From 2a969b7f4bdb223d3626dc14b684701942ccafb2 Mon Sep 17 00:00:00 2001 From: Karen Arutyunov Date: Thu, 21 Sep 2017 01:02:04 +0300 Subject: Make package to be source rather than stub --- libpq/win32/crypt.c | 1085 +++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1085 insertions(+) create mode 100644 libpq/win32/crypt.c (limited to 'libpq/win32/crypt.c') diff --git a/libpq/win32/crypt.c b/libpq/win32/crypt.c new file mode 100644 index 0000000..6a902ef --- /dev/null +++ b/libpq/win32/crypt.c @@ -0,0 +1,1085 @@ +/* src/port/crypt.c */ +/* $NetBSD: crypt.c,v 1.18 2001/03/01 14:37:35 wiz Exp $ */ + +/* + * Copyright (c) 1989, 1993 + * The Regents of the University of California. All rights reserved. + * + * This code is derived from software contributed to Berkeley by + * Tom Truscott. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. Neither the name of the University nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + */ + +#if defined(LIBC_SCCS) && !defined(lint) +#if 0 +static char sccsid[] = "@(#)crypt.c 8.1.1.1 (Berkeley) 8/18/93"; +#else +__RCSID("$NetBSD: crypt.c,v 1.18 2001/03/01 14:37:35 wiz Exp $"); +#endif +#endif /* not lint */ + +#include "c.h" + +#include + +#ifndef WIN32 +#include +#endif + +static int des_setkey(const char *key); +static int des_cipher(const char *in, char *out, long salt, int num_iter); + +/* + * UNIX password, and DES, encryption. + * By Tom Truscott, trt@rti.rti.org, + * from algorithms by Robert W. Baldwin and James Gillogly. + * + * References: + * "Mathematical Cryptology for Computer Scientists and Mathematicians," + * by Wayne Patterson, 1987, ISBN 0-8476-7438-X. + * + * "Password Security: A Case History," R. Morris and Ken Thompson, + * Communications of the ACM, vol. 22, pp. 594-597, Nov. 1979. + * + * "DES will be Totally Insecure within Ten Years," M.E. Hellman, + * IEEE Spectrum, vol. 16, pp. 32-39, July 1979. + */ + +/* ===== Configuration ==================== */ + +/* + * define "MUST_ALIGN" if your compiler cannot load/store + * long integers at arbitrary (e.g. odd) memory locations. + * (Either that or never pass unaligned addresses to des_cipher!) + */ +/* #define MUST_ALIGN */ + +#ifdef CHAR_BITS +#if CHAR_BITS != 8 +#error C_block structure assumes 8 bit characters +#endif +#endif + +/* + * define "B64" to be the declaration for a 64 bit integer. + * XXX this feature is currently unused, see "endian" comment below. + */ +/* #define B64 int64 */ + +/* + * define "LARGEDATA" to get faster permutations, by using about 72 kilobytes + * of lookup tables. This speeds up des_setkey() and des_cipher(), but has + * little effect on crypt(). + */ +/* #define LARGEDATA */ + +/* compile with "-DSTATIC=void" when profiling */ +#ifndef STATIC +#define STATIC static void +#endif + +/* + * Define the "int32_t" type for integral type with a width of at least + * 32 bits. + */ +typedef int int32_t; + +/* ==================================== */ + +#define _PASSWORD_EFMT1 '_' /* extended encryption format */ + +/* + * Cipher-block representation (Bob Baldwin): + * + * DES operates on groups of 64 bits, numbered 1..64 (sigh). One + * representation is to store one bit per byte in an array of bytes. Bit N of + * the NBS spec is stored as the LSB of the Nth byte (index N-1) in the array. + * Another representation stores the 64 bits in 8 bytes, with bits 1..8 in the + * first byte, 9..16 in the second, and so on. The DES spec apparently has + * bit 1 in the MSB of the first byte, but that is particularly noxious so we + * bit-reverse each byte so that bit 1 is the LSB of the first byte, bit 8 is + * the MSB of the first byte. Specifically, the 64-bit input data and key are + * converted to LSB format, and the output 64-bit block is converted back into + * MSB format. + * + * DES operates internally on groups of 32 bits which are expanded to 48 bits + * by permutation E and shrunk back to 32 bits by the S boxes. To speed up + * the computation, the expansion is applied only once, the expanded + * representation is maintained during the encryption, and a compression + * permutation is applied only at the end. To speed up the S-box lookups, + * the 48 bits are maintained as eight 6 bit groups, one per byte, which + * directly feed the eight S-boxes. Within each byte, the 6 bits are the + * most significant ones. The low two bits of each byte are zero. (Thus, + * bit 1 of the 48 bit E expansion is stored as the "4"-valued bit of the + * first byte in the eight byte representation, bit 2 of the 48 bit value is + * the "8"-valued bit, and so on.) In fact, a combined "SPE"-box lookup is + * used, in which the output is the 64 bit result of an S-box lookup which + * has been permuted by P and expanded by E, and is ready for use in the next + * iteration. Two 32-bit wide tables, SPE[0] and SPE[1], are used for this + * lookup. Since each byte in the 48 bit path is a multiple of four, indexed + * lookup of SPE[0] and SPE[1] is simple and fast. The key schedule and + * "salt" are also converted to this 8*(6+2) format. The SPE table size is + * 8*64*8 = 4K bytes. + * + * To speed up bit-parallel operations (such as XOR), the 8 byte + * representation is "union"ed with 32 bit values "i0" and "i1", and, on + * machines which support it, a 64 bit value "b64". This data structure, + * "C_block", has two problems. First, alignment restrictions must be + * honored. Second, the byte-order (e.g. little-endian or big-endian) of + * the architecture becomes visible. + * + * The byte-order problem is unfortunate, since on the one hand it is good + * to have a machine-independent C_block representation (bits 1..8 in the + * first byte, etc.), and on the other hand it is good for the LSB of the + * first byte to be the LSB of i0. We cannot have both these things, so we + * currently use the "little-endian" representation and avoid any multi-byte + * operations that depend on byte order. This largely precludes use of the + * 64-bit datatype since the relative order of i0 and i1 are unknown. It + * also inhibits grouping the SPE table to look up 12 bits at a time. (The + * 12 bits can be stored in a 16-bit field with 3 low-order zeroes and 1 + * high-order zero, providing fast indexing into a 64-bit wide SPE.) On the + * other hand, 64-bit datatypes are currently rare, and a 12-bit SPE lookup + * requires a 128 kilobyte table, so perhaps this is not a big loss. + * + * Permutation representation (Jim Gillogly): + * + * A transformation is defined by its effect on each of the 8 bytes of the + * 64-bit input. For each byte we give a 64-bit output that has the bits in + * the input distributed appropriately. The transformation is then the OR + * of the 8 sets of 64-bits. This uses 8*256*8 = 16K bytes of storage for + * each transformation. Unless LARGEDATA is defined, however, a more compact + * table is used which looks up 16 4-bit "chunks" rather than 8 8-bit chunks. + * The smaller table uses 16*16*8 = 2K bytes for each transformation. This + * is slower but tolerable, particularly for password encryption in which + * the SPE transformation is iterated many times. The small tables total 9K + * bytes, the large tables total 72K bytes. + * + * The transformations used are: + * IE3264: MSB->LSB conversion, initial permutation, and expansion. + * This is done by collecting the 32 even-numbered bits and applying + * a 32->64 bit transformation, and then collecting the 32 odd-numbered + * bits and applying the same transformation. Since there are only + * 32 input bits, the IE3264 transformation table is half the size of + * the usual table. + * CF6464: Compression, final permutation, and LSB->MSB conversion. + * This is done by two trivial 48->32 bit compressions to obtain + * a 64-bit block (the bit numbering is given in the "CIFP" table) + * followed by a 64->64 bit "cleanup" transformation. (It would + * be possible to group the bits in the 64-bit block so that 2 + * identical 32->32 bit transformations could be used instead, + * saving a factor of 4 in space and possibly 2 in time, but + * byte-ordering and other complications rear their ugly head. + * Similar opportunities/problems arise in the key schedule + * transforms.) + * PC1ROT: MSB->LSB, PC1 permutation, rotate, and PC2 permutation. + * This admittedly baroque 64->64 bit transformation is used to + * produce the first code (in 8*(6+2) format) of the key schedule. + * PC2ROT[0]: Inverse PC2 permutation, rotate, and PC2 permutation. + * It would be possible to define 15 more transformations, each + * with a different rotation, to generate the entire key schedule. + * To save space, however, we instead permute each code into the + * next by using a transformation that "undoes" the PC2 permutation, + * rotates the code, and then applies PC2. Unfortunately, PC2 + * transforms 56 bits into 48 bits, dropping 8 bits, so PC2 is not + * invertible. We get around that problem by using a modified PC2 + * which retains the 8 otherwise-lost bits in the unused low-order + * bits of each byte. The low-order bits are cleared when the + * codes are stored into the key schedule. + * PC2ROT[1]: Same as PC2ROT[0], but with two rotations. + * This is faster than applying PC2ROT[0] twice, + * + * The Bell Labs "salt" (Bob Baldwin): + * + * The salting is a simple permutation applied to the 48-bit result of E. + * Specifically, if bit i (1 <= i <= 24) of the salt is set then bits i and + * i+24 of the result are swapped. The salt is thus a 24 bit number, with + * 16777216 possible values. (The original salt was 12 bits and could not + * swap bits 13..24 with 36..48.) + * + * It is possible, but ugly, to warp the SPE table to account for the salt + * permutation. Fortunately, the conditional bit swapping requires only + * about four machine instructions and can be done on-the-fly with about an + * 8% performance penalty. + */ + +typedef union +{ + unsigned char b[8]; + struct + { + int32_t i0; + int32_t i1; + } b32; +#if defined(B64) + B64 b64; +#endif +} C_block; + +/* + * Convert twenty-four-bit long in host-order + * to six bits (and 2 low-order zeroes) per char little-endian format. + */ +#define TO_SIX_BIT(rslt, src) { \ + C_block cvt; \ + cvt.b[0] = src; src >>= 6; \ + cvt.b[1] = src; src >>= 6; \ + cvt.b[2] = src; src >>= 6; \ + cvt.b[3] = src; \ + rslt = (cvt.b32.i0 & 0x3f3f3f3fL) << 2; \ + } + +/* + * These macros may someday permit efficient use of 64-bit integers. + */ +#define ZERO(d,d0,d1) d0 = 0, d1 = 0 +#define LOAD(d,d0,d1,bl) d0 = (bl).b32.i0, d1 = (bl).b32.i1 +#define LOADREG(d,d0,d1,s,s0,s1) d0 = s0, d1 = s1 +#define OR(d,d0,d1,bl) d0 |= (bl).b32.i0, d1 |= (bl).b32.i1 +#define STORE(s,s0,s1,bl) (bl).b32.i0 = s0, (bl).b32.i1 = s1 +#define DCL_BLOCK(d,d0,d1) int32_t d0, d1 + +#if defined(LARGEDATA) + /* Waste memory like crazy. Also, do permutations in line */ +#define LGCHUNKBITS 3 +#define CHUNKBITS (1<> 4]; + OR(D, D0, D1, *tp); + p += (1 << CHUNKBITS); + } while (--chars_in > 0); + STORE(D, D0, D1, *out); +} +#endif /* LARGEDATA */ + + +/* ===== (mostly) Standard DES Tables ==================== */ + +static const unsigned char IP[] = { /* initial permutation */ + 58, 50, 42, 34, 26, 18, 10, 2, + 60, 52, 44, 36, 28, 20, 12, 4, + 62, 54, 46, 38, 30, 22, 14, 6, + 64, 56, 48, 40, 32, 24, 16, 8, + 57, 49, 41, 33, 25, 17, 9, 1, + 59, 51, 43, 35, 27, 19, 11, 3, + 61, 53, 45, 37, 29, 21, 13, 5, + 63, 55, 47, 39, 31, 23, 15, 7, +}; + +/* The final permutation is the inverse of IP - no table is necessary */ + +static const unsigned char ExpandTr[] = { /* expansion operation */ + 32, 1, 2, 3, 4, 5, + 4, 5, 6, 7, 8, 9, + 8, 9, 10, 11, 12, 13, + 12, 13, 14, 15, 16, 17, + 16, 17, 18, 19, 20, 21, + 20, 21, 22, 23, 24, 25, + 24, 25, 26, 27, 28, 29, + 28, 29, 30, 31, 32, 1, +}; + +static const unsigned char PC1[] = { /* permuted choice table 1 */ + 57, 49, 41, 33, 25, 17, 9, + 1, 58, 50, 42, 34, 26, 18, + 10, 2, 59, 51, 43, 35, 27, + 19, 11, 3, 60, 52, 44, 36, + + 63, 55, 47, 39, 31, 23, 15, + 7, 62, 54, 46, 38, 30, 22, + 14, 6, 61, 53, 45, 37, 29, + 21, 13, 5, 28, 20, 12, 4, +}; + +static const unsigned char Rotates[] = { /* PC1 rotation schedule */ + 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1, +}; + +/* note: each "row" of PC2 is left-padded with bits that make it invertible */ +static const unsigned char PC2[] = { /* permuted choice table 2 */ + 9, 18, 14, 17, 11, 24, 1, 5, + 22, 25, 3, 28, 15, 6, 21, 10, + 35, 38, 23, 19, 12, 4, 26, 8, + 43, 54, 16, 7, 27, 20, 13, 2, + + 0, 0, 41, 52, 31, 37, 47, 55, + 0, 0, 30, 40, 51, 45, 33, 48, + 0, 0, 44, 49, 39, 56, 34, 53, + 0, 0, 46, 42, 50, 36, 29, 32, +}; + +static const unsigned char S[8][64] = { /* 48->32 bit substitution tables */ + /* S[1] */ + {14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7, + 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8, + 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0, + 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13}, + /* S[2] */ + {15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10, + 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5, + 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15, + 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9}, + /* S[3] */ + {10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8, + 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1, + 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7, + 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12}, + /* S[4] */ + {7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15, + 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9, + 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4, + 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14}, + /* S[5] */ + {2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9, + 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6, + 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14, + 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3}, + /* S[6] */ + {12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11, + 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8, + 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6, + 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13}, + /* S[7] */ + {4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1, + 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6, + 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2, + 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12}, + /* S[8] */ + {13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7, + 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2, + 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8, + 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11} +}; + +static const unsigned char P32Tr[] = { /* 32-bit permutation function */ + 16, 7, 20, 21, + 29, 12, 28, 17, + 1, 15, 23, 26, + 5, 18, 31, 10, + 2, 8, 24, 14, + 32, 27, 3, 9, + 19, 13, 30, 6, + 22, 11, 4, 25, +}; + +static const unsigned char CIFP[] = { /* compressed/interleaved permutation */ + 1, 2, 3, 4, 17, 18, 19, 20, + 5, 6, 7, 8, 21, 22, 23, 24, + 9, 10, 11, 12, 25, 26, 27, 28, + 13, 14, 15, 16, 29, 30, 31, 32, + + 33, 34, 35, 36, 49, 50, 51, 52, + 37, 38, 39, 40, 53, 54, 55, 56, + 41, 42, 43, 44, 57, 58, 59, 60, + 45, 46, 47, 48, 61, 62, 63, 64, +}; + +static const unsigned char itoa64[] = /* 0..63 => ascii-64 */ +"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"; + + +/* ===== Tables that are initialized at run time ==================== */ + + +static unsigned char a64toi[128]; /* ascii-64 => 0..63 */ + +/* Initial key schedule permutation */ +static C_block PC1ROT[64 / CHUNKBITS][1 << CHUNKBITS]; + +/* Subsequent key schedule rotation permutations */ +static C_block PC2ROT[2][64 / CHUNKBITS][1 << CHUNKBITS]; + +/* Initial permutation/expansion table */ +static C_block IE3264[32 / CHUNKBITS][1 << CHUNKBITS]; + +/* Table that combines the S, P, and E operations. */ +static int32_t SPE[2][8][64]; + +/* compressed/interleaved => final permutation table */ +static C_block CF6464[64 / CHUNKBITS][1 << CHUNKBITS]; + + +/* ==================================== */ + + +static C_block constdatablock; /* encryption constant */ +static char cryptresult[1 + 4 + 4 + 11 + 1]; /* encrypted result */ + +extern char *__md5crypt(const char *, const char *); /* XXX */ +extern char *__bcrypt(const char *, const char *); /* XXX */ + + +/* + * Return a pointer to static data consisting of the "setting" + * followed by an encryption produced by the "key" and "setting". + */ +char * +crypt(key, setting) +const char *key; +const char *setting; +{ + char *encp; + int32_t i; + int t; + int32_t salt; + int num_iter, + salt_size; + C_block keyblock, + rsltblock; + +#if 0 + /* Non-DES encryption schemes hook in here. */ + if (setting[0] == _PASSWORD_NONDES) + { + switch (setting[1]) + { + case '2': + return (__bcrypt(key, setting)); + case '1': + default: + return (__md5crypt(key, setting)); + } + } +#endif + + for (i = 0; i < 8; i++) + { + if ((t = 2 * (unsigned char) (*key)) != 0) + key++; + keyblock.b[i] = t; + } + if (des_setkey((char *) keyblock.b)) /* also initializes "a64toi" */ + return (NULL); + + encp = &cryptresult[0]; + switch (*setting) + { + case _PASSWORD_EFMT1: + + /* + * Involve the rest of the password 8 characters at a time. + */ + while (*key) + { + if (des_cipher((char *) (void *) &keyblock, + (char *) (void *) &keyblock, 0L, 1)) + return (NULL); + for (i = 0; i < 8; i++) + { + if ((t = 2 * (unsigned char) (*key)) != 0) + key++; + keyblock.b[i] ^= t; + } + if (des_setkey((char *) keyblock.b)) + return (NULL); + } + + *encp++ = *setting++; + + /* get iteration count */ + num_iter = 0; + for (i = 4; --i >= 0;) + { + if ((t = (unsigned char) setting[i]) == '\0') + t = '.'; + encp[i] = t; + num_iter = (num_iter << 6) | a64toi[t]; + } + setting += 4; + encp += 4; + salt_size = 4; + break; + default: + num_iter = 25; + salt_size = 2; + } + + salt = 0; + for (i = salt_size; --i >= 0;) + { + if ((t = (unsigned char) setting[i]) == '\0') + t = '.'; + encp[i] = t; + salt = (salt << 6) | a64toi[t]; + } + encp += salt_size; + if (des_cipher((char *) (void *) &constdatablock, + (char *) (void *) &rsltblock, salt, num_iter)) + return (NULL); + + /* + * Encode the 64 cipher bits as 11 ascii characters. + */ + i = ((int32_t) ((rsltblock.b[0] << 8) | rsltblock.b[1]) << 8) | + rsltblock.b[2]; + encp[3] = itoa64[i & 0x3f]; + i >>= 6; + encp[2] = itoa64[i & 0x3f]; + i >>= 6; + encp[1] = itoa64[i & 0x3f]; + i >>= 6; + encp[0] = itoa64[i]; + encp += 4; + i = ((int32_t) ((rsltblock.b[3] << 8) | rsltblock.b[4]) << 8) | + rsltblock.b[5]; + encp[3] = itoa64[i & 0x3f]; + i >>= 6; + encp[2] = itoa64[i & 0x3f]; + i >>= 6; + encp[1] = itoa64[i & 0x3f]; + i >>= 6; + encp[0] = itoa64[i]; + encp += 4; + i = ((int32_t) ((rsltblock.b[6]) << 8) | rsltblock.b[7]) << 2; + encp[2] = itoa64[i & 0x3f]; + i >>= 6; + encp[1] = itoa64[i & 0x3f]; + i >>= 6; + encp[0] = itoa64[i]; + + encp[3] = 0; + + return (cryptresult); +} + + +/* + * The Key Schedule, filled in by des_setkey() or setkey(). + */ +#define KS_SIZE 16 +static C_block KS[KS_SIZE]; + +static volatile int des_ready = 0; + +/* + * Set up the key schedule from the key. + */ +static int +des_setkey(key) +const char *key; +{ + DCL_BLOCK(K, K0, K1); + C_block *ptabp; + int i; + + if (!des_ready) + init_des(); + + PERM6464(K, K0, K1, (unsigned char *) key, (C_block *) PC1ROT); + key = (char *) &KS[0]; + STORE(K & ~0x03030303L, K0 & ~0x03030303L, K1, *(C_block *) key); + for (i = 1; i < 16; i++) + { + key += sizeof(C_block); + STORE(K, K0, K1, *(C_block *) key); + ptabp = (C_block *) PC2ROT[Rotates[i] - 1]; + PERM6464(K, K0, K1, (unsigned char *) key, ptabp); + STORE(K & ~0x03030303L, K0 & ~0x03030303L, K1, *(C_block *) key); + } + return (0); +} + +/* + * Encrypt (or decrypt if num_iter < 0) the 8 chars at "in" with abs(num_iter) + * iterations of DES, using the given 24-bit salt and the pre-computed key + * schedule, and store the resulting 8 chars at "out" (in == out is permitted). + * + * NOTE: the performance of this routine is critically dependent on your + * compiler and machine architecture. + */ +static int +des_cipher(in, out, salt, num_iter) +const char *in; +char *out; +long salt; +int num_iter; +{ + /* variables that we want in registers, most important first */ +#if defined(pdp11) + int j; +#endif + int32_t L0, + L1, + R0, + R1, + k; + C_block *kp; + int ks_inc, + loop_count; + C_block B; + + L0 = salt; + TO_SIX_BIT(salt, L0); /* convert to 4*(6+2) format */ + +#if defined(__vax__) || defined(pdp11) + salt = ~salt; /* "x &~ y" is faster than "x & y". */ +#define SALT (~salt) +#else +#define SALT salt +#endif + +#if defined(MUST_ALIGN) + B.b[0] = in[0]; + B.b[1] = in[1]; + B.b[2] = in[2]; + B.b[3] = in[3]; + B.b[4] = in[4]; + B.b[5] = in[5]; + B.b[6] = in[6]; + B.b[7] = in[7]; + LOAD(L, L0, L1, B); +#else + LOAD(L, L0, L1, *(C_block *) in); +#endif + LOADREG(R, R0, R1, L, L0, L1); + L0 &= 0x55555555L; + L1 &= 0x55555555L; + L0 = (L0 << 1) | L1; /* L0 is the even-numbered input bits */ + R0 &= 0xaaaaaaaaL; + R1 = (R1 >> 1) & 0x55555555L; + L1 = R0 | R1; /* L1 is the odd-numbered input bits */ + STORE(L, L0, L1, B); + PERM3264(L, L0, L1, B.b, (C_block *) IE3264); /* even bits */ + PERM3264(R, R0, R1, B.b + 4, (C_block *) IE3264); /* odd bits */ + + if (num_iter >= 0) + { /* encryption */ + kp = &KS[0]; + ks_inc = sizeof(*kp); + } + else + { /* decryption */ + num_iter = -num_iter; + kp = &KS[KS_SIZE - 1]; + ks_inc = -(long) sizeof(*kp); + } + + while (--num_iter >= 0) + { + loop_count = 8; + do + { + +#define SPTAB(t, i) \ + (*(int32_t *)((unsigned char *)(t) + (i)*(sizeof(int32_t)/4))) +#if defined(gould) + /* use this if B.b[i] is evaluated just once ... */ +#define DOXOR(x,y,i) x^=SPTAB(SPE[0][i],B.b[i]); y^=SPTAB(SPE[1][i],B.b[i]); +#else +#if defined(pdp11) + /* use this if your "long" int indexing is slow */ +#define DOXOR(x,y,i) j=B.b[i]; x^=SPTAB(SPE[0][i],j); y^=SPTAB(SPE[1][i],j); +#else + /* use this if "k" is allocated to a register ... */ +#define DOXOR(x,y,i) k=B.b[i]; x^=SPTAB(SPE[0][i],k); y^=SPTAB(SPE[1][i],k); +#endif +#endif + +#define CRUNCH(p0, p1, q0, q1) \ + k = ((q0) ^ (q1)) & SALT; \ + B.b32.i0 = k ^ (q0) ^ kp->b32.i0; \ + B.b32.i1 = k ^ (q1) ^ kp->b32.i1; \ + kp = (C_block *)((char *)kp+ks_inc); \ + \ + DOXOR(p0, p1, 0); \ + DOXOR(p0, p1, 1); \ + DOXOR(p0, p1, 2); \ + DOXOR(p0, p1, 3); \ + DOXOR(p0, p1, 4); \ + DOXOR(p0, p1, 5); \ + DOXOR(p0, p1, 6); \ + DOXOR(p0, p1, 7); + + CRUNCH(L0, L1, R0, R1); + CRUNCH(R0, R1, L0, L1); + } while (--loop_count != 0); + kp = (C_block *) ((char *) kp - (ks_inc * KS_SIZE)); + + + /* swap L and R */ + L0 ^= R0; + L1 ^= R1; + R0 ^= L0; + R1 ^= L1; + L0 ^= R0; + L1 ^= R1; + } + + /* store the encrypted (or decrypted) result */ + L0 = ((L0 >> 3) & 0x0f0f0f0fL) | ((L1 << 1) & 0xf0f0f0f0L); + L1 = ((R0 >> 3) & 0x0f0f0f0fL) | ((R1 << 1) & 0xf0f0f0f0L); + STORE(L, L0, L1, B); + PERM6464(L, L0, L1, B.b, (C_block *) CF6464); +#if defined(MUST_ALIGN) + STORE(L, L0, L1, B); + out[0] = B.b[0]; + out[1] = B.b[1]; + out[2] = B.b[2]; + out[3] = B.b[3]; + out[4] = B.b[4]; + out[5] = B.b[5]; + out[6] = B.b[6]; + out[7] = B.b[7]; +#else + STORE(L, L0, L1, *(C_block *) out); +#endif + return (0); +} + + +/* + * Initialize various tables. This need only be done once. It could even be + * done at compile time, if the compiler were capable of that sort of thing. + */ +STATIC +init_des() +{ + int i, + j; + int32_t k; + int tableno; + static unsigned char perm[64], + tmp32[32]; /* "static" for speed */ + +/* static volatile long init_start = 0; not used */ + + /* + * table that converts chars "./0-9A-Za-z"to integers 0-63. + */ + for (i = 0; i < 64; i++) + a64toi[itoa64[i]] = i; + + /* + * PC1ROT - bit reverse, then PC1, then Rotate, then PC2. + */ + for (i = 0; i < 64; i++) + perm[i] = 0; + for (i = 0; i < 64; i++) + { + if ((k = PC2[i]) == 0) + continue; + k += Rotates[0] - 1; + if ((k % 28) < Rotates[0]) + k -= 28; + k = PC1[k]; + if (k > 0) + { + k--; + k = (k | 07) - (k & 07); + k++; + } + perm[i] = k; + } +#ifdef DEBUG + prtab("pc1tab", perm, 8); +#endif + init_perm(PC1ROT, perm, 8, 8); + + /* + * PC2ROT - PC2 inverse, then Rotate (once or twice), then PC2. + */ + for (j = 0; j < 2; j++) + { + unsigned char pc2inv[64]; + + for (i = 0; i < 64; i++) + perm[i] = pc2inv[i] = 0; + for (i = 0; i < 64; i++) + { + if ((k = PC2[i]) == 0) + continue; + pc2inv[k - 1] = i + 1; + } + for (i = 0; i < 64; i++) + { + if ((k = PC2[i]) == 0) + continue; + k += j; + if ((k % 28) <= j) + k -= 28; + perm[i] = pc2inv[k]; + } +#ifdef DEBUG + prtab("pc2tab", perm, 8); +#endif + init_perm(PC2ROT[j], perm, 8, 8); + } + + /* + * Bit reverse, then initial permutation, then expansion. + */ + for (i = 0; i < 8; i++) + { + for (j = 0; j < 8; j++) + { + k = (j < 2) ? 0 : IP[ExpandTr[i * 6 + j - 2] - 1]; + if (k > 32) + k -= 32; + else if (k > 0) + k--; + if (k > 0) + { + k--; + k = (k | 07) - (k & 07); + k++; + } + perm[i * 8 + j] = k; + } + } +#ifdef DEBUG + prtab("ietab", perm, 8); +#endif + init_perm(IE3264, perm, 4, 8); + + /* + * Compression, then final permutation, then bit reverse. + */ + for (i = 0; i < 64; i++) + { + k = IP[CIFP[i] - 1]; + if (k > 0) + { + k--; + k = (k | 07) - (k & 07); + k++; + } + perm[k - 1] = i + 1; + } +#ifdef DEBUG + prtab("cftab", perm, 8); +#endif + init_perm(CF6464, perm, 8, 8); + + /* + * SPE table + */ + for (i = 0; i < 48; i++) + perm[i] = P32Tr[ExpandTr[i] - 1]; + for (tableno = 0; tableno < 8; tableno++) + { + for (j = 0; j < 64; j++) + { + k = (((j >> 0) & 01) << 5) | + (((j >> 1) & 01) << 3) | + (((j >> 2) & 01) << 2) | + (((j >> 3) & 01) << 1) | + (((j >> 4) & 01) << 0) | + (((j >> 5) & 01) << 4); + k = S[tableno][k]; + k = (((k >> 3) & 01) << 0) | + (((k >> 2) & 01) << 1) | + (((k >> 1) & 01) << 2) | + (((k >> 0) & 01) << 3); + for (i = 0; i < 32; i++) + tmp32[i] = 0; + for (i = 0; i < 4; i++) + tmp32[4 * tableno + i] = (k >> i) & 01; + k = 0; + for (i = 24; --i >= 0;) + k = (k << 1) | tmp32[perm[i] - 1]; + TO_SIX_BIT(SPE[0][tableno][j], k); + k = 0; + for (i = 24; --i >= 0;) + k = (k << 1) | tmp32[perm[i + 24] - 1]; + TO_SIX_BIT(SPE[1][tableno][j], k); + } + } + + des_ready = 1; +} + +/* + * Initialize "perm" to represent transformation "p", which rearranges + * (perhaps with expansion and/or contraction) one packed array of bits + * (of size "chars_in" characters) into another array (of size "chars_out" + * characters). + * + * "perm" must be all-zeroes on entry to this routine. + */ +STATIC +init_perm(perm, p, chars_in, chars_out) +C_block perm[64 / CHUNKBITS][1 << CHUNKBITS]; +unsigned char p[64]; +int chars_in, + chars_out; +{ + int i, + j, + k, + l; + + for (k = 0; k < chars_out * 8; k++) + { /* each output bit position */ + l = p[k] - 1; /* where this bit comes from */ + if (l < 0) + continue; /* output bit is always 0 */ + i = l >> LGCHUNKBITS; /* which chunk this bit comes from */ + l = 1 << (l & (CHUNKBITS - 1)); /* mask for this bit */ + for (j = 0; j < (1 << CHUNKBITS); j++) + { /* each chunk value */ + if ((j & l) != 0) + perm[i][j].b[k >> 3] |= 1 << (k & 07); + } + } +} + +/* + * "setkey" routine (for backwards compatibility) + */ +#ifdef NOT_USED +int +setkey(key) +const char *key; +{ + int i, + j, + k; + C_block keyblock; + + for (i = 0; i < 8; i++) + { + k = 0; + for (j = 0; j < 8; j++) + { + k <<= 1; + k |= (unsigned char) *key++; + } + keyblock.b[i] = k; + } + return (des_setkey((char *) keyblock.b)); +} + +/* + * "encrypt" routine (for backwards compatibility) + */ +static int +encrypt(block, flag) +char *block; +int flag; +{ + int i, + j, + k; + C_block cblock; + + for (i = 0; i < 8; i++) + { + k = 0; + for (j = 0; j < 8; j++) + { + k <<= 1; + k |= (unsigned char) *block++; + } + cblock.b[i] = k; + } + if (des_cipher((char *) &cblock, (char *) &cblock, 0L, (flag ? -1 : 1))) + return (1); + for (i = 7; i >= 0; i--) + { + k = cblock.b[i]; + for (j = 7; j >= 0; j--) + { + *--block = k & 01; + k >>= 1; + } + } + return (0); +} +#endif + +#ifdef DEBUG +STATIC +prtab(s, t, num_rows) +char *s; +unsigned char *t; +int num_rows; +{ + int i, + j; + + (void) printf("%s:\n", s); + for (i = 0; i < num_rows; i++) + { + for (j = 0; j < 8; j++) + (void) printf("%3d", t[i * 8 + j]); + (void) printf("\n"); + } + (void) printf("\n"); +} + +#endif -- cgit v1.1