.code ().value () != ENOENT)
                fail << "unable to read subvolume link " << lp << ": " << e;
            }

            // Try to lock the machine.
            //
            machine_lock ml (lock_machine (tl, tp));

            if (!ml.locked ())
            {
              machine_manifest mm;
              if (ml.prio)
              {
                // Get the machine manifest (subset of the steps performed for
                // the locked case below).
                //
                // Note that it's possible the machine we get is not what was
                // originally locked by the other process (e.g., it has been
                // upgraded since). It's also possible that if and when we
                // interrupt and lock this machine, it will be a different
                // machine (e.g., it has been upgraded since we read this
                // machine manifest). To deal with all of that we will be
                // reloading this information if/when we acquire the lock to
                // this machine.
                //
                if (sp.empty ())
                {
                  l3 ([&]{trace << "skipping " << md << ": no subvolume link";});
                  break;
                }

                l3 ([&]{trace << "keeping " << md << ": locked by " << ml.pid
                              << " with priority " << *ml.prio;});

                mm = parse_manifest<machine_manifest> (
                  sp / "manifest", "machine");

                none = none && mm.effective_role () == machine_role::auxiliary;
              }
              else // Bootstrapping/suspended.
              {
                l3 ([&]{trace << "keeping " << md << ": being bootstrapped "
                              << "or suspened by " << ml.pid;});

                // Assume it is a build machine (we cannot determine whether
                // it is build or auxiliary without loading its manifest).
                //
                none = false;
              }

              // Add the machine to the lists and bail out.
              //
              r.push_back (bootstrapped_machine {
                  move (ml),
                  move (tp),
                  bootstrapped_machine_manifest {move (mm), {}, {}}});

              break;
            }

            bool te (dir_exists (tp));

            // If the resolution fails, then this means there is no current
            // machine subvolume (for this bootstrap protocol). In this case
            // we clean up our toolchain subvolume (-<toolchain>, if any) and
            // ignore this machine.
            //
            if (sp.empty ())
            {
              if (te)
                delete_bootstrapped ();

              l3 ([&]{trace << "skipping " << md << ": no subvolume link";});
              break;
            }

            // <name>-<toolchain>-<xxx>
            //
            dir_path xp (snapshot_path (tp));

            if (btrfs_exit (trace, "subvolume", "snapshot", sp, xp) != 0)
            {
              if (retry >= 10)
                fail << "unable to snapshot subvolume " << sp;

              continue;
            }

            // Load the (original) machine manifest.
            //
            machine_manifest mm (
              parse_manifest<machine_manifest> (sp / "manifest", "machine"));

            bool aux (mm.effective_role () == machine_role::auxiliary);

            // Skip machines for which we don't have sufficient RAM.
            //
            if (effective_ram_minimum (mm) >
                (aux ? ops.auxiliary_ram () : ops.build_ram ()))
            {
              l3 ([&]{trace << "skipping " << md << ": insufficient RAM";});
              run_btrfs (trace, "subvolume", "delete", xp);
              break;
            }

            none = none && aux;

            // If we already have <name>-<toolchain>, see if it needs to be
            // re-bootstrapped. Things that render it obsolete:
            //
            // 1. New machine revision  (compare machine ids).
            // 2. New toolchain         (compare toolchain ids, not auxiliary).
            // 3. New bbot/libbbot      (compare versions, not auxiliary).
            //
            // The last case has a complication: what should we do if we have
            // bootstrapped a newer version of bbot? This would mean that we
            // are about to be stopped and upgraded (and the upgraded version
            // will probably be able to use the result). So we simply ignore
            // this machine for this run.
            //
            // Note: see similar code in the machine interruption logic.
            //
            optional<bootstrapped_machine_manifest> bmm;
            if (te)
            {
              bmm = parse_manifest<bootstrapped_machine_manifest> (
                tp / "manifest", "bootstrapped machine");

              if (bmm->machine.id != mm.id)
              {
                l3 ([&]{trace << "re-bootstrap " << tp << ": new machine";});
                te = false;
              }

              if (!aux)
              {
                if (!tc_id.empty () && bmm->toolchain.id != tc_id)
                {
                  l3 ([&]{trace << "re-bootstrap " << tp << ": new toolchain";});
                  te = false;
                }

                if (int i = compare_bbot (bmm->bootstrap))
                {
                  if (i < 0)
                  {
                    l3 ([&]{trace << "re-bootstrap " << tp << ": new bbot";});
                    te = false;
                  }
                  else
                  {
                    l3 ([&]{trace << "ignoring " << tp << ": old bbot";});
                    run_btrfs (trace, "subvolume", "delete", xp);
                    break;
                  }
                }
              }

              if (!te)
                delete_bootstrapped ();
            }
            else
              l3 ([&]{trace << "bootstrap " << tp;});

            if (!te)
            {
              // Ignore any other machines that need bootstrapping.
              //
              if (!pboot)
              {
                pboot = pending_bootstrap {
                  move (ml), move (tp), move (xp), move (mm), move (bmm)};
              }
              else
                run_btrfs (trace, "subvolume", "delete", xp);

              break;
            }
            else
              run_btrfs (trace, "subvolume", "delete", xp);

            // Add the machine to the lists.
            //
            r.push_back (
              bootstrapped_machine {move (ml), move (tp), move (*bmm)});

            break;
          } // Retry loop.
        } // Inner dir_iterator loop.
      }
      catch (const system_error& e)
      {
        fail << "unable to iterate over " << vd << ": " << e;
      }
    } // Outer dir_iterator loop.

    // See if there is a pending bootstrap and whether we can perform it.
    //
    // What should we do if we can't (i.e., we are in the priority monitor
    // mode)? Well, we could have found some machines that are already
    // bootstrapped (busy or not) and there may be a higher-priority task for
    // one of them, so it feels natural to return whatever we've got.
    //
    if (pboot)
    {
      dir_path& tp (pboot->tp);
      dir_path& xp (pboot->xp);

      // Determine how many machines are busy (locked by other processes) and
      // make sure it's below the --instance-max limit, if specified.
      //
      // We should only count build machines unless being bootstrapped (see
      // above).
      //
      if (inst_max != 0)
      {
        size_t busy (0);
        for (const bootstrapped_machine& m: r)
        {
          if (!m.lock.locked () &&
              (!m.lock.prio ||
               m.manifest.machine.effective_role () != machine_role::auxiliary))
            ++busy;
        }

        assert (busy <= inst_max);

        if (busy == inst_max)
        {
          l3 ([&]{trace << "instance max reached attempting to bootstrap "
                        << tp;});
          run_btrfs (trace, "subvolume", "delete", xp);
          return pr;
        }
      }

      machine_lock& ml (pboot->ml);

      l3 ([&]{trace << "bootstrapping " << tp;});

      // Use the -<toolchain>-<xxx> snapshot that we have made to bootstrap
      // the new machine. Then atomically rename it to -<toolchain>.
      //
      // Also release all the machine locks that we have acquired so far as
      // well as the global toolchain lock, since the bootstrap will take a
      // while and other instances might be able to use them. Because we are
      // releasing the global lock, we have to restart the enumeration process
      // from scratch.
      //
      r.clear ();
      ml.bootstrap (tl);
      tl.unlock ();

      bool aux (pboot->mm.effective_role () == machine_role::auxiliary);

      optional<bootstrapped_machine_manifest> bmm (
        aux
        ? bootstrap_auxiliary_machine (xp, pboot->mm, move (pboot->bmm))
        : bootstrap_build_machine (xp, pboot->mm, move (pboot->bmm)));

      if (!bmm)
      {
        l3 ([&]{trace << "ignoring " << tp << ": failed to bootstrap";});
        run_btrfs (trace, "subvolume", "delete", xp);
        continue;
      }

      try
      {
        mvdir (xp, tp);
      }
      catch (const system_error& e)
      {
        fail << "unable to rename " << xp << " to " << tp;
      }

      l2 ([&]{trace << "bootstrapped " << bmm->machine.name;});

      // Check the bootstrapped bbot version as above and ignore this build
      // machine if it's newer than us.
      //
      if (!aux)
      {
        if (int i = compare_bbot (bmm->bootstrap))
        {
          if (i > 0)
            l3 ([&]{trace << "ignoring " << tp << ": old bbot";});
          else
            warn << "bootstrapped " << tp << " bbot worker is older "
                 << "than agent; assuming test setup";
        }
      }

      continue; // Re-enumerate from scratch.
    }

    if (none)
      warn << "no build machines for toolchain " << tc_name;

    return pr;

  } // From-scratch retry loop.

  // Unreachable.
}
catch (const system_error& e)
{
  fail << "unable to iterate over " << machines << ": " << e << endf;
}

// Perform the build task throwing interrupt if it has been interrupted.
//
struct interrupt {};

// Start an auxiliary machine (steps 1-3 described in perfrom_task() below).
//
// Note that if the returned machine is NULL, then it means it has failed to
// start up (in which case the diagnostics has already been issued and
// snapshot cleaned up).
//
// Note: can throw interrupt.
//
struct auxiliary_machine_result
{
  dir_path                  snapshot;
  unique_ptr<bbot::machine> machine;
};

using auxiliary_machine_results = vector<auxiliary_machine_result>;

static pair<auxiliary_machine_result, string /* environment */>
start_auxiliary_machine (bootstrapped_machine& am,
                         const string& env_name,
                         uint16_t machine_num,
                         size_t ram,
                         const string& in_name, // <toolchain>-<instance>
                         const dir_path& tftp_put_dir,
                         optional<size_t> boost_cpus)
try
{
  tracer trace ("start_auxiliary_machine", am.path.string ().c_str ());

  // NOTE: a simplified version of perform_task() below.

  machine_lock& ml (am.lock);
  const dir_path& md (am.path);
  const bootstrapped_machine_manifest& mm (am.manifest);

  path ef (tftp_put_dir / "environment"); // Environment upload file.
  try_rmfile (ef);

  // <name>-<toolchain>-<xxx>
  //
  const dir_path xp (snapshot_path (md));

  for (size_t retry (0);; ++retry)
  {
    if (retry != 0)
      run_btrfs (trace, "subvolume", "delete", xp);

    run_btrfs (trace, "subvolume", "snapshot", md, xp);

    // Start the TFTP server. Map:
    //
    // GET requests to /dev/null
    // PUT requests to .../build/<toolchain>-<instance>/put/*
    //
    // Note that we only need to run the TFTP server until we get the
    // environment upload. Which means we could have reused the same port as
    // the build machine. But let's keep things parallel to the VNC ports and
    // use a seperate TFTP port for each auxiliary machine.
    //
    tftp_server tftpd ("Gr  ^/?(.+)$  " + string ("/dev/null") + '\n' +
                       "Pr  ^/?(.+)$  /build/" + in_name + "/put/\\1\n",
                       ops.tftp_port () + offset + machine_num);

    l3 ([&]{trace << "tftp server on port " << tftpd.port ();});

    // Note: the machine handling logic is similar to bootstrap. Except here
    // we have to cleanup the snapshot ourselves in case of suspension or
    // unexpected exit.

    // Start the machine.
    //
    // Note that for now we don't support logging in into auxiliary machines
    // in the interactive mode. Maybe one day.
    //
    unique_ptr<machine> m (
      start_machine (xp,
                     mm.machine,
                     machine_num,
                     boost_cpus ? *boost_cpus : ops.cpu (),
                     ram,
                     mm.machine.mac,
                     ops.bridge (),
                     tftpd.port (),
                     false /* public_vnc */));

    auto mg (
      make_exception_guard (
        [&m, &xp] ()
        {
          if (m != nullptr)
          {
            info << "trying to force machine " << xp << " down";
            try {m->forcedown (false);} catch (const failed&) {}
          }
        }));

    auto soft_fail = [&trace, &ml, &xp, &m] (const char* msg)
    {
      {
        diag_record dr (error);
        dr << msg << " for machine " << xp << ", suspending";
        m->print_info (dr);
      }

      try
      {
        // Update the information in the machine lock to signal that the
        // machine is suspended and cannot be interrupted.
        //
        ml.suspend_task ();

        m->suspend (false);
        m->wait (false);
        m->cleanup ();
        run_btrfs (trace, "subvolume", "delete", xp);
        info << "resuming after machine suspension";
      }
      catch (const failed&) {}

      return make_pair (auxiliary_machine_result {move (xp), nullptr},
                        string ());
    };

    auto check_machine = [&xp, &m] ()
    {
      try
      {
        size_t t (0);
        if (!m->wait (t /* seconds */, false /* fail_hard */))
          return true;
      }
      catch (const failed&) {}

      diag_record dr (warn);
      dr << "machine " << xp << " exited unexpectedly";
      m->print_info (dr);

      return false;
    };

    auto check_interrupt = [&trace, &xp, &m] ()
    {
      if (sigurs1.load (std::memory_order_consume) == 0)
        return;

      l2 ([&]{trace << "machine " << xp << " interruped";});

      try {m->forcedown (false);} catch (const failed&) {}
      m->cleanup ();
      m = nullptr; // Disable exceptions guard above.
      run_btrfs (trace, "subvolume", "delete", xp);

      throw interrupt ();
    };

    // Wait for up to 4 minutes (by default) for the environment upload (the
    // same logic as in bootstrap_auxiliary_machine() except here the machine
    // cannot just exit).
    //
    size_t to;
    const size_t startup_to (ops.build_startup ());

    for (to = startup_to; to != 0; )
    {
      check_interrupt ();

      if (tftpd.serve (to, 2))
        continue;

      if (!check_machine ())
      {
        // An auxiliary machine should not just exit.
        //
        return make_pair (auxiliary_machine_result {move (xp), nullptr},
                          string ());
      }

      if (file_not_empty (ef))
      {
        if (!tftpd.serve (to, 5))
          break;
      }
    }

    if (to == 0)
    {
      if (retry > ops.build_retries ())
        return soft_fail ("build startup timeout");

      // Note: keeping the logs behind (no cleanup).

      diag_record dr (warn);
      dr << "machine " << mm.machine.name << " mis-booted, retrying";
      m->print_info (dr);

      try {m->forcedown (false);} catch (const failed&) {}
      m = nullptr; // Disable exceptions guard above.
      continue;
    }

    l3 ([&]{trace << "completed startup in " << startup_to - to << "s";});

    // Read the uploaded environment and, if necessary, append the name prefix
    // (which we first make a valid C identifier and uppercase).
    //
    // Note that it may seem like a good idea to validate the format here.
    // But that means we will essentially need to parse it twice (here and in
    // worker). Plus, in worker we can comminucate some diagnostics by writing
    // it to the build log (here all we can easily do is abort the task). So
    // here we just append the name prefix to trimmed non-blank/comment lines.
    //
    string env_pfx (env_name.empty ()
                    ? string ()
                    : ucase (sanitize_identifier (env_name)) + '_');
    string env;
    try
    {
      ifdstream is (ef, ifdstream::badbit);
      for (string l; !eof (getline (is, l)); )
      {
        trim (l);

        if (!env_pfx.empty () && !l.empty () && l.front () != '#')
          l.insert (0, env_pfx);

        env += l; env += '\n';
      }
    }
    catch (const io_error& e)
    {
      fail << "unable to read from " << ef << ": " << e;
    }

    // Rename and keep the environment file for debugging (it will be removed
    // at the end as part of the tftp_put_dir cleanup).
    //
    mvfile (ef, ef + '-' + mm.machine.name);

    return make_pair (auxiliary_machine_result {move (xp), move (m)},
                      move (env));
  }

  // Unreachable.
}
catch (const system_error& e)
{
  fail << "auxiliary machine startup error: " << e << endf;
}

// Divide the auxiliary RAM among the specified machines.
//
// Issue diagnostics and return empty vector if the auxiliary RAM is
// insufficient.
//
static vector<size_t> // Parallel to mms.
divide_auxiliary_ram (const vector<const machine_header_manifest*>& mms)
{
  size_t ram (ops.auxiliary_ram ());

  vector<size_t> rams;
  vector<size_t> rnds; // Allocation rounds (see below).

  // First pass: allocate the minimums.
  //
  for (const machine_header_manifest* mm: mms)
  {
    size_t v (effective_ram_minimum (*mm));

    assert (!mm->ram_maximum || v <= *mm->ram_maximum); // Sanity check.

    rams.push_back (v);
    rnds.push_back (0);

    if (ram >= v)
      ram -= v;
    else
    {
      diag_record dr (error);
      dr << "insufficient auxiliary RAM " << ops.auxiliary_ram () << "KiB";

      for (size_t i (0); i != rams.size (); ++i)
        dr << info << mms[i]->name << " requires minimum " << rams[i] << "KiB";

      return {};
    }
  }

  // Second pass: distribute the remaining RAM.
  //
  // We are going to do it in the ram_minimum increments to avoid ending up
  // with odd amounts (while Linux can probably grok anything, who knows about
  // Windows).
  //
  // To make the distribution fair we are going to count how many times we
  // have increased each machine's allocation (the rnds vector).
  //
  for (size_t a (1); ram != 0; ) // Allocation round.
  {
    // Find a machine that would be satisfied with the least amount of RAM but
    // which hasn't yet been given anything on this allocation round.
    //
    size_t min_i;     // Min index.
    size_t min_v (0); // Min value.

    // We are done if we couldn't give out any RAM and haven't seen any
    // machines that have already been given something on this allocation
    // round.
    //
    bool done (true);

    for (size_t i (0); i != rams.size (); ++i)
    {
      if (rnds[i] != a)
      {
        const machine_header_manifest& mm (*mms[i]);

        size_t o (rams[i]);
        size_t v (effective_ram_minimum (mm));

        // Don't allocate past maximum.
        //
        if (mm.ram_maximum && *mm.ram_maximum < o + v)
        {
          v = *mm.ram_maximum - o;

          if (v == 0)
            continue;
        }

        if (v <= ram && (min_v == 0 || min_v > v))
        {
          min_i = i;
          min_v = v;
        }
      }
      else
        done = false;
    }

    if (min_v != 0)
    {
      rnds[min_i] = a;
      rams[min_i] += min_v;
      ram -= min_v;
    }
    else
    {
      if (done)
        break;

      ++a; // Next allocation round.
    }
  }

  return rams;
}

// Stop all the auxiliary machines and clear the passed list.
//
static void
stop_auxiliary_machines (auxiliary_machine_results& amrs)
{
  tracer trace ("stop_auxiliary_machines");

  if (!amrs.empty ())
  {
    // Do it in two passes to make sure all the machines are at least down.
    //
    for (const auxiliary_machine_result& amr: amrs)
    {
      if (amr.machine != nullptr)
      {
        try {amr.machine->forcedown (false);} catch (const failed&) {}
      }
    }

    // Make sure we don't retry the above even if the below fails.
    //
    auxiliary_machine_results tmp;
    tmp.swap (amrs);

    for (const auxiliary_machine_result& amr: tmp)
    {
      if (amr.machine != nullptr)
      {
        amr.machine->cleanup ();
        run_btrfs (trace, "subvolume", "delete", amr.snapshot);
      }
    }
  }
}

// Start all the auxiliary machines and patch in their combined environment
// into tm.auxiliary_environment.
//
// Return the started machines or empty list if any of them failed to start up
// (which means this function should only be called for non-empty ams).
//
// Note that the order of auxiliary machines in ams may not match that in
// tm.auxiliary_machines.
//
static auxiliary_machine_results
start_auxiliary_machines (const vector<bootstrapped_machine*>& ams,
                          task_manifest& tm,
                          const string& in_name, // <toolchain>-<instance>
                          const dir_path& tftp_put_dir,
                          optional<size_t> boost_cpus)
{
  tracer trace ("start_auxiliary_machines");

  size_t n (tm.auxiliary_machines.size ());

  assert (n != 0 && ams.size () == n);

  auxiliary_machine_results amrs;

  // Divide the auxiliary RAM among the machines.
  //
  vector<size_t> rams;
  {
    vector<const machine_header_manifest*> mms;
    mms.reserve (n);
    for (bootstrapped_machine* am: ams)
      mms.push_back (&am->manifest.machine);

    rams = divide_auxiliary_ram (mms);
    if (rams.empty ())
      return amrs;

    if (verb > 3) // l3
      for (size_t i (0); i != n; ++i)
        trace << mms[i]->name << " allocated " << rams[i] << "KiB";
  }

  // Start the machines.
  //
  // Let's use the order in which they were specified in the task manifest
  // (which will naturally be the order in which they are specified in the
  // package manifest). This way amrs and tm.auxiliary_machines will be
  // parallel.
  //
  string envs; // Combined environments.

  for (size_t i (0); i != n; ++i)
  {
    const auxiliary_machine& tam (tm.auxiliary_machines[i]);

    auto b (ams.begin ()), e (ams.end ());
    auto j (find_if (b, e,
                     [&tam] (const bootstrapped_machine* m)
                     {
                       return m->manifest.machine.name == tam.name;
                     }));
    assert (j != e);

    pair<auxiliary_machine_result, string> p (
      start_auxiliary_machine (**j,
                               tam.environment_name,
                               i + 1,
                               rams[j - b], // Parallel to ams.
                               in_name,
                               tftp_put_dir,
                               boost_cpus));

    if (p.first.machine == nullptr)
    {
      if (!amrs.empty ())
      {
        info << "trying to force auxiliary machines down";
        stop_auxiliary_machines (amrs); // amrs is now empty.
      }

      return amrs;
    }

    amrs.push_back (move (p.first));

    // Add the machine name as a header before its environment.
    //
    if (i != 0) envs += '\n';
    envs += "# "; envs += tam.name; envs += '\n';
    envs += "#\n";
    envs += p.second; // Always includes trailing newline.
  }

  tm.auxiliary_environment = move (envs);

  return amrs;
}

struct perform_task_result
{
  auto_rmdir      work_dir; // <tftp>/build/<toolchain>-<instance>/
  result_manifest manifest;

  // Uploaded archive, if any (somewhere inside work_dir).
  //
  optional<path> upload_archive;

  // Create the special empty result.
  //
  perform_task_result () = default;

  // Create task result without build artifacts.
  //
  explicit
  perform_task_result (auto_rmdir&& d, result_manifest&& m)
      : work_dir (move (d)),
        manifest (move (m)) {}

  // Create task result with build artifacts.
  //
  perform_task_result (auto_rmdir&& d, result_manifest&& m, path&& a)
      : work_dir (move (d)),
        manifest (move (m)),
        upload_archive (move (a)) {}
};

// Note that the task manifest is not const since we may need to patch in the
// auxiliary_environment value.
//
static perform_task_result
perform_task (toolchain_lock tl, // Note: assumes ownership.
              bootstrapped_machine& bm,                 // Build machine.
              const vector<bootstrapped_machine*>& ams, // Auxiliary machines.
              task_manifest& tm,
              optional<size_t> boost_cpus)
try
{
  tracer trace ("perform_task", bm.path.string ().c_str ());

  // Arm the interrupt handler and release the global toolchain lock.
  //
  // Note that there can be no interrupt while we are holding the global lock.
  //
  sigurs1.store (0, std::memory_order_release);
  tl.unlock ();

  machine_lock& ml (bm.lock);
  const dir_path& md (bm.path);
  const bootstrapped_machine_manifest& mm (bm.manifest);

  const string in_name (tc_name + '-' + to_string (inst));
  auto_rmdir arm ((dir_path (ops.tftp ()) /= "build") /= in_name);

  try_mkdir_p (arm.path);

  result_manifest r {
    tm.name,
    tm.version,
    result_status::abort,
    operation_results {},
    nullopt /* worker_checksum */,
    nullopt /* dependency_checksum */};

  if (ops.fake_build ())
    return perform_task_result (move (arm), move (r));

  // The overall plan is as follows:
  //
  // 1. Snapshot the (bootstrapped) build machine.
  //
  // 2. Save the task manifest to the TFTP directory (to be accessed by the
  //    worker).
  //
  // 3. Start the TFTP server and the machine.
  //
  // 4. Serve TFTP requests while watching out for the result manifest and
  //    interrupts.
  //
  // 5. Clean up (force the machine down and delete the snapshot).
  //
  // If the task requires any auxiliary machines, then for each such machine
  // perform the following steps 1-3 before step 1 above, and step 4 after
  // step 5 above (that is, start all the auxiliary machines before the build
  // machine and clean them up after):
  //
  // 1. Snapshot the (bootstrapped) auxiliary machine.
  //
  // 2. Start the TFTP server and the machine.
  //
  // 3. Handle TFTP upload requests until received the environment upload.
  //
  // 4. Clean up (force the machine down and delete the snapshot).

  // TFTP server mapping (server chroot is --tftp):
  //
  // GET requests to .../build/<toolchain>-<instance>/get/*
  // PUT requests to .../build/<toolchain>-<instance>/put/*
  //
  dir_path gd (dir_path (arm.path) /= "get");
  dir_path pd (dir_path (arm.path) /= "put");

  try_mkdir_p (gd);
  try_mkdir_p (pd);

  path tf (gd / "task.manifest");       // Task manifest file.
  path rf (pd / "result.manifest.lz4"); // Result manifest file.
  path af (pd / "upload.tar");          // Archive of build artifacts to upload.

  if (ops.fake_machine_specified ())
  {
    // Note: not handling interrupts here. Nor starting any auxiliary
    // machines, naturally.

    serialize_manifest (tm, tf, "task");

    // Simply wait for the file to appear.
    //
    for (size_t i (0);; sleep (1))
    {
      if (file_not_empty (rf))
      {
        // Wait a bit to make sure we see complete manifest.
        //
        sleep (2);
        break;
      }

      if (i++ % 10 == 0)
        l3 ([&]{trace << "waiting for result manifest";});
    }

    r = parse_manifest<result_manifest> (rf, "result");
  }
  else
  {
    // Start the auxiliary machines if any.
    //
    // If anything goes wrong, force them all down (failed that, the machine
    // destructor will block waiting for their exit).
    //
    auxiliary_machine_results amrs;

    auto amg (
      make_exception_guard (
        [&amrs] ()
        {
          if (!amrs.empty ())
          {
            info << "trying to force auxiliary machines down";
            stop_auxiliary_machines (amrs);
          }
        }));

    if (!ams.empty ())
    {
      amrs = start_auxiliary_machines (ams, tm, in_name, pd, boost_cpus);

      if (amrs.empty ())
        return perform_task_result (move (arm), move (r)); // Abort.
    }

    // Note: tm.auxiliary_environment patched in by start_auxiliary_machines().
    //
    serialize_manifest (tm, tf, "task");

    // Start the build machine and perform the build.
    //
    try_rmfile (rf);
    try_rmfile (af);

    // <name>-<toolchain>-<xxx>
    //
    const dir_path xp (snapshot_path (md));

    for (size_t retry (0);; ++retry)
    {
      if (retry != 0)
        run_btrfs (trace, "subvolume", "delete", xp);

      run_btrfs (trace, "subvolume", "snapshot", md, xp);

      // Start the TFTP server.
      //
      tftp_server tftpd ("Gr  ^/?(.+)$  /build/" + in_name + "/get/\\1\n" +
                         "Pr  ^/?(.+)$  /build/" + in_name + "/put/\\1\n",
                         ops.tftp_port () + offset + 0 /* build machine */);

      l3 ([&]{trace << "tftp server on port " << tftpd.port ();});

      // Note: the machine handling logic is similar to bootstrap. Except here
      // we have to cleanup the snapshot ourselves in case of suspension or
      // unexpected exit.
      //
      // NOTE: see similar code in start_auxiliary_machine() above.
      //
      {
        // Start the machine.
        //
        unique_ptr<machine> m (
          start_machine (xp,
                         mm.machine,
                         0 /* machine_num (build) */,
                         boost_cpus ? *boost_cpus : ops.cpu (),
                         ops.build_ram (),
                         mm.machine.mac,
                         ops.bridge (),
                         tftpd.port (),
                         tm.interactive.has_value () /* public_vnc */));

        auto mg (
          make_exception_guard (
            [&m, &xp] ()
            {
              if (m != nullptr)
              {
                info << "trying to force machine " << xp << " down";
                try {m->forcedown (false);} catch (const failed&) {}
              }
            }));

        auto soft_fail = [&trace,
                          &amrs,
                          &ml, &xp, &m,
                          &arm, &r] (const char* msg)
        {
          {
            diag_record dr (error);
            dr << msg << " for machine " << xp << ", suspending";
            m->print_info (dr);
          }

          // What should we do about auxiliary machines? We could force them
          // all down before suspending (and thus freeing them for use). That
          // is the easy option. We could suspend them as well, but that feels
          // like it will be a pain (will need to resume all of them when done
          // investigating). Theoretically we could just let them run, but
          // that won't play well with our interrupt logic since someone may
          // attempt to interrupt us via one of them. So let's do easy for
          // now.
          //
          // Note: always stop/suspend the build machine before the auxiliary
          // machines to avoid any errors due the auxiliary machines being
          // unavailable.
          try
          {
            // Update the information in the machine lock to signal that the
            // machine is suspended and cannot be interrupted.
            //
            ml.suspend_task ();

            m->suspend (false);
            stop_auxiliary_machines (amrs);
            m->wait (false);
            m->cleanup ();
            m = nullptr; // Disable exceptions guard above.
            run_btrfs (trace, "subvolume", "delete", xp);
            info << "resuming after machine suspension";
          }
          catch (const failed&) {}

          return perform_task_result (move (arm), move (r));
        };

        auto check_machine = [&xp, &m] ()
        {
          try
          {
            size_t t (0);
            if (!m->wait (t /* seconds */, false /* fail_hard */))
              return true;
          }
          catch (const failed&) {}

          diag_record dr (warn);
          dr << "machine " << xp << " exited unexpectedly";
          m->print_info (dr);

          return false;
        };

        auto check_auxiliary_machines = [&amrs] ()
        {
          for (auxiliary_machine_result& amr: amrs)
          {
            try
            {
              size_t t (0);
              if (!amr.machine->wait (t /* seconds */, false /* fail_hard */))
                continue;
            }
            catch (const failed&) {}

            diag_record dr (warn);
            dr << "machine " << amr.snapshot << " exited unexpectedly";
            amr.machine->print_info (dr);

            return false;
          }

          return true;
        };

        auto check_interrupt = [&trace, &amrs, &xp, &m] ()
        {
          if (sigurs1.load (std::memory_order_consume) == 0)
            return;

          l2 ([&]{trace << "machine " << xp << " interruped";});

          try {m->forcedown (false);} catch (const failed&) {}
          stop_auxiliary_machines (amrs);
          m->cleanup ();
          m = nullptr; // Disable exceptions guard above.
          run_btrfs (trace, "subvolume", "delete", xp);

          throw interrupt ();
        };

        // The first request should be the task manifest download. Wait for up
        // to 4 minutes (by default) for that to arrive (again, that long to
        // deal with flaky Windows networking, etc). In a sense we use it as
        // an indication that the machine has booted and the worker process
        // has started.
        //
        size_t to;
        const size_t startup_to (ops.build_startup ());
        const size_t build_to   (tm.interactive
                                 ? ops.intactive_timeout ()
                                 : ops.build_timeout ());

        // Wait periodically making sure the machine is still alive and
        // checking for interrupts.
        //
        for (to = startup_to; to != 0; )
        {
          check_interrupt ();

          if (tftpd.serve (to, 2))
            break;

          bool bm; // Build machine still running.
          if (!(bm = check_machine ()) || !check_auxiliary_machines ())
          {
            if (bm)
              try {m->forcedown (false);} catch (const failed&) {}
            stop_auxiliary_machines (amrs);
            m = nullptr; // Disable exceptions guard above.
            run_btrfs (trace, "subvolume", "delete", xp);
            return perform_task_result (move (arm), move (r));
          }
        }

        if (to == 0)
        {
          if (retry > ops.build_retries ())
            return soft_fail ("build startup timeout");

          // Note: keeping the logs behind (no cleanup).

          diag_record dr (warn);
          dr << "machine " << mm.machine.name << " mis-booted, retrying";
          m->print_info (dr);

          try {m->forcedown (false);} catch (const failed&) {}
          m = nullptr; // Disable exceptions guard above.
          continue;
        }

        l3 ([&]{trace << "completed startup in " << startup_to - to << "s";});

        // Next the worker builds things and then uploads optional archive of
        // build artifacts and the result manifest afterwards. So on our side
        // we serve TFTP requests while checking for the manifest file. To
        // workaround some obscure filesystem races (the file's mtime/size is
        // updated several seconds later; maybe tmpfs issue?), we periodically
        // re-check.
        //
        for (to = build_to; to != 0; )
        {
          check_interrupt ();

          if (tftpd.serve (to, 2))
            continue;

          bool bm; // Build machine still running.
          if (!(bm = check_machine ()) || !check_auxiliary_machines ())
          {
            if (bm || !file_not_empty (rf))
            {
              if (bm)
                try {m->forcedown (false);} catch (const failed&) {}
              stop_auxiliary_machines (amrs);
              m = nullptr; // Disable exceptions guard above.
              run_btrfs (trace, "subvolume", "delete", xp);
              return perform_task_result (move (arm), move (r));
            }
          }

          if (file_not_empty (rf))
          {
            if (!tftpd.serve (to, 5))
              break;
          }
        }

        if (to != 0)
        {
          l3 ([&]{trace << "completed build in " << build_to - to << "s";});

          // Parse the result manifest.
          //
          try
          {
            r = parse_manifest<result_manifest> (rf, "result", false);
          }
          catch (const failed&)
          {
            r.status = result_status::abnormal; // Soft-fail below.
          }
        }
        else
        {
          // Suspend the machine for non-interactive builds and fall through
          // to abort for interactive (i.e., "the user went for lunch" case).
          //
          if (!tm.interactive)
            return soft_fail ("build timeout");
        }

        if (r.status == result_status::abnormal)
        {
          // If the build terminated abnormally, suspend the machine for
          // investigation.
          //
          return soft_fail ("build terminated abnormally");
        }
        else
        {
          // Force the machine down (there is no need wasting time on clean
          // shutdown since the next step is to drop the snapshot). Also fail
          // softly if things go badly.
          //
          // One thing to keep in mind are DHCP leases: with this approach
          // they will not be released. However, since we reuse the same MAC
          // address since bootstrap, on the next build we should get the same
          // lease instead of a new one.
          //
          try {m->forcedown (false);} catch (const failed&) {}
          stop_auxiliary_machines (amrs);
          m->cleanup ();
          m = nullptr; // Disable exceptions guard above.
        }
      }

      run_btrfs (trace, "subvolume", "delete", xp);
      break;
    }
  }

  // Update package name/version if the returned value is "unknown".
  //
  if (r.version == bpkg::version ("0"))
  {
    assert (r.status == result_status::abnormal);

    r.name = tm.name;
    r.version = tm.version;
  }

  return (!r.status || !file_exists (af)
          ? perform_task_result (move (arm), move (r))
          : perform_task_result (move (arm), move (r), move (af)));
}
catch (const system_error& e)
{
  fail << "build error: " << e << endf;
}

static const string agent_checksum ("2"); // Logic version.

int
main (int argc, char* argv[])
try
{
  cli::argv_scanner scan (argc, argv, true);
  ops.parse (scan);

  verb = ops.verbose ();

#if 0
  // ./bbot-agent --auxiliary-ram 4194304
  //
  machine_header_manifest m1 {
    "m1", "m1", "m1", machine_role::auxiliary, 512*1024, nullopt};
  machine_header_manifest m2 {
    "m2", "m2", "m2", machine_role::auxiliary, 1024*1024, 3*512*1024};
  vector<const machine_header_manifest*> mms {&m1, &m2};
  vector<size_t> rams (divide_auxiliary_ram (mms));
  for (size_t i (0); i != rams.size (); ++i)
    text << mms[i]->name << ' ' << rams[i] / 1024;

  return 0;
#endif

  // @@ systemd 231 added JOURNAL_STREAM environment variable which allows
  //    detecting if stderr is connected to the journal.
  //
  if (ops.systemd_daemon ())
    systemd_diagnostics (true); // With critical errors.

  tracer trace ("main");

  uid = getuid ();
  uname = getpwuid (uid)->pw_name;

  // Obtain our hostname.
  //
  {
    char buf[HOST_NAME_MAX + 1];

    if (gethostname (buf, sizeof (buf)) == -1)
      fail << "unable to obtain hostname: "
           << system_error (errno, std::generic_category ()); // Sanitize.

    hname = buf;
  }

  // Obtain our IP address as a first discovered non-loopback IPv4 address.
  //
  // Note: Linux-specific implementation.
  //
  {
    ifaddrs* i;
    if (getifaddrs (&i) == -1)
      fail << "unable to obtain IP addresses: "
           << system_error (errno, std::generic_category ()); // Sanitize.

    unique_ptr<ifaddrs, void (*)(ifaddrs*)> deleter (i, freeifaddrs);

    for (; i != nullptr; i = i->ifa_next)
    {
      sockaddr* sa (i->ifa_addr);

      if (sa != nullptr                      && // Configured.
          (i->ifa_flags & IFF_LOOPBACK) == 0 && // Not a loopback interface.
          (i->ifa_flags & IFF_UP) != 0       && // Up.
          sa->sa_family == AF_INET)             // Ignore IPv6 for now.
      {
        char buf[INET_ADDRSTRLEN]; // IPv4 address.
        if (inet_ntop (AF_INET,
                       &reinterpret_cast<sockaddr_in*> (sa)->sin_addr,
                       buf,
                       sizeof (buf)) == nullptr)
          fail << "unable to obtain IPv4 address: "
               << system_error (errno, std::generic_category ()); // Sanitize.

        hip = buf;
        break;
      }
    }

    if (hip.empty ())
      fail << "no IPv4 address configured";
  }

  // On POSIX ignore SIGPIPE which is signaled to a pipe-writing process if
  // the pipe reading end is closed. Note that by default this signal
  // terminates a process. Also note that there is no way to disable this
  // behavior on a file descriptor basis or for the write() function call.
  //
  if (signal (SIGPIPE, SIG_IGN) == SIG_ERR)
    fail << "unable to ignore broken pipe (SIGPIPE) signal: "
         << system_error (errno, std::generic_category ()); // Sanitize.

  // Version.
  //
  if (ops.version ())
  {
    cout << "bbot-agent " << BBOT_VERSION_ID << endl
         << "libbbot " << LIBBBOT_VERSION_ID << endl
         << "libbpkg " << LIBBPKG_VERSION_ID << endl
         << "libbutl " << LIBBUTL_VERSION_ID << endl
         << "Copyright (c) " << BBOT_COPYRIGHT << "." << endl
         << "This is free software released under the MIT license." << endl;

    return 0;
  }

  // Help.
  //
  if (ops.help ())
  {
    pager p ("bbot-agent help", false);
    print_bbot_agent_usage (p.stream ());

    // If the pager failed, assume it has issued some diagnostics.
    //
    return p.wait () ? 0 : 1;
  }

  tc_name = ops.toolchain_name ();
  tc_num  = ops.toolchain_num ();

  if (ops.toolchain_lock_specified ())
  {
    const string& l (ops.toolchain_lock ());

    if (!l.empty ())
    {
      tc_lock = path (l);

      if (!tc_lock.absolute ())
        fail << "--toolchain-lock value '" << l << "' should be absolute path";
    }
  }
  else if (!(ops.fake_bootstrap ()         ||
             ops.fake_build ()             ||
             ops.fake_machine_specified () ||
             ops.fake_request_specified ()))
    tc_lock = path ("/var/lock/bbot-agent-" + tc_name + ".lock");

  tc_ver  = (ops.toolchain_ver_specified ()
             ? ops.toolchain_ver ()
             : standard_version (BBOT_VERSION_STR));
  tc_id   = ops.toolchain_id ();

  if (tc_num == 0 || tc_num > 9)
    fail << "--toolchain-num value " << tc_num << " out of range";

  inst = ops.instance ();

  if (inst == 0 || inst > 99)
    fail << "--instance value " << inst << " out of range";

  inst_max = ops.instance_max ();

  // The last decimal position is used for machine number, 0 for the build
  // machine, non-0 for auxiliary machines (of which we can have maximum 9).
  //
  offset = (tc_num - 1) * 1000 + inst * 10;

  // Controller priority to URLs map.
  //
  std::map<uint64_t, strings> controllers;

  for (int i (1); i != argc; ++i)
  {
    // [<prio>=]<url>
    //
    string a (argv[i]);

    // See if we have priority, falling back to priority 0 if absent.
    //
    uint64_t prio (0);

    // Note that we can also have `=` in <url> (e.g., parameters) so we will
    // only consider `=` as ours if prior to it we only have digits.
    //
    size_t p (a.find ('='));
    if (p != string::npos && a.find_first_not_of ("0123456789") == p)
    {
      // Require exactly four or five digits in case we later need to extend
      // the priority levels beyond the 10 possible values (e.g., DDCCBBAA).
      //
      if (p != 4 && p != 5)
        fail << "four or five-digit controller url priority expected in '"
             << a << "'";

      char* e;
      errno = 0;
      prio = strtoull (a.c_str (), &e, 10);
      assert (errno != ERANGE && e == a.c_str () + p);

      if (prio > 19999)
        fail << "out of bounds controller url priority in '" << a << "'";

      a.erase (0, p + 1);
    }

    controllers[prio].push_back (move (a));
  }

  if (controllers.empty ())
  {
    if (ops.dump_machines () || ops.fake_request_specified ())
    {
      controllers[0].push_back ("https://example.org");
    }
    else
      fail << "controller url expected" <<
        info << "run " << argv[0] << " --help for details";
  }

  // Handle SIGHUP and SIGTERM.
  //
  if (signal (SIGHUP,  &handle_signal) == SIG_ERR ||
      signal (SIGTERM, &handle_signal) == SIG_ERR ||
      signal (SIGUSR1, &handle_signal) == SIG_ERR)
    fail << "unable to set signal handler: "
         << system_error (errno, std::generic_category ()); // Sanitize.

  optional<string> fingerprint;

  if (ops.auth_key_specified ())
  try
  {
    // Note that the process always prints to STDERR, so we redirect it to the
    // null device. We also check for the key file existence to print more
    // meaningful error message if that's not the case.
    //
    if (!file_exists (ops.auth_key ()))
      throw_generic_error (ENOENT);

    openssl os (trace,
                ops.auth_key (), path ("-"), fdopen_null (),
                ops.openssl (), "rsa",
                ops.openssl_option (), "-pubout", "-outform", "DER");

    fingerprint = sha256 (os.in).string ();
    os.in.close ();

    if (!os.wait ())
      throw_generic_error (EIO);
  }
  catch (const system_error& e)
  {
    fail << "unable to obtain authentication public key: " << e;
  }

  if (ops.systemd_daemon ())
  {
    diag_record dr;

    dr << info << "bbot agent " << BBOT_VERSION_ID;

    dr <<
      info << "cpu(s)         " << ops.cpu () <<
      info << "build ram(KiB) " << ops.build_ram () <<
      info << "auxil ram(KiB) " << ops.auxiliary_ram () <<
      info << "bridge         " << ops.bridge ();

    if (fingerprint)
      dr << info << "auth key fp    " << *fingerprint;

    dr <<
      info << "interactive    " << to_string (ops.interactive()) <<
      info << "toolchain name " << tc_name <<
      info << "toolchain num  " << tc_num <<
      info << "toolchain ver  " << tc_ver.string () <<
      info << "toolchain id   " << tc_id <<
      info << "instance  num  " << inst;

    if (inst_max != 0)
      dr << info << "instance  max  " << inst_max;

    // Note: keep last since don't restore fill/setw.
    //
    for (const pair<const uint64_t, strings>& p: controllers)
    {
      for (const string& u: p.second)
      {
        dr.os.fill ('0');
        dr << info << "controller url " << std::setw (4) << p.first << '=' << u;
      }
    }
  }

  // The work loop. The steps we go through are:
  //
  // 1. Enumerate the available machines, (re-)bootstrapping any if necessary.
  //
  // 2. Poll controller(s) for build tasks.
  //
  // 3. If no build tasks are available, go to #1 (after sleeping a bit).
  //
  // 4. If a build task is returned, do it, upload the result, and go to #1
  //    (immediately).
  //
  // NOTE: consider updating agent_checksum if making any logic changes.
  //
  auto rand_sleep = [] ()
  {
    return std::uniform_int_distribution<unsigned int> (50, 60) (rand_gen);
  };

  optional<interactive_mode> imode;
  optional<string>           ilogin;

  if (ops.interactive () != interactive_mode::false_)
  {
    imode  = ops.interactive ();
    ilogin = machine_vnc (0 /* machine_num */, true /* public */);
  }

  // Use the pkeyutl openssl command for signing the task response challenge
  // if openssl version is greater or equal to 3.0.0 and the rsautl command
  // otherwise.
  //
  // Note that openssl 3.0.0 deprecates rsautl in favor of pkeyutl.
  //
  const char* sign_cmd;

  try
  {
    optional<openssl_info> oi (openssl::info (trace, 2, ops.openssl ()));

    sign_cmd = oi                    &&
               oi->name == "OpenSSL" &&
               oi->version >= semantic_version {3, 0, 0}
               ? "pkeyutl"
               : "rsautl";
  }
  catch (const system_error& e)
  {
    fail << "unable to obtain openssl version: " << e << endf;
  }

  for (unsigned int sleep (0);; ::sleep (sleep), sleep = 0)
  {
    pair<toolchain_lock, bootstrapped_machines> er (
      enumerate_machines (ops.machines ()));

    toolchain_lock& tl (er.first);
    bootstrapped_machines& ms (er.second);

    // Determine the existing task priority range (using [0,0] if there are
    // none) as well as whether we we should operate in the priority monitor
    // mode.
    //
    uint64_t prio_min (~uint64_t (0));
    uint64_t prio_max (0);
    bool     prio_mon (false);
    {
      uint16_t busy (0); // Number of build machines locked by other processes.
      bool task (false); // There is a build machine performing a task.

      for (const bootstrapped_machine& m: ms)
      {
        if (!m.lock.locked ())
        {
          if (m.lock.prio) // Not bootstrapping/suspended.
          {
            if (m.manifest.machine.effective_role () != machine_role::auxiliary)
            {
              ++busy;
              task = true;

              if (prio_min > *m.lock.prio)
                prio_min = *m.lock.prio;

              if (prio_max < *m.lock.prio)
                prio_max = *m.lock.prio;
            }
          }
          else
            ++busy; // Assume build machine (see enumerate_machines()).
        }
      }

      if (prio_min > prio_max) // No tasks.
        prio_min = prio_max;

      if (inst_max != 0)
      {
        assert (busy <= inst_max);

        if (busy == inst_max)
        {
          if (!task) // All bootstrapping/suspended.
          {
            sleep = rand_sleep ();
            continue;
          }

          l2 ([&]{trace << "priority monitor, range [" << prio_min << ", "
                        << prio_max << "]";});

          prio_mon = true;
        }
      }
    }

    // If we get a task, these contain all the corresponding information.
    //
    task_request_manifest tq;
    task_response_manifest tr;
    uint64_t prio;
    string url;

    // Iterate over controller priorities in reverse, that is, from highest to
    // lowest (see the agent(1) man page for background on the priority
    // levels).
    //
    // The following factors determine the lower bound of priorities we should
    // consider:
    //
    // 1. If in the priority monitor mode, then we should only consider
    //    priorities that can interrupt the existing task with the lowest
    //    priority.
    //
    //    Here is a representative sample of existing/interrupt priorities
    //    from which we derive the below formulae (remember that we only start
    //    interrupting from priority level 3):
    //
    //    existing  interrupt
    //    --------  ---------
    //       5      >=   100
    //      55      >=   100
    //     555      >=   600
    //     999      >=  1000
    //    5055      >=  5100
    //    5555      >=  5600
    //    9999      >= 10000
    //
    //    Essentially, what we need to do is discard the lowest 2 levels and
    //    add 100, moving the priority to the next 3rd level.
    //
    // 2. Otherwise, we should factor in the "don't ask for lower-priority
    //    tasks" semantics that applies from the second priority level.
    //
    // Note also that the other half of this logic is below where we determine
    // which machines we offer for each priority.
    //
    auto ce (controllers.end ());
    auto cb (controllers.lower_bound (
               prio_mon ? ((prio_min / 100) * 100) + 100 :
               prio_max >= 10 ? prio_max - 1 : // Including this priority.
               0));                            // Any priority.

    for (; cb != ce; )
    {
      const pair<const uint64_t, strings>& pu (*--ce);

      prio = pu.first;
      const strings& urls (pu.second);

      // Prepare task request (it will be the same within a given priority).
      //
      tq = task_request_manifest {
        hname,
        tc_name,
        tc_ver,
        imode,
        ilogin,
        fingerprint,
        ops.auxiliary_ram (),
        machine_header_manifests {}};

      // Determine which machines we need to offer for this priority.
      //
      bool aux_only (true); // Only auxiliary machines are available.
      {
        bool interruptable (false); // There is build machine we can interrupt.
        for (const bootstrapped_machine& m: ms)
        {
          const machine_manifest& mm (m.manifest.machine);
          machine_role role (mm.effective_role ());

          if (!m.lock.locked ())
          {
            if (!m.lock.prio) // Skip bootstrapping/suspended.
              continue;

            uint64_t eprio (*m.lock.prio);

            // Determine if our priority can interrupt the existing task.
            //
            // Based on the above discussion of the priority lower bound
            // determination (and some menditation) it's clear that we can
            // only interrupt the existing task if our priority is (at least)
            // on a higher 3rd level.
            //
            if ((prio / 100) <= (eprio / 100))
              continue;

            if (role != machine_role::auxiliary)
              interruptable = true;
          }

          tq.machines.emplace_back (mm.id,
                                    mm.name,
                                    mm.summary,
                                    role,
                                    effective_ram_minimum (mm),
                                    mm.ram_maximum);

          aux_only = aux_only && role == machine_role::auxiliary;
        }

        // Sanity check: in the priority monitor mode we should only ask for a
        // task if we can interrupt one (this should be taken care of by the
        // priority lower bound calculation above).
        //
        assert (!prio_mon || interruptable);
      }

      if (ops.dump_machines ())
      {
        for (const machine_header_manifest& m: tq.machines)
          serialize_manifest (m, cout, "stdout", "machine");

        return 0;
      }

      if (aux_only)
        tq.machines.clear ();

      if (tq.machines.empty ())
      {
        // If we have no build machines for this priority then we won't have
        // any for any lower priority so bail out.
        //
        break;
      }

      // Send task requests.
      //
      // Note that we have to do it while holding the lock on all the machines
      // since we don't know which machine(s) we will need.
      //
      vector<strings::const_iterator> rurls (urls.size ());
      std::iota (rurls.begin (), rurls.end (), urls.begin ());
      std::shuffle (rurls.begin (), rurls.end (), rand_gen);

      for (strings::const_iterator i: rurls)
      {
        const string& u (*i);

        if (ops.fake_request_specified ())
        {
          auto t (parse_manifest<task_manifest> (ops.fake_request (), "task"));

          tr = task_response_manifest {
            "fake-session",        // Dummy session.
            nullopt,               // No challenge.
            string (),             // Empty result URL.
            vector<upload_url> (),
            agent_checksum,
            move (t)};

          url = u;
          break;
        }

        task_response_manifest r;

        try
        {
          http_curl c (trace,
                       path ("-"),
                       path ("-"),
                       curl::post,
                       u,
                       "--header", "Content-Type: text/manifest",
                       "--retry", ops.request_retries (),
                       "--retry-max-time", ops.request_timeout (),
                       "--max-time", ops.request_timeout (),
                       "--connect-timeout", ops.connect_timeout ());

          // This is tricky/hairy: we may fail hard parsing the output before
          // seeing that curl exited with an error and failing softly.
          //
          bool f (false);

          try
          {
            serialize_manifest (tq,
                                c.out,
                                u,
                                "task request",
                                false /* fail_hard */);
          }
          catch (const failed&) {f = true;}

          c.out.close ();

          if (!f)
          try
          {
            r = parse_manifest<task_response_manifest> (
              c.in, u, "task response", false);
          }
          catch (const failed&) {f = true;}

          c.in.close ();

          if (!c.wait () || f)
            throw_generic_error (EIO);
        }
        catch (const system_error& e)
        {
          error << "unable to request task from " << u << ": " << e;
          continue;
        }

        if (r.challenge && !fingerprint) // Controller misbehaves.
        {
          error << "unexpected challenge from " << u << ": " << *r.challenge;
          continue;
        }

        if (!r.session.empty ()) // Got a task.
        {
          const task_manifest& t (*r.task);

          // For security reasons let's require the repository location to
          // be remote.
          //
          if (t.repository.local ())
          {
            error << "local repository from " << u << ": " << t.repository;
            continue;
          }

          // Make sure that the task interactivity matches the requested mode.
          //
          if (( t.interactive && !imode) ||
              (!t.interactive && imode && *imode == interactive_mode::true_))
          {
            if (t.interactive)
              error << "interactive task from " << u << ": " << *t.interactive;
            else
              error << "non-interactive task from " << u;

            continue;
          }

          l2 ([&]{trace << "task for " << t.name << '/' << t.version << " "
                        << "on " << t.machine << " "
                        << "from " << u << " "
                        << "priority " << prio;});

          tr  = move (r);
          url = u;
          break;
        }
      } // url loop.

      if (!tr.session.empty ()) // Got a task.
        break;

    } // prio loop.

    if (tq.machines.empty ()) // No machines (auxiliary-only already handled).
    {
      // Normally this means all the machines are busy so sleep a bit less.
      //
      l2 ([&]{trace << "all machines are busy, sleeping";});
      sleep = rand_sleep () / 2;
      continue;
    }

    if (tr.session.empty ()) // No task from any of the controllers.
    {
      l2 ([&]{trace << "no tasks from any controllers, sleeping";});
      sleep = rand_sleep ();
      continue;
    }

    // We have a build task.
    //
    task_manifest& t (*tr.task);

    // First verify the requested machines are from those we sent in tq and
    // their roles match.
    //
    // Also verify the same machine is not picked multiple times by blanking
    // out the corresponding entry in tq.machines. (Currently we are only
    // capable of running one instance of each machine though we may want to
    // relax that in the future, at which point we should send as many entries
    // for the same machine in the task request as we are capable of running,
    // applying the priority logic for each entry, etc).
    //
    {
      auto check = [&tq, &url] (const string& name, machine_role r)
      {
        auto i (find_if (tq.machines.begin (), tq.machines.end (),
                         [&name] (const machine_header_manifest& mh)
                         {
                           return mh.name == name; // Yes, names, not ids.
                         }));

        if (i == tq.machines.end ())
        {
          error << "task from " << url << " for unknown machine " << name;
          return false;
        }

        if (i->effective_role () != r)
        {
          error << "task from " << url << " with mismatched role "
                << " for machine " << name;
          return false;
        }

        i->name.clear (); // Blank out.

        return true;
      };

      auto check_aux = [&check] (const vector<auxiliary_machine>& ams)
      {
        for (const auxiliary_machine& am: ams)
          if (!check (am.name, machine_role::auxiliary))
            return false;
        return true;
      };

      if (!check (t.machine, machine_role::build) ||
          !check_aux (t.auxiliary_machines))
      {
        if (ops.dump_task ())
          return 0;

        continue;
      }
    }

    // Also verify there are no more than 9 auxiliary machines (see the offset
    // global variable for details).
    //
    if (t.auxiliary_machines.size () > 9)
    {
      error << "task from " << url << " with more than 9 auxiliary machines";

      if (ops.dump_task ())
        return 0;

      continue;
    }

    if (ops.dump_task ())
    {
      serialize_manifest (t, cout, "stdout", "task");
      return 0;
    }

    // If we have our own repository certificate fingerprints, then use them
    // to replace what we have received from the controller.
    //
    if (!ops.trust ().empty ())
      t.trust = ops.trust ();

    // Reset the worker checksum if the task's agent checksum doesn't match
    // the current one.
    //
    // Note that since the checksums are hierarchical, such reset will trigger
    // resets of the "subordinate" checksums (dependency checksum, etc).
    //
    if (!tr.agent_checksum || *tr.agent_checksum != agent_checksum)
      t.worker_checksum = nullopt;

    // Handle interrupts.
    //
    // Note that the interrupt can be triggered both by another process (the
    // interrupt exception is thrown from perform_task()) as well as by this
    // process in case we were unable to interrupt the other process (seeing
    // that we have already received a task, responding with an interrupt
    // feels like the most sensible option).
    //
    perform_task_result r;
    bootstrapped_machine* pm (nullptr); // Build machine.
    vector<bootstrapped_machine*> ams;  // Auxiliary machines.
    try
    {
      // First find the bootstrapped_machine instance in ms corresponding to
      // the requested build machine. Also unlock all the other machines.
      //
      // While at it also see if we need to interrupt the selected machine (if
      // busy), one of the existing (if we are at the max allowed instances,
      // that is in the priority monitor mode), or all existing (if this is a
      // priority level 4 task).
      //
      // Auxiliary machines complicate the matter a bit: we may now need to
      // interrupt some subset of {build machine, auxiliary machines} that are
      // necessary to perform this task.  Note, however, that auxiliary
      // machines are always subordinate to build machines, meaning that if
      // there is a busy auxiliary machine, then there will be a busy build
      // machine with the same pid/priority (and so if we interrup one
      // auxiliary, then we will also interrupt the corresponding build plus
      // any other auxiliaries it may be using). Based on that let's try to
      // divide and conquer this by first dealing with build machines and then
      // adding any auxiliary ones.
      //
      vector<bootstrapped_machine*> ims; // Machines to be interrupted.
      size_t imt (0); // Number of "target" machines to interrupt (see below).

      // First pass: build machines.
      //
      for (bootstrapped_machine& m: ms)
      {
        const machine_manifest& mm (m.manifest.machine);

        if (mm.effective_role () == machine_role::auxiliary)
          continue;

        if (mm.name == t.machine)
        {
          assert (pm == nullptr); // Sanity check.
          pm = &m;
        }
        else if (m.lock.locked ())
          m.lock.unlock ();
        else if (m.lock.prio) // Not bootstrapping/suspended.
        {
          // Only consider machines that we can interrupt (see above).
          //
          if ((prio / 100) > (*m.lock.prio / 100))
          {
            if (prio >= 1000) // Priority level 4 (interrupt all).
              ims.push_back (&m);
            else if (prio_mon)
            {
              // Find the lowest priority task to interrupt.
              //
              if (ims.empty ())
                ims.push_back (&m);
              else if (*m.lock.prio < *ims.back ()->lock.prio)
                ims.back () = &m;
            }
          }
        }
      }

      assert (pm != nullptr); // Sanity check.

      if (!pm->lock.locked ())
      {
        assert (pm->lock.prio); // Sanity check (not bootstrapping/suspended).

        if (prio >= 1000)
          ims.insert (ims.begin (), pm); // Interrupt first (see below).
        else
          ims = {pm};

        imt++;
      }

      // Second pass: auxiliary machines.
      //
      for (bootstrapped_machine& m: ms)
      {
        const machine_manifest& mm (m.manifest.machine);

        if (mm.effective_role () != machine_role::auxiliary)
          continue;

        if (find_if (t.auxiliary_machines.begin (), t.auxiliary_machines.end (),
                     [&mm] (const auxiliary_machine& am)
                     {
                       return am.name == mm.name;
                     }) != t.auxiliary_machines.end ())
        {
          if (!m.lock.locked ())
          {
            assert (m.lock.prio); // Sanity check (not bootstrapping/suspended).

            if (ims.empty ())
            {
              ims.push_back (&m);
            }
            else if (ims.front () == pm)
            {
              ims.insert (ims.begin () + 1, &m); // Interrupt early (see below).
            }
            else if (prio < 1000 && prio_mon && ams.empty () /* first */)
            {
              // Tricky: replace the lowest priority task we have picked on
              // the first pass with this one.
              //
              assert (ims.size () == 1); // Sanity check.
              ims.back () = &m;
            }
            else
              ims.insert (ims.begin (), &m); // Interrupt first (see below).

            imt++;
          }

          ams.push_back (&m);
        }
        else if (m.lock.locked ())
          m.lock.unlock ();
      }

      // Note: the order of machines may not match.
      //
      assert (ams.size () == t.auxiliary_machines.size ()); // Sanity check.

      assert (!prio_mon || !ims.empty ()); // We should have at least one.

      // Move the toolchain lock into this scope so that it's automatically
      // released on any failure (on the happy path it is released by
      // perform_task()).
      //
      toolchain_lock& rtl (tl);
      toolchain_lock tl (move (rtl));

      // Interrupt the machines, if necessary.
      //
      // Note that if we are interrupting multiple machines, then the target
      // build machine, if needs to be interrupted, must be first, followed
      // but all the target auxiliary machines. This way if we are unable to
      // successfully interrupt them, we don't interrupt the rest.
      //
      vector<pid_t> pids; // Avoid re-interrupting the same pid.
      for (size_t i (0); i != ims.size (); ++i)
      {
        bootstrapped_machine* im (ims[i]);

        // Sanity checks.
        //
        assert (!im->lock.locked () && im->lock.prio);
        assert (im != pm || i == 0);

        const dir_path& tp (im->path); // -<toolchain> path.
        pid_t pid (im->lock.pid);

        l2 ([&]{trace << "interrupting "
                      << (i < imt ? "target" : "lower priority")
                      << " machine " << tp << ", pid " << pid;});

        // The plan is to send the interrupt and then wait for the lock.
        //
        // Note that the interrupt cannot be "lost" (or attributed to a
        // different task) since we are sending it while holding the global
        // lock and the other process arms it also while holding the global
        // lock.
        //
        // But what can happen is the other task becomes suspended, which we
        // will not be able to interrupt.
        //
        if (find (pids.begin (), pids.end (), pid) == pids.end ())
        {
          if (kill (pid, SIGUSR1) == -1)
          {
            // Ignore the case where there is no such process (e.g., the other
            // process has terminated in which case the lock should be
            // released automatically).
            //
            if (errno != ESRCH)
              throw_generic_error (errno);
          }

          pids.push_back (pid);
        }

        // If we are interrupting additional machine in order to free up
        // resources, there is no use acquiring their lock (or failing if
        // unable to) since this is merely a performance optimization.
        //
        if (i >= imt)
          continue;

        // Try to lock the machine.
        //
        // While this normally shouldn't take long, there could be parts of
        // the perform_task() logic that we do not interrupt and that may take
        // some time.
        //
        machine_lock ml;

        size_t retry (0);
        for (; retry != 31; ++retry)
        {
          if (retry != 0)
            ::sleep (1);

          ml = lock_machine (tl, tp);

          if (ml.locked ())
            break;

          if (ml.pid != pid)
          {
            error << "interrupted machine " << tp << " changed pid";
            throw interrupt ();
          }

          if (!ml.prio) // Got suspended.
          {
            l2 ([&]{trace << "interrupted machine " << tp <<  " suspended";});
            throw interrupt ();
          }
        }

        if (!ml.locked ())
        {
          warn << "unable to lock interrupted machine " << tp << " within "
               << (retry - 1) << "s";
          throw interrupt ();
        }

        // This is an interrupted machine (build or auxiliary) that we will be
        // using. See if it needs a re-bootstrap, the same as in
        // enumerate_machines(). If not, then transfer the bootstrap manifest
        // and lock.
        //
        const machine_manifest& mm (im->manifest.machine);

        bootstrapped_machine_manifest bmm (
          parse_manifest<bootstrapped_machine_manifest> (
            tp / "manifest", "bootstrapped machine"));

        bool rb (false);

        if (bmm.machine.id != mm.id)
        {
          l3 ([&]{trace << "re-bootstrap " << tp << ": new machine";});
          rb = true;
        }

        if (im == pm) // Only for build machine.
        {
          if (!tc_id.empty () && bmm.toolchain.id != tc_id)
          {
            l3 ([&]{trace << "re-bootstrap " << tp << ": new toolchain";});
            rb = true;
          }

          if (int i = compare_bbot (bmm.bootstrap))
          {
            if (i < 0)
            {
              l3 ([&]{trace << "re-bootstrap " << tp << ": new bbot";});
              rb = true;
            }
            else
            {
              l3 ([&]{trace << "ignoring " << tp << ": old bbot";});
              rb = true;
            }
          }
        }

        // We are not going to try to re-bootstrap this machine "inline".
        //
        if (rb)
          throw interrupt ();

        im->manifest = move (bmm);
        im->lock = move (ml);
      }

      // Check if we need to boost the number of CPUs to the full hardware
      // concurrency.
      //
      optional<size_t> bcpus;
      if (prio >= 10000)
        bcpus = std::thread::hardware_concurrency ();

      pm->lock.perform_task (tl, prio);   // Build machine.
      for (bootstrapped_machine* am: ams) // Auxiliary machines.
        am->lock.perform_task (tl, prio);

      r = perform_task (move (tl), *pm, ams, t, bcpus);
    }
    catch (const interrupt&)
    {
      // Note: no work_dir.
      //
      r = perform_task_result (
            auto_rmdir (),
            result_manifest {
              t.name,
              t.version,
              result_status::interrupt,
              operation_results {},
              nullopt /* worker_checksum */,
              nullopt /* dependency_checksum */});
    }

    // No need to hold the locks any longer.
    //
    if (pm != nullptr && pm->lock.locked ())
      pm->lock.unlock ();

    for (bootstrapped_machine* am: ams)
      if (am->lock.locked ())
        am->lock.unlock ();

    result_manifest& rm (r.manifest);

    if (ops.dump_result ())
    {
      serialize_manifest (rm, cout, "stdout", "result");
      return 0;
    }

    // Prepare the answer to the private key challenge.
    //
    optional<vector<char>> challenge;

    if (tr.challenge)
    try
    {
      assert (ops.auth_key_specified ());

      openssl os (trace,
                  fdstream_mode::text, path ("-"), 2,
                  ops.openssl (), sign_cmd,
                  ops.openssl_option (), "-sign", "-inkey", ops.auth_key ());

      os.out << *tr.challenge;
      os.out.close ();

      challenge = os.in.read_binary ();
      os.in.close ();

      if (!os.wait ())
        throw_generic_error (EIO);
    }
    catch (const system_error& e)
    {
      // The task response challenge is valid (verified by manifest parser),
      // so there must be something wrong with the setup and the failure is
      // fatal.
      //
      fail << "unable to sign task response challenge: " << e;
    }

    // Re-package the build artifacts, if present, into the type/instance-
    // specific archives and upload them to the type-specific URLs, if
    // provided.
    //
    // Note that the initial upload archive content is organized as a bunch of
    // upload/<type>/<instance>/*, where the second level directories are the
    // upload types and the third level sub-directories are their instances.
    // The resulting <instance>.tar archives content (which is what we submit
    // to the type-specific handler) are organized as <instance>/*.
    //
    if (r.upload_archive && !tr.upload_urls.empty ())
    {
      const path& ua (*r.upload_archive);

      // Extract the archive content into the parent directory of the archive
      // file. But first, make sure the resulting directory doesn't exist.
      //
      // Note that while we don't assume where inside the working directory
      // the archive is, we do assume that there is nothing clashing/precious
      // in the upload/ directory which we are going to cleanup.
      //
      dir_path d (ua.directory ());

      const dir_path ud (d / dir_path ("upload"));
      try_rmdir_r (ud);

      try
      {
        process_exit pe (
          process_run_callback (
            trace,
            fdopen_null (), // Don't expect to read from stdin.
            2,              // Redirect stdout to stderr.
            2,
            "tar",
            "-xf", ua,
            "-C", d));

        if (!pe)
          fail << "tar " << pe;
      }
      catch (const system_error& e)
      {
        // There must be something wrong with the setup or there is no space
        // left on the disk, thus the failure is fatal.
        //
        fail << "unable to extract build artifacts from archive: " << e;
      }

      try_rmfile (ua); // Let's free up the disk space.

      // To decrease nesting a bit, let's collect the type-specific upload
      // directories and the corresponding URLs first. This way we can also
      // create the archive files as the upload/ directory sub-entries without
      // interfering with iterating over this directory.
      //
      vector<pair<dir_path, string>> urls;

      try
      {
        for (const dir_entry& te: dir_iterator (ud, dir_iterator::no_follow))
        {
          const string& t (te.path ().string ());

          // Can only be a result of the worker malfunction, thus the failure
          // is fatal.
          //
          if (te.type () != entry_type::directory)
            fail << "unexpected filesystem entry '" << t << "' in " << ud;

          auto i (find_if (tr.upload_urls.begin (), tr.upload_urls.end (),
                           [&t] (const upload_url& u) {return u.type == t;}));

          if (i == tr.upload_urls.end ())
            continue;

          urls.emplace_back (ud / path_cast<dir_path> (te.path ()), i->url);
        }
      }
      catch (const system_error& e)
      {
        fail << "unable to iterate over " << ud << ": " << e;
      }

      // Now create archives and upload.
      //
      for (const pair<dir_path, string>& p: urls)
      {
        const dir_path& td (p.first); // <type>/
        const string& url (p.second);

        try
        {
          for (const dir_entry& ie: dir_iterator (td, dir_iterator::no_follow))
          {
            const string& i (ie.path ().string ()); // <instance>

            // Can only be a result of the worker malfunction, thus the
            // failure is fatal.
            //
            if (ie.type () != entry_type::directory)
              fail << "unexpected filesystem entry '" << i << "' in " << td;

            // Archive the upload instance files and, while at it, calculate
            // the resulting archive checksum.
            //
            sha256 sha;
            auto_rmfile ari (ud / (i + ".tar"));

            try
            {
              // Instruct tar to print the archive to stdout.
              //
              fdpipe in_pipe (fdopen_pipe (fdopen_mode::binary));

              process pr (
                process_start_callback (
                  trace,
                  fdopen_null (), // Don't expect to read from stdin.
                  in_pipe,
                  2 /* stderr */,
                  "tar",
                  "--format", "ustar",
                  "-c",
                  "-C", td,
                  i));

              // Shouldn't throw, unless something is severely damaged.
              //
              in_pipe.out.close ();

              ifdstream is (
                move (in_pipe.in), fdstream_mode::skip, ifdstream::badbit);

              ofdstream os (ari.path, fdopen_mode::binary);

              char buf[8192];
              while (!eof (is))
              {
                is.read (buf, sizeof (buf));

                if (size_t n = static_cast<size_t> (is.gcount ()))
                {
                  sha.append (buf, n);
                  os.write (buf, n);
                }
              }

              os.close ();

              if (!pr.wait ())
                fail << "tar " << *pr.exit;
            }
            catch (const system_error& e)
            {
              // There must be something wrong with the setup or there is no
              // space left on the disk, thus the failure is fatal.
              //
              fail << "unable to archive " << td << i << "/: " << e;
            }

            // Post the upload instance archive.
            //
            using namespace http_service;

            parameters params ({
                {parameter::text, "session",   tr.session},
                {parameter::text, "instance",  i},
                {parameter::file, "archive",   ari.path.string ()},
                {parameter::text, "sha256sum", sha.string ()}});

            if (challenge)
              params.push_back ({
                  parameter::text, "challenge", base64_encode (*challenge)});

            result pr (post (ops, url, params));

            // Turn the potential upload failure into the "upload" operation
            // error, amending the task result manifest.
            //
            if (pr.error)
            {
              // The "upload" operation result must be present (otherwise
              // there would be nothing to upload). We can assume it is last.
              //
              assert (!rm.results.empty ());

              operation_result& r (rm.results.back ());

              // The "upload" operation result must be the last, if present.
              //
              assert (r.operation == "upload");

              auto log = [&r, indent = false] (const string& t,
                                               const string& l) mutable
              {
                if (indent)
                  r.log += "  ";
                else
                  indent = true;

                r.log += t;
                r.log += ": ";
                r.log += l;
                r.log += '\n';
              };

              log ("error",
                   "unable to upload " + td.leaf ().string () + '/' + i +
                   " build artifacts");

              log ("error", *pr.error);

              if (!pr.message.empty ())
                log ("reason", pr.message);

              if (pr.reference)
                log ("reference", *pr.reference);

              for (const manifest_name_value& nv: pr.body)
              {
                if (!nv.name.empty ())
                  log (nv.name, nv.value);
              }

              r.status  |= result_status::error;
              rm.status |= r.status;

              break;
            }
          }

          // Bail out on the instance archive upload failure.
          //
          if (!rm.status)
            break;
        }
        catch (const system_error& e)
        {
          fail << "unable to iterate over " << td << ": " << e;
        }
      }
    }

    result_status rs (rm.status);

    // Upload the result.
    //
    result_request_manifest rq {tr.session,
                                move (challenge),
                                agent_checksum,
                                move (rm)};
    {
      const string& u (*tr.result_url);

      try
      {
        http_curl c (trace,
                     path ("-"),
                     nullfd,     // Not expecting any data in response.
                     curl::post,
                     u,
                     "--header", "Content-Type: text/manifest",
                     "--retry", ops.request_retries (),
                     "--retry-max-time", ops.request_timeout (),
                     "--max-time", ops.request_timeout (),
                     "--connect-timeout", ops.connect_timeout ());

        // This is tricky/hairy: we may fail hard writing the input before
        // seeing that curl exited with an error and failing softly.
        //
        bool f (false);

        try
        {
          // Don't break lines in the manifest values not to further increase
          // the size of the result request manifest encoded representation.
          // Note that this manifest can contain quite a few lines in the
          // operation logs, potentially truncated to fit the upload limit
          // (see worker/worker.cxx for details). Breaking these lines can
          // increase the request size beyond this limit and so we can end up
          // with the request failure.
          //
          serialize_manifest (rq,
                              c.out,
                              u,
                              "result request",
                              true /* fail_hard */,
                              true /* long_lines */);
        }
        catch (const failed&) {f = true;}

        c.out.close ();

        if (!c.wait () || f)
          throw_generic_error (EIO);
      }
      catch (const system_error& e)
      {
        error << "unable to upload result to " << u << ": " << e;
        continue;
      }
    }

    l2 ([&]{trace << "built " << t.name << '/' << t.version << ' '
                  << "status " << rs << ' '
                  << "on " << t.machine << ' '
                  << "for " << url;});
  }
}
catch (const failed&)
{
  return 1; // Diagnostics has already been issued.
}
catch (const cli::exception& e)
{
  error << e;
  return 1;
}

namespace bbot
{
  static unsigned int rand_seed; // Seed for rand_r();

  size_t
  genrand ()
  {
    if (rand_seed == 0)
      rand_seed = static_cast<unsigned int> (
        std::chrono::system_clock::now ().time_since_epoch ().count ());

    return static_cast<size_t> (rand_r (&rand_seed));
  }

  // Note: Linux-specific implementation.
  //
  string
  iface_addr (const string& i)
  {
    if (i.size () >= IFNAMSIZ)
      throw invalid_argument ("interface name too long");

    auto_fd fd (socket (AF_INET, SOCK_DGRAM | SOCK_CLOEXEC, 0));

    if (fd.get () == -1)
      throw_system_error (errno);

    ifreq ifr;
    ifr.ifr_addr.sa_family = AF_INET;
    strcpy (ifr.ifr_name, i.c_str ());

    if (ioctl (fd.get (), SIOCGIFADDR, &ifr) == -1)
      throw_system_error (errno);

    char buf[INET_ADDRSTRLEN]; // IPv4 address.
    if (inet_ntop (AF_INET,
                   &reinterpret_cast<sockaddr_in*> (&ifr.ifr_addr)->sin_addr,
                   buf,
                   sizeof (buf)) == nullptr)
      throw_system_error (errno);

    return buf;
  }
}