From f1f39911e0d2d88c98eae96a3eb14a53c664206f Mon Sep 17 00:00:00 2001 From: Karen Arutyunov Date: Sat, 30 Nov 2019 22:37:25 +0300 Subject: Upgrade to 12.1 --- libpq/win32/crypt.c | 1085 --------------------------------------------------- 1 file changed, 1085 deletions(-) delete mode 100644 libpq/win32/crypt.c (limited to 'libpq/win32/crypt.c') diff --git a/libpq/win32/crypt.c b/libpq/win32/crypt.c deleted file mode 100644 index 6a902ef..0000000 --- a/libpq/win32/crypt.c +++ /dev/null @@ -1,1085 +0,0 @@ -/* src/port/crypt.c */ -/* $NetBSD: crypt.c,v 1.18 2001/03/01 14:37:35 wiz Exp $ */ - -/* - * Copyright (c) 1989, 1993 - * The Regents of the University of California. All rights reserved. - * - * This code is derived from software contributed to Berkeley by - * Tom Truscott. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * 1. Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. - * 2. Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in the - * documentation and/or other materials provided with the distribution. - * 3. Neither the name of the University nor the names of its contributors - * may be used to endorse or promote products derived from this software - * without specific prior written permission. - * - * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND - * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE - * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE - * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL - * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS - * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) - * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT - * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY - * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF - * SUCH DAMAGE. - */ - -#if defined(LIBC_SCCS) && !defined(lint) -#if 0 -static char sccsid[] = "@(#)crypt.c 8.1.1.1 (Berkeley) 8/18/93"; -#else -__RCSID("$NetBSD: crypt.c,v 1.18 2001/03/01 14:37:35 wiz Exp $"); -#endif -#endif /* not lint */ - -#include "c.h" - -#include - -#ifndef WIN32 -#include -#endif - -static int des_setkey(const char *key); -static int des_cipher(const char *in, char *out, long salt, int num_iter); - -/* - * UNIX password, and DES, encryption. - * By Tom Truscott, trt@rti.rti.org, - * from algorithms by Robert W. Baldwin and James Gillogly. - * - * References: - * "Mathematical Cryptology for Computer Scientists and Mathematicians," - * by Wayne Patterson, 1987, ISBN 0-8476-7438-X. - * - * "Password Security: A Case History," R. Morris and Ken Thompson, - * Communications of the ACM, vol. 22, pp. 594-597, Nov. 1979. - * - * "DES will be Totally Insecure within Ten Years," M.E. Hellman, - * IEEE Spectrum, vol. 16, pp. 32-39, July 1979. - */ - -/* ===== Configuration ==================== */ - -/* - * define "MUST_ALIGN" if your compiler cannot load/store - * long integers at arbitrary (e.g. odd) memory locations. - * (Either that or never pass unaligned addresses to des_cipher!) - */ -/* #define MUST_ALIGN */ - -#ifdef CHAR_BITS -#if CHAR_BITS != 8 -#error C_block structure assumes 8 bit characters -#endif -#endif - -/* - * define "B64" to be the declaration for a 64 bit integer. - * XXX this feature is currently unused, see "endian" comment below. - */ -/* #define B64 int64 */ - -/* - * define "LARGEDATA" to get faster permutations, by using about 72 kilobytes - * of lookup tables. This speeds up des_setkey() and des_cipher(), but has - * little effect on crypt(). - */ -/* #define LARGEDATA */ - -/* compile with "-DSTATIC=void" when profiling */ -#ifndef STATIC -#define STATIC static void -#endif - -/* - * Define the "int32_t" type for integral type with a width of at least - * 32 bits. - */ -typedef int int32_t; - -/* ==================================== */ - -#define _PASSWORD_EFMT1 '_' /* extended encryption format */ - -/* - * Cipher-block representation (Bob Baldwin): - * - * DES operates on groups of 64 bits, numbered 1..64 (sigh). One - * representation is to store one bit per byte in an array of bytes. Bit N of - * the NBS spec is stored as the LSB of the Nth byte (index N-1) in the array. - * Another representation stores the 64 bits in 8 bytes, with bits 1..8 in the - * first byte, 9..16 in the second, and so on. The DES spec apparently has - * bit 1 in the MSB of the first byte, but that is particularly noxious so we - * bit-reverse each byte so that bit 1 is the LSB of the first byte, bit 8 is - * the MSB of the first byte. Specifically, the 64-bit input data and key are - * converted to LSB format, and the output 64-bit block is converted back into - * MSB format. - * - * DES operates internally on groups of 32 bits which are expanded to 48 bits - * by permutation E and shrunk back to 32 bits by the S boxes. To speed up - * the computation, the expansion is applied only once, the expanded - * representation is maintained during the encryption, and a compression - * permutation is applied only at the end. To speed up the S-box lookups, - * the 48 bits are maintained as eight 6 bit groups, one per byte, which - * directly feed the eight S-boxes. Within each byte, the 6 bits are the - * most significant ones. The low two bits of each byte are zero. (Thus, - * bit 1 of the 48 bit E expansion is stored as the "4"-valued bit of the - * first byte in the eight byte representation, bit 2 of the 48 bit value is - * the "8"-valued bit, and so on.) In fact, a combined "SPE"-box lookup is - * used, in which the output is the 64 bit result of an S-box lookup which - * has been permuted by P and expanded by E, and is ready for use in the next - * iteration. Two 32-bit wide tables, SPE[0] and SPE[1], are used for this - * lookup. Since each byte in the 48 bit path is a multiple of four, indexed - * lookup of SPE[0] and SPE[1] is simple and fast. The key schedule and - * "salt" are also converted to this 8*(6+2) format. The SPE table size is - * 8*64*8 = 4K bytes. - * - * To speed up bit-parallel operations (such as XOR), the 8 byte - * representation is "union"ed with 32 bit values "i0" and "i1", and, on - * machines which support it, a 64 bit value "b64". This data structure, - * "C_block", has two problems. First, alignment restrictions must be - * honored. Second, the byte-order (e.g. little-endian or big-endian) of - * the architecture becomes visible. - * - * The byte-order problem is unfortunate, since on the one hand it is good - * to have a machine-independent C_block representation (bits 1..8 in the - * first byte, etc.), and on the other hand it is good for the LSB of the - * first byte to be the LSB of i0. We cannot have both these things, so we - * currently use the "little-endian" representation and avoid any multi-byte - * operations that depend on byte order. This largely precludes use of the - * 64-bit datatype since the relative order of i0 and i1 are unknown. It - * also inhibits grouping the SPE table to look up 12 bits at a time. (The - * 12 bits can be stored in a 16-bit field with 3 low-order zeroes and 1 - * high-order zero, providing fast indexing into a 64-bit wide SPE.) On the - * other hand, 64-bit datatypes are currently rare, and a 12-bit SPE lookup - * requires a 128 kilobyte table, so perhaps this is not a big loss. - * - * Permutation representation (Jim Gillogly): - * - * A transformation is defined by its effect on each of the 8 bytes of the - * 64-bit input. For each byte we give a 64-bit output that has the bits in - * the input distributed appropriately. The transformation is then the OR - * of the 8 sets of 64-bits. This uses 8*256*8 = 16K bytes of storage for - * each transformation. Unless LARGEDATA is defined, however, a more compact - * table is used which looks up 16 4-bit "chunks" rather than 8 8-bit chunks. - * The smaller table uses 16*16*8 = 2K bytes for each transformation. This - * is slower but tolerable, particularly for password encryption in which - * the SPE transformation is iterated many times. The small tables total 9K - * bytes, the large tables total 72K bytes. - * - * The transformations used are: - * IE3264: MSB->LSB conversion, initial permutation, and expansion. - * This is done by collecting the 32 even-numbered bits and applying - * a 32->64 bit transformation, and then collecting the 32 odd-numbered - * bits and applying the same transformation. Since there are only - * 32 input bits, the IE3264 transformation table is half the size of - * the usual table. - * CF6464: Compression, final permutation, and LSB->MSB conversion. - * This is done by two trivial 48->32 bit compressions to obtain - * a 64-bit block (the bit numbering is given in the "CIFP" table) - * followed by a 64->64 bit "cleanup" transformation. (It would - * be possible to group the bits in the 64-bit block so that 2 - * identical 32->32 bit transformations could be used instead, - * saving a factor of 4 in space and possibly 2 in time, but - * byte-ordering and other complications rear their ugly head. - * Similar opportunities/problems arise in the key schedule - * transforms.) - * PC1ROT: MSB->LSB, PC1 permutation, rotate, and PC2 permutation. - * This admittedly baroque 64->64 bit transformation is used to - * produce the first code (in 8*(6+2) format) of the key schedule. - * PC2ROT[0]: Inverse PC2 permutation, rotate, and PC2 permutation. - * It would be possible to define 15 more transformations, each - * with a different rotation, to generate the entire key schedule. - * To save space, however, we instead permute each code into the - * next by using a transformation that "undoes" the PC2 permutation, - * rotates the code, and then applies PC2. Unfortunately, PC2 - * transforms 56 bits into 48 bits, dropping 8 bits, so PC2 is not - * invertible. We get around that problem by using a modified PC2 - * which retains the 8 otherwise-lost bits in the unused low-order - * bits of each byte. The low-order bits are cleared when the - * codes are stored into the key schedule. - * PC2ROT[1]: Same as PC2ROT[0], but with two rotations. - * This is faster than applying PC2ROT[0] twice, - * - * The Bell Labs "salt" (Bob Baldwin): - * - * The salting is a simple permutation applied to the 48-bit result of E. - * Specifically, if bit i (1 <= i <= 24) of the salt is set then bits i and - * i+24 of the result are swapped. The salt is thus a 24 bit number, with - * 16777216 possible values. (The original salt was 12 bits and could not - * swap bits 13..24 with 36..48.) - * - * It is possible, but ugly, to warp the SPE table to account for the salt - * permutation. Fortunately, the conditional bit swapping requires only - * about four machine instructions and can be done on-the-fly with about an - * 8% performance penalty. - */ - -typedef union -{ - unsigned char b[8]; - struct - { - int32_t i0; - int32_t i1; - } b32; -#if defined(B64) - B64 b64; -#endif -} C_block; - -/* - * Convert twenty-four-bit long in host-order - * to six bits (and 2 low-order zeroes) per char little-endian format. - */ -#define TO_SIX_BIT(rslt, src) { \ - C_block cvt; \ - cvt.b[0] = src; src >>= 6; \ - cvt.b[1] = src; src >>= 6; \ - cvt.b[2] = src; src >>= 6; \ - cvt.b[3] = src; \ - rslt = (cvt.b32.i0 & 0x3f3f3f3fL) << 2; \ - } - -/* - * These macros may someday permit efficient use of 64-bit integers. - */ -#define ZERO(d,d0,d1) d0 = 0, d1 = 0 -#define LOAD(d,d0,d1,bl) d0 = (bl).b32.i0, d1 = (bl).b32.i1 -#define LOADREG(d,d0,d1,s,s0,s1) d0 = s0, d1 = s1 -#define OR(d,d0,d1,bl) d0 |= (bl).b32.i0, d1 |= (bl).b32.i1 -#define STORE(s,s0,s1,bl) (bl).b32.i0 = s0, (bl).b32.i1 = s1 -#define DCL_BLOCK(d,d0,d1) int32_t d0, d1 - -#if defined(LARGEDATA) - /* Waste memory like crazy. Also, do permutations in line */ -#define LGCHUNKBITS 3 -#define CHUNKBITS (1<> 4]; - OR(D, D0, D1, *tp); - p += (1 << CHUNKBITS); - } while (--chars_in > 0); - STORE(D, D0, D1, *out); -} -#endif /* LARGEDATA */ - - -/* ===== (mostly) Standard DES Tables ==================== */ - -static const unsigned char IP[] = { /* initial permutation */ - 58, 50, 42, 34, 26, 18, 10, 2, - 60, 52, 44, 36, 28, 20, 12, 4, - 62, 54, 46, 38, 30, 22, 14, 6, - 64, 56, 48, 40, 32, 24, 16, 8, - 57, 49, 41, 33, 25, 17, 9, 1, - 59, 51, 43, 35, 27, 19, 11, 3, - 61, 53, 45, 37, 29, 21, 13, 5, - 63, 55, 47, 39, 31, 23, 15, 7, -}; - -/* The final permutation is the inverse of IP - no table is necessary */ - -static const unsigned char ExpandTr[] = { /* expansion operation */ - 32, 1, 2, 3, 4, 5, - 4, 5, 6, 7, 8, 9, - 8, 9, 10, 11, 12, 13, - 12, 13, 14, 15, 16, 17, - 16, 17, 18, 19, 20, 21, - 20, 21, 22, 23, 24, 25, - 24, 25, 26, 27, 28, 29, - 28, 29, 30, 31, 32, 1, -}; - -static const unsigned char PC1[] = { /* permuted choice table 1 */ - 57, 49, 41, 33, 25, 17, 9, - 1, 58, 50, 42, 34, 26, 18, - 10, 2, 59, 51, 43, 35, 27, - 19, 11, 3, 60, 52, 44, 36, - - 63, 55, 47, 39, 31, 23, 15, - 7, 62, 54, 46, 38, 30, 22, - 14, 6, 61, 53, 45, 37, 29, - 21, 13, 5, 28, 20, 12, 4, -}; - -static const unsigned char Rotates[] = { /* PC1 rotation schedule */ - 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1, -}; - -/* note: each "row" of PC2 is left-padded with bits that make it invertible */ -static const unsigned char PC2[] = { /* permuted choice table 2 */ - 9, 18, 14, 17, 11, 24, 1, 5, - 22, 25, 3, 28, 15, 6, 21, 10, - 35, 38, 23, 19, 12, 4, 26, 8, - 43, 54, 16, 7, 27, 20, 13, 2, - - 0, 0, 41, 52, 31, 37, 47, 55, - 0, 0, 30, 40, 51, 45, 33, 48, - 0, 0, 44, 49, 39, 56, 34, 53, - 0, 0, 46, 42, 50, 36, 29, 32, -}; - -static const unsigned char S[8][64] = { /* 48->32 bit substitution tables */ - /* S[1] */ - {14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7, - 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8, - 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0, - 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13}, - /* S[2] */ - {15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10, - 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5, - 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15, - 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9}, - /* S[3] */ - {10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8, - 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1, - 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7, - 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12}, - /* S[4] */ - {7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15, - 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9, - 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4, - 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14}, - /* S[5] */ - {2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9, - 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6, - 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14, - 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3}, - /* S[6] */ - {12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11, - 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8, - 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6, - 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13}, - /* S[7] */ - {4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1, - 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6, - 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2, - 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12}, - /* S[8] */ - {13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7, - 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2, - 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8, - 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11} -}; - -static const unsigned char P32Tr[] = { /* 32-bit permutation function */ - 16, 7, 20, 21, - 29, 12, 28, 17, - 1, 15, 23, 26, - 5, 18, 31, 10, - 2, 8, 24, 14, - 32, 27, 3, 9, - 19, 13, 30, 6, - 22, 11, 4, 25, -}; - -static const unsigned char CIFP[] = { /* compressed/interleaved permutation */ - 1, 2, 3, 4, 17, 18, 19, 20, - 5, 6, 7, 8, 21, 22, 23, 24, - 9, 10, 11, 12, 25, 26, 27, 28, - 13, 14, 15, 16, 29, 30, 31, 32, - - 33, 34, 35, 36, 49, 50, 51, 52, - 37, 38, 39, 40, 53, 54, 55, 56, - 41, 42, 43, 44, 57, 58, 59, 60, - 45, 46, 47, 48, 61, 62, 63, 64, -}; - -static const unsigned char itoa64[] = /* 0..63 => ascii-64 */ -"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"; - - -/* ===== Tables that are initialized at run time ==================== */ - - -static unsigned char a64toi[128]; /* ascii-64 => 0..63 */ - -/* Initial key schedule permutation */ -static C_block PC1ROT[64 / CHUNKBITS][1 << CHUNKBITS]; - -/* Subsequent key schedule rotation permutations */ -static C_block PC2ROT[2][64 / CHUNKBITS][1 << CHUNKBITS]; - -/* Initial permutation/expansion table */ -static C_block IE3264[32 / CHUNKBITS][1 << CHUNKBITS]; - -/* Table that combines the S, P, and E operations. */ -static int32_t SPE[2][8][64]; - -/* compressed/interleaved => final permutation table */ -static C_block CF6464[64 / CHUNKBITS][1 << CHUNKBITS]; - - -/* ==================================== */ - - -static C_block constdatablock; /* encryption constant */ -static char cryptresult[1 + 4 + 4 + 11 + 1]; /* encrypted result */ - -extern char *__md5crypt(const char *, const char *); /* XXX */ -extern char *__bcrypt(const char *, const char *); /* XXX */ - - -/* - * Return a pointer to static data consisting of the "setting" - * followed by an encryption produced by the "key" and "setting". - */ -char * -crypt(key, setting) -const char *key; -const char *setting; -{ - char *encp; - int32_t i; - int t; - int32_t salt; - int num_iter, - salt_size; - C_block keyblock, - rsltblock; - -#if 0 - /* Non-DES encryption schemes hook in here. */ - if (setting[0] == _PASSWORD_NONDES) - { - switch (setting[1]) - { - case '2': - return (__bcrypt(key, setting)); - case '1': - default: - return (__md5crypt(key, setting)); - } - } -#endif - - for (i = 0; i < 8; i++) - { - if ((t = 2 * (unsigned char) (*key)) != 0) - key++; - keyblock.b[i] = t; - } - if (des_setkey((char *) keyblock.b)) /* also initializes "a64toi" */ - return (NULL); - - encp = &cryptresult[0]; - switch (*setting) - { - case _PASSWORD_EFMT1: - - /* - * Involve the rest of the password 8 characters at a time. - */ - while (*key) - { - if (des_cipher((char *) (void *) &keyblock, - (char *) (void *) &keyblock, 0L, 1)) - return (NULL); - for (i = 0; i < 8; i++) - { - if ((t = 2 * (unsigned char) (*key)) != 0) - key++; - keyblock.b[i] ^= t; - } - if (des_setkey((char *) keyblock.b)) - return (NULL); - } - - *encp++ = *setting++; - - /* get iteration count */ - num_iter = 0; - for (i = 4; --i >= 0;) - { - if ((t = (unsigned char) setting[i]) == '\0') - t = '.'; - encp[i] = t; - num_iter = (num_iter << 6) | a64toi[t]; - } - setting += 4; - encp += 4; - salt_size = 4; - break; - default: - num_iter = 25; - salt_size = 2; - } - - salt = 0; - for (i = salt_size; --i >= 0;) - { - if ((t = (unsigned char) setting[i]) == '\0') - t = '.'; - encp[i] = t; - salt = (salt << 6) | a64toi[t]; - } - encp += salt_size; - if (des_cipher((char *) (void *) &constdatablock, - (char *) (void *) &rsltblock, salt, num_iter)) - return (NULL); - - /* - * Encode the 64 cipher bits as 11 ascii characters. - */ - i = ((int32_t) ((rsltblock.b[0] << 8) | rsltblock.b[1]) << 8) | - rsltblock.b[2]; - encp[3] = itoa64[i & 0x3f]; - i >>= 6; - encp[2] = itoa64[i & 0x3f]; - i >>= 6; - encp[1] = itoa64[i & 0x3f]; - i >>= 6; - encp[0] = itoa64[i]; - encp += 4; - i = ((int32_t) ((rsltblock.b[3] << 8) | rsltblock.b[4]) << 8) | - rsltblock.b[5]; - encp[3] = itoa64[i & 0x3f]; - i >>= 6; - encp[2] = itoa64[i & 0x3f]; - i >>= 6; - encp[1] = itoa64[i & 0x3f]; - i >>= 6; - encp[0] = itoa64[i]; - encp += 4; - i = ((int32_t) ((rsltblock.b[6]) << 8) | rsltblock.b[7]) << 2; - encp[2] = itoa64[i & 0x3f]; - i >>= 6; - encp[1] = itoa64[i & 0x3f]; - i >>= 6; - encp[0] = itoa64[i]; - - encp[3] = 0; - - return (cryptresult); -} - - -/* - * The Key Schedule, filled in by des_setkey() or setkey(). - */ -#define KS_SIZE 16 -static C_block KS[KS_SIZE]; - -static volatile int des_ready = 0; - -/* - * Set up the key schedule from the key. - */ -static int -des_setkey(key) -const char *key; -{ - DCL_BLOCK(K, K0, K1); - C_block *ptabp; - int i; - - if (!des_ready) - init_des(); - - PERM6464(K, K0, K1, (unsigned char *) key, (C_block *) PC1ROT); - key = (char *) &KS[0]; - STORE(K & ~0x03030303L, K0 & ~0x03030303L, K1, *(C_block *) key); - for (i = 1; i < 16; i++) - { - key += sizeof(C_block); - STORE(K, K0, K1, *(C_block *) key); - ptabp = (C_block *) PC2ROT[Rotates[i] - 1]; - PERM6464(K, K0, K1, (unsigned char *) key, ptabp); - STORE(K & ~0x03030303L, K0 & ~0x03030303L, K1, *(C_block *) key); - } - return (0); -} - -/* - * Encrypt (or decrypt if num_iter < 0) the 8 chars at "in" with abs(num_iter) - * iterations of DES, using the given 24-bit salt and the pre-computed key - * schedule, and store the resulting 8 chars at "out" (in == out is permitted). - * - * NOTE: the performance of this routine is critically dependent on your - * compiler and machine architecture. - */ -static int -des_cipher(in, out, salt, num_iter) -const char *in; -char *out; -long salt; -int num_iter; -{ - /* variables that we want in registers, most important first */ -#if defined(pdp11) - int j; -#endif - int32_t L0, - L1, - R0, - R1, - k; - C_block *kp; - int ks_inc, - loop_count; - C_block B; - - L0 = salt; - TO_SIX_BIT(salt, L0); /* convert to 4*(6+2) format */ - -#if defined(__vax__) || defined(pdp11) - salt = ~salt; /* "x &~ y" is faster than "x & y". */ -#define SALT (~salt) -#else -#define SALT salt -#endif - -#if defined(MUST_ALIGN) - B.b[0] = in[0]; - B.b[1] = in[1]; - B.b[2] = in[2]; - B.b[3] = in[3]; - B.b[4] = in[4]; - B.b[5] = in[5]; - B.b[6] = in[6]; - B.b[7] = in[7]; - LOAD(L, L0, L1, B); -#else - LOAD(L, L0, L1, *(C_block *) in); -#endif - LOADREG(R, R0, R1, L, L0, L1); - L0 &= 0x55555555L; - L1 &= 0x55555555L; - L0 = (L0 << 1) | L1; /* L0 is the even-numbered input bits */ - R0 &= 0xaaaaaaaaL; - R1 = (R1 >> 1) & 0x55555555L; - L1 = R0 | R1; /* L1 is the odd-numbered input bits */ - STORE(L, L0, L1, B); - PERM3264(L, L0, L1, B.b, (C_block *) IE3264); /* even bits */ - PERM3264(R, R0, R1, B.b + 4, (C_block *) IE3264); /* odd bits */ - - if (num_iter >= 0) - { /* encryption */ - kp = &KS[0]; - ks_inc = sizeof(*kp); - } - else - { /* decryption */ - num_iter = -num_iter; - kp = &KS[KS_SIZE - 1]; - ks_inc = -(long) sizeof(*kp); - } - - while (--num_iter >= 0) - { - loop_count = 8; - do - { - -#define SPTAB(t, i) \ - (*(int32_t *)((unsigned char *)(t) + (i)*(sizeof(int32_t)/4))) -#if defined(gould) - /* use this if B.b[i] is evaluated just once ... */ -#define DOXOR(x,y,i) x^=SPTAB(SPE[0][i],B.b[i]); y^=SPTAB(SPE[1][i],B.b[i]); -#else -#if defined(pdp11) - /* use this if your "long" int indexing is slow */ -#define DOXOR(x,y,i) j=B.b[i]; x^=SPTAB(SPE[0][i],j); y^=SPTAB(SPE[1][i],j); -#else - /* use this if "k" is allocated to a register ... */ -#define DOXOR(x,y,i) k=B.b[i]; x^=SPTAB(SPE[0][i],k); y^=SPTAB(SPE[1][i],k); -#endif -#endif - -#define CRUNCH(p0, p1, q0, q1) \ - k = ((q0) ^ (q1)) & SALT; \ - B.b32.i0 = k ^ (q0) ^ kp->b32.i0; \ - B.b32.i1 = k ^ (q1) ^ kp->b32.i1; \ - kp = (C_block *)((char *)kp+ks_inc); \ - \ - DOXOR(p0, p1, 0); \ - DOXOR(p0, p1, 1); \ - DOXOR(p0, p1, 2); \ - DOXOR(p0, p1, 3); \ - DOXOR(p0, p1, 4); \ - DOXOR(p0, p1, 5); \ - DOXOR(p0, p1, 6); \ - DOXOR(p0, p1, 7); - - CRUNCH(L0, L1, R0, R1); - CRUNCH(R0, R1, L0, L1); - } while (--loop_count != 0); - kp = (C_block *) ((char *) kp - (ks_inc * KS_SIZE)); - - - /* swap L and R */ - L0 ^= R0; - L1 ^= R1; - R0 ^= L0; - R1 ^= L1; - L0 ^= R0; - L1 ^= R1; - } - - /* store the encrypted (or decrypted) result */ - L0 = ((L0 >> 3) & 0x0f0f0f0fL) | ((L1 << 1) & 0xf0f0f0f0L); - L1 = ((R0 >> 3) & 0x0f0f0f0fL) | ((R1 << 1) & 0xf0f0f0f0L); - STORE(L, L0, L1, B); - PERM6464(L, L0, L1, B.b, (C_block *) CF6464); -#if defined(MUST_ALIGN) - STORE(L, L0, L1, B); - out[0] = B.b[0]; - out[1] = B.b[1]; - out[2] = B.b[2]; - out[3] = B.b[3]; - out[4] = B.b[4]; - out[5] = B.b[5]; - out[6] = B.b[6]; - out[7] = B.b[7]; -#else - STORE(L, L0, L1, *(C_block *) out); -#endif - return (0); -} - - -/* - * Initialize various tables. This need only be done once. It could even be - * done at compile time, if the compiler were capable of that sort of thing. - */ -STATIC -init_des() -{ - int i, - j; - int32_t k; - int tableno; - static unsigned char perm[64], - tmp32[32]; /* "static" for speed */ - -/* static volatile long init_start = 0; not used */ - - /* - * table that converts chars "./0-9A-Za-z"to integers 0-63. - */ - for (i = 0; i < 64; i++) - a64toi[itoa64[i]] = i; - - /* - * PC1ROT - bit reverse, then PC1, then Rotate, then PC2. - */ - for (i = 0; i < 64; i++) - perm[i] = 0; - for (i = 0; i < 64; i++) - { - if ((k = PC2[i]) == 0) - continue; - k += Rotates[0] - 1; - if ((k % 28) < Rotates[0]) - k -= 28; - k = PC1[k]; - if (k > 0) - { - k--; - k = (k | 07) - (k & 07); - k++; - } - perm[i] = k; - } -#ifdef DEBUG - prtab("pc1tab", perm, 8); -#endif - init_perm(PC1ROT, perm, 8, 8); - - /* - * PC2ROT - PC2 inverse, then Rotate (once or twice), then PC2. - */ - for (j = 0; j < 2; j++) - { - unsigned char pc2inv[64]; - - for (i = 0; i < 64; i++) - perm[i] = pc2inv[i] = 0; - for (i = 0; i < 64; i++) - { - if ((k = PC2[i]) == 0) - continue; - pc2inv[k - 1] = i + 1; - } - for (i = 0; i < 64; i++) - { - if ((k = PC2[i]) == 0) - continue; - k += j; - if ((k % 28) <= j) - k -= 28; - perm[i] = pc2inv[k]; - } -#ifdef DEBUG - prtab("pc2tab", perm, 8); -#endif - init_perm(PC2ROT[j], perm, 8, 8); - } - - /* - * Bit reverse, then initial permutation, then expansion. - */ - for (i = 0; i < 8; i++) - { - for (j = 0; j < 8; j++) - { - k = (j < 2) ? 0 : IP[ExpandTr[i * 6 + j - 2] - 1]; - if (k > 32) - k -= 32; - else if (k > 0) - k--; - if (k > 0) - { - k--; - k = (k | 07) - (k & 07); - k++; - } - perm[i * 8 + j] = k; - } - } -#ifdef DEBUG - prtab("ietab", perm, 8); -#endif - init_perm(IE3264, perm, 4, 8); - - /* - * Compression, then final permutation, then bit reverse. - */ - for (i = 0; i < 64; i++) - { - k = IP[CIFP[i] - 1]; - if (k > 0) - { - k--; - k = (k | 07) - (k & 07); - k++; - } - perm[k - 1] = i + 1; - } -#ifdef DEBUG - prtab("cftab", perm, 8); -#endif - init_perm(CF6464, perm, 8, 8); - - /* - * SPE table - */ - for (i = 0; i < 48; i++) - perm[i] = P32Tr[ExpandTr[i] - 1]; - for (tableno = 0; tableno < 8; tableno++) - { - for (j = 0; j < 64; j++) - { - k = (((j >> 0) & 01) << 5) | - (((j >> 1) & 01) << 3) | - (((j >> 2) & 01) << 2) | - (((j >> 3) & 01) << 1) | - (((j >> 4) & 01) << 0) | - (((j >> 5) & 01) << 4); - k = S[tableno][k]; - k = (((k >> 3) & 01) << 0) | - (((k >> 2) & 01) << 1) | - (((k >> 1) & 01) << 2) | - (((k >> 0) & 01) << 3); - for (i = 0; i < 32; i++) - tmp32[i] = 0; - for (i = 0; i < 4; i++) - tmp32[4 * tableno + i] = (k >> i) & 01; - k = 0; - for (i = 24; --i >= 0;) - k = (k << 1) | tmp32[perm[i] - 1]; - TO_SIX_BIT(SPE[0][tableno][j], k); - k = 0; - for (i = 24; --i >= 0;) - k = (k << 1) | tmp32[perm[i + 24] - 1]; - TO_SIX_BIT(SPE[1][tableno][j], k); - } - } - - des_ready = 1; -} - -/* - * Initialize "perm" to represent transformation "p", which rearranges - * (perhaps with expansion and/or contraction) one packed array of bits - * (of size "chars_in" characters) into another array (of size "chars_out" - * characters). - * - * "perm" must be all-zeroes on entry to this routine. - */ -STATIC -init_perm(perm, p, chars_in, chars_out) -C_block perm[64 / CHUNKBITS][1 << CHUNKBITS]; -unsigned char p[64]; -int chars_in, - chars_out; -{ - int i, - j, - k, - l; - - for (k = 0; k < chars_out * 8; k++) - { /* each output bit position */ - l = p[k] - 1; /* where this bit comes from */ - if (l < 0) - continue; /* output bit is always 0 */ - i = l >> LGCHUNKBITS; /* which chunk this bit comes from */ - l = 1 << (l & (CHUNKBITS - 1)); /* mask for this bit */ - for (j = 0; j < (1 << CHUNKBITS); j++) - { /* each chunk value */ - if ((j & l) != 0) - perm[i][j].b[k >> 3] |= 1 << (k & 07); - } - } -} - -/* - * "setkey" routine (for backwards compatibility) - */ -#ifdef NOT_USED -int -setkey(key) -const char *key; -{ - int i, - j, - k; - C_block keyblock; - - for (i = 0; i < 8; i++) - { - k = 0; - for (j = 0; j < 8; j++) - { - k <<= 1; - k |= (unsigned char) *key++; - } - keyblock.b[i] = k; - } - return (des_setkey((char *) keyblock.b)); -} - -/* - * "encrypt" routine (for backwards compatibility) - */ -static int -encrypt(block, flag) -char *block; -int flag; -{ - int i, - j, - k; - C_block cblock; - - for (i = 0; i < 8; i++) - { - k = 0; - for (j = 0; j < 8; j++) - { - k <<= 1; - k |= (unsigned char) *block++; - } - cblock.b[i] = k; - } - if (des_cipher((char *) &cblock, (char *) &cblock, 0L, (flag ? -1 : 1))) - return (1); - for (i = 7; i >= 0; i--) - { - k = cblock.b[i]; - for (j = 7; j >= 0; j--) - { - *--block = k & 01; - k >>= 1; - } - } - return (0); -} -#endif - -#ifdef DEBUG -STATIC -prtab(s, t, num_rows) -char *s; -unsigned char *t; -int num_rows; -{ - int i, - j; - - (void) printf("%s:\n", s); - for (i = 0; i < num_rows; i++) - { - for (j = 0; j < 8; j++) - (void) printf("%3d", t[i * 8 + j]); - (void) printf("\n"); - } - (void) printf("\n"); -} - -#endif -- cgit v1.1