summaryrefslogtreecommitdiff
path: root/mysql/strings/decimal.c
diff options
context:
space:
mode:
Diffstat (limited to 'mysql/strings/decimal.c')
-rw-r--r--mysql/strings/decimal.c2640
1 files changed, 0 insertions, 2640 deletions
diff --git a/mysql/strings/decimal.c b/mysql/strings/decimal.c
deleted file mode 100644
index fc4e397..0000000
--- a/mysql/strings/decimal.c
+++ /dev/null
@@ -1,2640 +0,0 @@
-/* Copyright (c) 2004, 2016, Oracle and/or its affiliates. All rights reserved.
-
- This program is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; version 2 of the License.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program; if not, write to the Free Software
- Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */
-
-/*
-=======================================================================
- NOTE: this library implements SQL standard "exact numeric" type
- and is not at all generic, but rather intentinally crippled to
- follow the standard :)
-=======================================================================
- Quoting the standard
- (SQL:2003, Part 2 Foundations, aka ISO/IEC 9075-2:2003)
-
-4.4.2 Characteristics of numbers, page 27:
-
- An exact numeric type has a precision P and a scale S. P is a positive
- integer that determines the number of significant digits in a
- particular radix R, where R is either 2 or 10. S is a non-negative
- integer. Every value of an exact numeric type of scale S is of the
- form n*10^{-S}, where n is an integer such that ­-R^P <= n <= R^P.
-
- [...]
-
- If an assignment of some number would result in a loss of its most
- significant digit, an exception condition is raised. If least
- significant digits are lost, implementation-defined rounding or
- truncating occurs, with no exception condition being raised.
-
- [...]
-
- Whenever an exact or approximate numeric value is assigned to an exact
- numeric value site, an approximation of its value that preserves
- leading significant digits after rounding or truncating is represented
- in the declared type of the target. The value is converted to have the
- precision and scale of the target. The choice of whether to truncate
- or round is implementation-defined.
-
- [...]
-
- All numeric values between the smallest and the largest value,
- inclusive, in a given exact numeric type have an approximation
- obtained by rounding or truncation for that type; it is
- implementation-defined which other numeric values have such
- approximations.
-
-5.3 <literal>, page 143
-
- <exact numeric literal> ::=
- <unsigned integer> [ <period> [ <unsigned integer> ] ]
- | <period> <unsigned integer>
-
-6.1 <data type>, page 165:
-
- 19) The <scale> of an <exact numeric type> shall not be greater than
- the <precision> of the <exact numeric type>.
-
- 20) For the <exact numeric type>s DECIMAL and NUMERIC:
-
- a) The maximum value of <precision> is implementation-defined.
- <precision> shall not be greater than this value.
- b) The maximum value of <scale> is implementation-defined. <scale>
- shall not be greater than this maximum value.
-
- 21) NUMERIC specifies the data type exact numeric, with the decimal
- precision and scale specified by the <precision> and <scale>.
-
- 22) DECIMAL specifies the data type exact numeric, with the decimal
- scale specified by the <scale> and the implementation-defined
- decimal precision equal to or greater than the value of the
- specified <precision>.
-
-6.26 <numeric value expression>, page 241:
-
- 1) If the declared type of both operands of a dyadic arithmetic
- operator is exact numeric, then the declared type of the result is
- an implementation-defined exact numeric type, with precision and
- scale determined as follows:
-
- a) Let S1 and S2 be the scale of the first and second operands
- respectively.
- b) The precision of the result of addition and subtraction is
- implementation-defined, and the scale is the maximum of S1 and S2.
- c) The precision of the result of multiplication is
- implementation-defined, and the scale is S1 + S2.
- d) The precision and scale of the result of division are
- implementation-defined.
-*/
-
-#include <my_global.h>
-#include <m_ctype.h>
-#include <myisampack.h>
-#include <my_sys.h> /* for my_alloca */
-#include <m_string.h>
-#include <decimal.h>
-
-/*
- Internally decimal numbers are stored base 10^9 (see DIG_BASE below)
- So one variable of type decimal_digit_t is limited:
-
- 0 < decimal_digit <= DIG_MAX < DIG_BASE
-
- in the struct st_decimal_t:
-
- intg is the number of *decimal* digits (NOT number of decimal_digit_t's !)
- before the point
- frac - number of decimal digits after the point
- buf is an array of decimal_digit_t's
- len is the length of buf (length of allocated space) in decimal_digit_t's,
- not in bytes
-*/
-typedef decimal_digit_t dec1;
-typedef longlong dec2;
-
-#define DIG_PER_DEC1 9
-#define DIG_MASK 100000000
-#define DIG_BASE 1000000000
-#define DIG_MAX (DIG_BASE-1)
-#define DIG_BASE2 ((dec2)DIG_BASE * (dec2)DIG_BASE)
-#define ROUND_UP(X) (((X)+DIG_PER_DEC1-1)/DIG_PER_DEC1)
-static const dec1 powers10[DIG_PER_DEC1+1]={
- 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000};
-static const int dig2bytes[DIG_PER_DEC1+1]={0, 1, 1, 2, 2, 3, 3, 4, 4, 4};
-static const dec1 frac_max[DIG_PER_DEC1-1]={
- 900000000, 990000000, 999000000,
- 999900000, 999990000, 999999000,
- 999999900, 999999990 };
-
-#define sanity(d) DBUG_ASSERT((d)->len >0)
-
-#define FIX_INTG_FRAC_ERROR(len, intg1, frac1, error) \
- do \
- { \
- if (unlikely(intg1+frac1 > (len))) \
- { \
- if (unlikely(intg1 > (len))) \
- { \
- intg1=(len); \
- frac1=0; \
- error=E_DEC_OVERFLOW; \
- } \
- else \
- { \
- frac1=(len)-intg1; \
- error=E_DEC_TRUNCATED; \
- } \
- } \
- else \
- error=E_DEC_OK; \
- } while(0)
-
-#define ADD(to, from1, from2, carry) /* assume carry <= 1 */ \
- do \
- { \
- dec1 a=(from1)+(from2)+(carry); \
- DBUG_ASSERT((carry) <= 1); \
- if (((carry)= a >= DIG_BASE)) /* no division here! */ \
- a-=DIG_BASE; \
- (to)=a; \
- } while(0)
-
-#define ADD2(to, from1, from2, carry) \
- do \
- { \
- dec2 a=((dec2)(from1))+(from2)+(carry); \
- if (((carry)= a >= DIG_BASE)) \
- a-=DIG_BASE; \
- if (unlikely(a >= DIG_BASE)) \
- { \
- a-=DIG_BASE; \
- carry++; \
- } \
- (to)=(dec1) a; \
- } while(0)
-
-#define SUB(to, from1, from2, carry) /* to=from1-from2 */ \
- do \
- { \
- dec1 a=(from1)-(from2)-(carry); \
- if (((carry)= a < 0)) \
- a+=DIG_BASE; \
- (to)=a; \
- } while(0)
-
-#define SUB2(to, from1, from2, carry) /* to=from1-from2 */ \
- do \
- { \
- dec1 a=(from1)-(from2)-(carry); \
- if (((carry)= a < 0)) \
- a+=DIG_BASE; \
- if (unlikely(a < 0)) \
- { \
- a+=DIG_BASE; \
- carry++; \
- } \
- (to)=a; \
- } while(0)
-
-
-/*
- This is a direct loop unrolling of code that used to look like this:
- for (; *buf_beg < powers10[i--]; start++) ;
-
- @param i start index
- @param val value to compare against list of powers of 10
-
- @retval Number of leading zeroes that can be removed from fraction.
-
- @note Why unroll? To get rid of lots of compiler warnings [-Warray-bounds]
- Nice bonus: unrolled code is significantly faster.
- */
-static inline int count_leading_zeroes(int i, dec1 val)
-{
- int ret= 0;
- switch (i)
- {
- /* @note Intentional fallthrough in all case labels */
- case 9: if (val >= 1000000000) break; ++ret;
- case 8: if (val >= 100000000) break; ++ret;
- case 7: if (val >= 10000000) break; ++ret;
- case 6: if (val >= 1000000) break; ++ret;
- case 5: if (val >= 100000) break; ++ret;
- case 4: if (val >= 10000) break; ++ret;
- case 3: if (val >= 1000) break; ++ret;
- case 2: if (val >= 100) break; ++ret;
- case 1: if (val >= 10) break; ++ret;
- case 0: if (val >= 1) break; ++ret;
- default: { DBUG_ASSERT(FALSE); }
- }
- return ret;
-}
-
-/*
- This is a direct loop unrolling of code that used to look like this:
- for (; *buf_end % powers10[i++] == 0; stop--) ;
-
- @param i start index
- @param val value to compare against list of powers of 10
-
- @retval Number of trailing zeroes that can be removed from fraction.
-
- @note Why unroll? To get rid of lots of compiler warnings [-Warray-bounds]
- Nice bonus: unrolled code is significantly faster.
- */
-static inline int count_trailing_zeroes(int i, dec1 val)
-{
- int ret= 0;
- switch(i)
- {
- /* @note Intentional fallthrough in all case labels */
- case 0: if ((val % 1) != 0) break; ++ret;
- case 1: if ((val % 10) != 0) break; ++ret;
- case 2: if ((val % 100) != 0) break; ++ret;
- case 3: if ((val % 1000) != 0) break; ++ret;
- case 4: if ((val % 10000) != 0) break; ++ret;
- case 5: if ((val % 100000) != 0) break; ++ret;
- case 6: if ((val % 1000000) != 0) break; ++ret;
- case 7: if ((val % 10000000) != 0) break; ++ret;
- case 8: if ((val % 100000000) != 0) break; ++ret;
- case 9: if ((val % 1000000000) != 0) break; ++ret;
- default: { DBUG_ASSERT(FALSE); }
- }
- return ret;
-}
-
-
-/*
- Get maximum value for given precision and scale
-
- SYNOPSIS
- max_decimal()
- precision/scale - see decimal_bin_size() below
- to - decimal where where the result will be stored
- to->buf and to->len must be set.
-*/
-
-void max_decimal(int precision, int frac, decimal_t *to)
-{
- int intpart;
- dec1 *buf= to->buf;
- DBUG_ASSERT(precision && precision >= frac);
-
- to->sign= 0;
- if ((intpart= to->intg= (precision - frac)))
- {
- int firstdigits= intpart % DIG_PER_DEC1;
- if (firstdigits)
- *buf++= powers10[firstdigits] - 1; /* get 9 99 999 ... */
- for(intpart/= DIG_PER_DEC1; intpart; intpart--)
- *buf++= DIG_MAX;
- }
-
- if ((to->frac= frac))
- {
- int lastdigits= frac % DIG_PER_DEC1;
- for(frac/= DIG_PER_DEC1; frac; frac--)
- *buf++= DIG_MAX;
- if (lastdigits)
- *buf= frac_max[lastdigits - 1];
- }
-}
-
-
-static dec1 *remove_leading_zeroes(const decimal_t *from, int *intg_result)
-{
- int intg= from->intg, i;
- dec1 *buf0= from->buf;
- i= ((intg - 1) % DIG_PER_DEC1) + 1;
- while (intg > 0 && *buf0 == 0)
- {
- intg-= i;
- i= DIG_PER_DEC1;
- buf0++;
- }
- if (intg > 0)
- {
- intg-= count_leading_zeroes((intg - 1) % DIG_PER_DEC1, *buf0);
- DBUG_ASSERT(intg > 0);
- }
- else
- intg=0;
- *intg_result= intg;
- return buf0;
-}
-
-
-/*
- Count actual length of fraction part (without ending zeroes)
-
- SYNOPSIS
- decimal_actual_fraction()
- from number for processing
-*/
-
-int decimal_actual_fraction(decimal_t *from)
-{
- int frac= from->frac, i;
- dec1 *buf0= from->buf + ROUND_UP(from->intg) + ROUND_UP(frac) - 1;
-
- if (frac == 0)
- return 0;
-
- i= ((frac - 1) % DIG_PER_DEC1 + 1);
- while (frac > 0 && *buf0 == 0)
- {
- frac-= i;
- i= DIG_PER_DEC1;
- buf0--;
- }
- if (frac > 0)
- {
- frac-=
- count_trailing_zeroes(DIG_PER_DEC1 - ((frac - 1) % DIG_PER_DEC1), *buf0);
- }
- return frac;
-}
-
-
-/*
- Convert decimal to its printable string representation
-
- SYNOPSIS
- decimal2string()
- from - value to convert
- to - points to buffer where string representation
- should be stored
- *to_len - in: size of to buffer (incl. terminating '\0')
- out: length of the actually written string (excl. '\0')
- fixed_precision - 0 if representation can be variable length and
- fixed_decimals will not be checked in this case.
- Put number as with fixed point position with this
- number of digits (sign counted and decimal point is
- counted)
- fixed_decimals - number digits after point.
- filler - character to fill gaps in case of fixed_precision > 0
-
- RETURN VALUE
- E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW
-*/
-
-int decimal2string(const decimal_t *from, char *to, int *to_len,
- int fixed_precision, int fixed_decimals,
- char filler)
-{
- /* {intg_len, frac_len} output widths; {intg, frac} places in input */
- int len, intg, frac= from->frac, i, intg_len, frac_len, fill;
- /* number digits before decimal point */
- int fixed_intg= (fixed_precision ?
- (fixed_precision - fixed_decimals) : 0);
- int error=E_DEC_OK;
- char *s=to;
- dec1 *buf, *buf0=from->buf, tmp;
-
- DBUG_ASSERT(*to_len >= 2+from->sign);
-
- /* removing leading zeroes */
- buf0= remove_leading_zeroes(from, &intg);
- if (unlikely(intg+frac==0))
- {
- intg=1;
- tmp=0;
- buf0=&tmp;
- }
-
- if (!(intg_len= fixed_precision ? fixed_intg : intg))
- intg_len= 1;
- frac_len= fixed_precision ? fixed_decimals : frac;
- len= from->sign + intg_len + MY_TEST(frac) + frac_len;
- if (fixed_precision)
- {
- if (frac > fixed_decimals)
- {
- error= E_DEC_TRUNCATED;
- frac= fixed_decimals;
- }
- if (intg > fixed_intg)
- {
- error= E_DEC_OVERFLOW;
- intg= fixed_intg;
- }
- }
- else if (unlikely(len > --*to_len)) /* reserve one byte for \0 */
- {
- int j= len - *to_len; /* excess printable chars */
- error= (frac && j <= frac + 1) ? E_DEC_TRUNCATED : E_DEC_OVERFLOW;
-
- /*
- If we need to cut more places than frac is wide, we'll end up
- dropping the decimal point as well. Account for this.
- */
- if (frac && j >= frac + 1)
- j--;
-
- if (j > frac)
- {
- intg_len= intg-= j-frac;
- frac= 0;
- }
- else
- frac-=j;
- frac_len= frac;
- len= from->sign + intg_len + MY_TEST(frac) + frac_len;
- }
- *to_len= len;
- s[len]= 0;
-
- if (from->sign)
- *s++='-';
-
- if (frac)
- {
- char *s1= s + intg_len;
- fill= frac_len - frac;
- buf=buf0+ROUND_UP(intg);
- *s1++='.';
- for (; frac>0; frac-=DIG_PER_DEC1)
- {
- dec1 x=*buf++;
- for (i= MY_MIN(frac, DIG_PER_DEC1); i; i--)
- {
- dec1 y=x/DIG_MASK;
- *s1++='0'+(uchar)y;
- x-=y*DIG_MASK;
- x*=10;
- }
- }
- for(; fill > 0; fill--)
- *s1++=filler;
- }
-
- fill= intg_len - intg;
- if (intg == 0)
- fill--; /* symbol 0 before digital point */
- for(; fill > 0; fill--)
- *s++=filler;
- if (intg)
- {
- s+=intg;
- for (buf=buf0+ROUND_UP(intg); intg>0; intg-=DIG_PER_DEC1)
- {
- dec1 x=*--buf;
- for (i= MY_MIN(intg, DIG_PER_DEC1); i; i--)
- {
- dec1 y=x/10;
- *--s='0'+(uchar)(x-y*10);
- x=y;
- }
- }
- }
- else
- *s= '0';
-
- return error;
-}
-
-
-/*
- Return bounds of decimal digits in the number
-
- SYNOPSIS
- digits_bounds()
- from - decimal number for processing
- start_result - index (from 0 ) of first decimal digits will
- be written by this address
- end_result - index of position just after last decimal digit
- be written by this address
-*/
-
-static void digits_bounds(decimal_t *from, int *start_result, int *end_result)
-{
- int start, stop, i;
- dec1 *buf_beg= from->buf;
- dec1 *end= from->buf + ROUND_UP(from->intg) + ROUND_UP(from->frac);
- dec1 *buf_end= end - 1;
-
- /* find non-zero digit from number begining */
- while (buf_beg < end && *buf_beg == 0)
- buf_beg++;
-
- if (buf_beg >= end)
- {
- /* it is zero */
- *start_result= *end_result= 0;
- return;
- }
-
- /* find non-zero decimal digit from number begining */
- if (buf_beg == from->buf && from->intg)
- {
- start= DIG_PER_DEC1 - (i= ((from->intg-1) % DIG_PER_DEC1 + 1));
- i--;
- }
- else
- {
- i= DIG_PER_DEC1 - 1;
- start= (int) ((buf_beg - from->buf) * DIG_PER_DEC1);
- }
- if (buf_beg < end)
- start+= count_leading_zeroes(i, *buf_beg);
-
- *start_result= start; /* index of first decimal digit (from 0) */
-
- /* find non-zero digit at the end */
- while (buf_end > buf_beg && *buf_end == 0)
- buf_end--;
- /* find non-zero decimal digit from the end */
- if (buf_end == end - 1 && from->frac)
- {
- stop= (int) (((buf_end - from->buf) * DIG_PER_DEC1 +
- (i= ((from->frac - 1) % DIG_PER_DEC1 + 1))));
- i= DIG_PER_DEC1 - i + 1;
- }
- else
- {
- stop= (int) ((buf_end - from->buf + 1) * DIG_PER_DEC1);
- i= 1;
- }
- stop-= count_trailing_zeroes(i, *buf_end);
- *end_result= stop; /* index of position after last decimal digit (from 0) */
-}
-
-
-/*
- Left shift for alignment of data in buffer
-
- SYNOPSIS
- do_mini_left_shift()
- dec pointer to decimal number which have to be shifted
- shift number of decimal digits on which it should be shifted
- beg/end bounds of decimal digits (see digits_bounds())
-
- NOTE
- Result fitting in the buffer should be garanted.
- 'shift' have to be from 1 to DIG_PER_DEC1-1 (inclusive)
-*/
-
-void do_mini_left_shift(decimal_t *dec, int shift, int beg, int last)
-{
- dec1 *from= dec->buf + ROUND_UP(beg + 1) - 1;
- dec1 *end= dec->buf + ROUND_UP(last) - 1;
- int c_shift= DIG_PER_DEC1 - shift;
- DBUG_ASSERT(from >= dec->buf);
- DBUG_ASSERT(end < dec->buf + dec->len);
- if (beg % DIG_PER_DEC1 < shift)
- *(from - 1)= (*from) / powers10[c_shift];
- for(; from < end; from++)
- *from= ((*from % powers10[c_shift]) * powers10[shift] +
- (*(from + 1)) / powers10[c_shift]);
- *from= (*from % powers10[c_shift]) * powers10[shift];
-}
-
-
-/*
- Right shift for alignment of data in buffer
-
- SYNOPSIS
- do_mini_left_shift()
- dec pointer to decimal number which have to be shifted
- shift number of decimal digits on which it should be shifted
- beg/end bounds of decimal digits (see digits_bounds())
-
- NOTE
- Result fitting in the buffer should be garanted.
- 'shift' have to be from 1 to DIG_PER_DEC1-1 (inclusive)
-*/
-
-void do_mini_right_shift(decimal_t *dec, int shift, int beg, int last)
-{
- dec1 *from= dec->buf + ROUND_UP(last) - 1;
- dec1 *end= dec->buf + ROUND_UP(beg + 1) - 1;
- int c_shift= DIG_PER_DEC1 - shift;
- DBUG_ASSERT(from < dec->buf + dec->len);
- DBUG_ASSERT(end >= dec->buf);
- if (DIG_PER_DEC1 - ((last - 1) % DIG_PER_DEC1 + 1) < shift)
- *(from + 1)= (*from % powers10[shift]) * powers10[c_shift];
- for(; from > end; from--)
- *from= (*from / powers10[shift] +
- (*(from - 1) % powers10[shift]) * powers10[c_shift]);
- *from= *from / powers10[shift];
-}
-
-
-/*
- Shift of decimal digits in given number (with rounding if it need)
-
- SYNOPSIS
- decimal_shift()
- dec number to be shifted
- shift number of decimal positions
- shift > 0 means shift to left shift
- shift < 0 meand right shift
- NOTE
- In fact it is multipling on 10^shift.
- RETURN
- E_DEC_OK OK
- E_DEC_OVERFLOW operation lead to overflow, number is untoched
- E_DEC_TRUNCATED number was rounded to fit into buffer
-*/
-
-int decimal_shift(decimal_t *dec, int shift)
-{
- /* index of first non zero digit (all indexes from 0) */
- int beg;
- /* index of position after last decimal digit */
- int end;
- /* index of digit position just after point */
- int point= ROUND_UP(dec->intg) * DIG_PER_DEC1;
- /* new point position */
- int new_point= point + shift;
- /* number of digits in result */
- int digits_int, digits_frac;
- /* length of result and new fraction in big digits*/
- int new_len, new_frac_len;
- /* return code */
- int err= E_DEC_OK;
- int new_front;
-
- if (shift == 0)
- return E_DEC_OK;
-
- digits_bounds(dec, &beg, &end);
-
- if (beg == end)
- {
- decimal_make_zero(dec);
- return E_DEC_OK;
- }
-
- digits_int= new_point - beg;
- set_if_bigger(digits_int, 0);
- digits_frac= end - new_point;
- set_if_bigger(digits_frac, 0);
-
- if ((new_len= ROUND_UP(digits_int) + (new_frac_len= ROUND_UP(digits_frac))) >
- dec->len)
- {
- int lack= new_len - dec->len;
- int diff;
-
- if (new_frac_len < lack)
- return E_DEC_OVERFLOW; /* lack more then we have in fraction */
-
- /* cat off fraction part to allow new number to fit in our buffer */
- err= E_DEC_TRUNCATED;
- new_frac_len-= lack;
- diff= digits_frac - (new_frac_len * DIG_PER_DEC1);
- /* Make rounding method as parameter? */
- decimal_round(dec, dec, end - point - diff, HALF_UP);
- end-= diff;
- digits_frac= new_frac_len * DIG_PER_DEC1;
-
- if (end <= beg)
- {
- /*
- we lost all digits (they will be shifted out of buffer), so we can
- just return 0
- */
- decimal_make_zero(dec);
- return E_DEC_TRUNCATED;
- }
- }
-
- if (shift % DIG_PER_DEC1)
- {
- int l_mini_shift, r_mini_shift, mini_shift;
- int do_left;
- /*
- Calculate left/right shift to align decimal digits inside our bug
- digits correctly
- */
- if (shift > 0)
- {
- l_mini_shift= shift % DIG_PER_DEC1;
- r_mini_shift= DIG_PER_DEC1 - l_mini_shift;
- /*
- It is left shift so prefer left shift, but if we have not place from
- left, we have to have it from right, because we checked length of
- result
- */
- do_left= l_mini_shift <= beg;
- DBUG_ASSERT(do_left || (dec->len * DIG_PER_DEC1 - end) >= r_mini_shift);
- }
- else
- {
- r_mini_shift= (-shift) % DIG_PER_DEC1;
- l_mini_shift= DIG_PER_DEC1 - r_mini_shift;
- /* see comment above */
- do_left= !((dec->len * DIG_PER_DEC1 - end) >= r_mini_shift);
- DBUG_ASSERT(!do_left || l_mini_shift <= beg);
- }
- if (do_left)
- {
- do_mini_left_shift(dec, l_mini_shift, beg, end);
- mini_shift= -l_mini_shift;
- }
- else
- {
- do_mini_right_shift(dec, r_mini_shift, beg, end);
- mini_shift= r_mini_shift;
- }
- new_point+= mini_shift;
- /*
- If number is shifted and correctly aligned in buffer we can
- finish
- */
- if (!(shift+= mini_shift) && (new_point - digits_int) < DIG_PER_DEC1)
- {
- dec->intg= digits_int;
- dec->frac= digits_frac;
- return err; /* already shifted as it should be */
- }
- beg+= mini_shift;
- end+= mini_shift;
- }
-
- /* if new 'decimal front' is in first digit, we do not need move digits */
- if ((new_front= (new_point - digits_int)) >= DIG_PER_DEC1 ||
- new_front < 0)
- {
- /* need to move digits */
- int d_shift;
- dec1 *to, *barier;
- if (new_front > 0)
- {
- /* move left */
- d_shift= new_front / DIG_PER_DEC1;
- to= dec->buf + (ROUND_UP(beg + 1) - 1 - d_shift);
- barier= dec->buf + (ROUND_UP(end) - 1 - d_shift);
- DBUG_ASSERT(to >= dec->buf);
- DBUG_ASSERT(barier + d_shift < dec->buf + dec->len);
- for(; to <= barier; to++)
- *to= *(to + d_shift);
- for(barier+= d_shift; to <= barier; to++)
- *to= 0;
- d_shift= -d_shift;
- }
- else
- {
- /* move right */
- d_shift= (1 - new_front) / DIG_PER_DEC1;
- to= dec->buf + ROUND_UP(end) - 1 + d_shift;
- barier= dec->buf + ROUND_UP(beg + 1) - 1 + d_shift;
- DBUG_ASSERT(to < dec->buf + dec->len);
- DBUG_ASSERT(barier - d_shift >= dec->buf);
- for(; to >= barier; to--)
- *to= *(to - d_shift);
- for(barier-= d_shift; to >= barier; to--)
- *to= 0;
- }
- d_shift*= DIG_PER_DEC1;
- beg+= d_shift;
- end+= d_shift;
- new_point+= d_shift;
- }
-
- /*
- If there are gaps then fill ren with 0.
-
- Only one of following 'for' loops will work becouse beg <= end
- */
- beg= ROUND_UP(beg + 1) - 1;
- end= ROUND_UP(end) - 1;
- DBUG_ASSERT(new_point >= 0);
-
- /* We don't want negative new_point below */
- if (new_point != 0)
- new_point= ROUND_UP(new_point) - 1;
-
- if (new_point > end)
- {
- do
- {
- dec->buf[new_point]=0;
- } while (--new_point > end);
- }
- else
- {
- for (; new_point < beg; new_point++)
- dec->buf[new_point]= 0;
- }
- dec->intg= digits_int;
- dec->frac= digits_frac;
- return err;
-}
-
-
-/*
- Convert string to decimal
-
- SYNOPSIS
- internal_str2decl()
- from - value to convert. Doesn't have to be \0 terminated!
- to - decimal where where the result will be stored
- to->buf and to->len must be set.
- end - Pointer to pointer to end of string. Will on return be
- set to the char after the last used character
- fixed - use to->intg, to->frac as limits for input number
-
- NOTE
- to->intg and to->frac can be modified even when fixed=1
- (but only decreased, in this case)
-
- RETURN VALUE
- E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW/E_DEC_BAD_NUM/E_DEC_OOM
- In case of E_DEC_FATAL_ERROR *to is set to decimal zero
- (to make error handling easier)
-*/
-
-int
-internal_str2dec(const char *from, decimal_t *to, char **end, my_bool fixed)
-{
- const char *s= from, *s1, *endp, *end_of_string= *end;
- int i, intg, frac, error, intg1, frac1;
- dec1 x,*buf;
- sanity(to);
-
- error= E_DEC_BAD_NUM; /* In case of bad number */
- while (s < end_of_string && my_isspace(&my_charset_latin1, *s))
- s++;
- if (s == end_of_string)
- goto fatal_error;
-
- if ((to->sign= (*s == '-')))
- s++;
- else if (*s == '+')
- s++;
-
- s1=s;
- while (s < end_of_string && my_isdigit(&my_charset_latin1, *s))
- s++;
- intg= (int) (s-s1);
- if (s < end_of_string && *s=='.')
- {
- endp= s+1;
- while (endp < end_of_string && my_isdigit(&my_charset_latin1, *endp))
- endp++;
- frac= (int) (endp - s - 1);
- }
- else
- {
- frac= 0;
- endp= s;
- }
-
- *end= (char*) endp;
-
- if (frac+intg == 0)
- goto fatal_error;
-
- error= 0;
- if (fixed)
- {
- if (frac > to->frac)
- {
- error=E_DEC_TRUNCATED;
- frac=to->frac;
- }
- if (intg > to->intg)
- {
- error=E_DEC_OVERFLOW;
- intg=to->intg;
- }
- intg1=ROUND_UP(intg);
- frac1=ROUND_UP(frac);
- if (intg1+frac1 > to->len)
- {
- error= E_DEC_OOM;
- goto fatal_error;
- }
- }
- else
- {
- intg1=ROUND_UP(intg);
- frac1=ROUND_UP(frac);
- FIX_INTG_FRAC_ERROR(to->len, intg1, frac1, error);
- if (unlikely(error))
- {
- frac=frac1*DIG_PER_DEC1;
- if (error == E_DEC_OVERFLOW)
- intg=intg1*DIG_PER_DEC1;
- }
- }
- /* Error is guranteed to be set here */
- to->intg=intg;
- to->frac=frac;
-
- buf=to->buf+intg1;
- s1=s;
-
- for (x=0, i=0; intg; intg--)
- {
- x+= (*--s - '0')*powers10[i];
-
- if (unlikely(++i == DIG_PER_DEC1))
- {
- *--buf=x;
- x=0;
- i=0;
- }
- }
- if (i)
- *--buf=x;
-
- buf=to->buf+intg1;
- for (x=0, i=0; frac; frac--)
- {
- x= (*++s1 - '0') + x*10;
-
- if (unlikely(++i == DIG_PER_DEC1))
- {
- *buf++=x;
- x=0;
- i=0;
- }
- }
- if (i)
- *buf=x*powers10[DIG_PER_DEC1-i];
-
- /* Handle exponent */
- if (endp+1 < end_of_string && (*endp == 'e' || *endp == 'E'))
- {
- int str_error;
- longlong exponent= my_strtoll10(endp+1, (char**) &end_of_string,
- &str_error);
-
- if (end_of_string != endp +1) /* If at least one digit */
- {
- *end= (char*) end_of_string;
- if (str_error > 0)
- {
- error= E_DEC_BAD_NUM;
- goto fatal_error;
- }
- if (exponent > INT_MAX/2 || (str_error == 0 && exponent < 0))
- {
- error= E_DEC_OVERFLOW;
- goto fatal_error;
- }
- if (exponent < INT_MIN/2 && error != E_DEC_OVERFLOW)
- {
- error= E_DEC_TRUNCATED;
- goto fatal_error;
- }
- if (error != E_DEC_OVERFLOW)
- error= decimal_shift(to, (int) exponent);
- }
- }
- /* Avoid returning negative zero, cfr. decimal_cmp() */
- if (to->sign && decimal_is_zero(to))
- to->sign= FALSE;
- return error;
-
-fatal_error:
- decimal_make_zero(to);
- return error;
-}
-
-
-/*
- Convert decimal to double
-
- SYNOPSIS
- decimal2double()
- from - value to convert
- to - result will be stored there
-
- RETURN VALUE
- E_DEC_OK/E_DEC_OVERFLOW/E_DEC_TRUNCATED
-*/
-
-int decimal2double(const decimal_t *from, double *to)
-{
- char strbuf[FLOATING_POINT_BUFFER], *end;
- int len= sizeof(strbuf);
- int rc, error;
-
- rc = decimal2string(from, strbuf, &len, 0, 0, 0);
- end= strbuf + len;
-
- DBUG_PRINT("info", ("interm.: %s", strbuf));
-
- *to= my_strtod(strbuf, &end, &error);
-
- DBUG_PRINT("info", ("result: %f", *to));
-
- return (rc != E_DEC_OK) ? rc : (error ? E_DEC_OVERFLOW : E_DEC_OK);
-}
-
-/*
- Convert double to decimal
-
- SYNOPSIS
- double2decimal()
- from - value to convert
- to - result will be stored there
-
- RETURN VALUE
- E_DEC_OK/E_DEC_OVERFLOW/E_DEC_TRUNCATED
-*/
-
-int double2decimal(double from, decimal_t *to)
-{
- char buff[FLOATING_POINT_BUFFER], *end;
- int res;
- DBUG_ENTER("double2decimal");
- end= buff + my_gcvt(from, MY_GCVT_ARG_DOUBLE, (int)sizeof(buff) - 1, buff, NULL);
- res= string2decimal(buff, to, &end);
- DBUG_PRINT("exit", ("res: %d", res));
- DBUG_RETURN(res);
-}
-
-
-static int ull2dec(ulonglong from, decimal_t *to)
-{
- int intg1;
- int error= E_DEC_OK;
- ulonglong x= from;
- dec1 *buf;
-
- sanity(to);
-
- if (from == 0)
- intg1= 1;
- else
- {
- /* Count the number of decimal_digit_t's we need. */
- for (intg1= 0; from != 0; intg1++, from/= DIG_BASE)
- ;
- }
- if (unlikely(intg1 > to->len))
- {
- intg1= to->len;
- error= E_DEC_OVERFLOW;
- }
- to->frac= 0;
- to->intg= intg1 * DIG_PER_DEC1;
-
- for (buf= to->buf + intg1; intg1; intg1--)
- {
- ulonglong y= x / DIG_BASE;
- *--buf=(dec1)(x - y * DIG_BASE);
- x= y;
- }
- return error;
-}
-
-int ulonglong2decimal(ulonglong from, decimal_t *to)
-{
- to->sign=0;
- return ull2dec(from, to);
-}
-
-int longlong2decimal(longlong from, decimal_t *to)
-{
- if ((to->sign= from < 0))
- return ull2dec(-from, to);
- return ull2dec(from, to);
-}
-
-int decimal2ulonglong(decimal_t *from, ulonglong *to)
-{
- dec1 *buf=from->buf;
- ulonglong x=0;
- int intg, frac;
-
- if (from->sign)
- {
- *to=0ULL;
- return E_DEC_OVERFLOW;
- }
-
- for (intg=from->intg; intg > 0; intg-=DIG_PER_DEC1)
- {
- ulonglong y=x;
- x=x*DIG_BASE + *buf++;
- if (unlikely(y > ((ulonglong) ULLONG_MAX/DIG_BASE) || x < y))
- {
- *to=ULLONG_MAX;
- return E_DEC_OVERFLOW;
- }
- }
- *to=x;
- for (frac=from->frac; unlikely(frac > 0); frac-=DIG_PER_DEC1)
- if (*buf++)
- return E_DEC_TRUNCATED;
- return E_DEC_OK;
-}
-
-int decimal2longlong(decimal_t *from, longlong *to)
-{
- dec1 *buf=from->buf;
- longlong x=0;
- int intg, frac;
-
- for (intg=from->intg; intg > 0; intg-=DIG_PER_DEC1)
- {
- longlong y=x;
- /*
- Attention: trick!
- we're calculating -|from| instead of |from| here
- because |LLONG_MIN| > LLONG_MAX
- so we can convert -9223372036854775808 correctly
- */
- x=x*DIG_BASE - *buf++;
- if (unlikely(y < (LLONG_MIN/DIG_BASE) || x > y))
- {
- /*
- the decimal is bigger than any possible integer
- return border integer depending on the sign
- */
- *to= from->sign ? LLONG_MIN : LLONG_MAX;
- return E_DEC_OVERFLOW;
- }
- }
- /* boundary case: 9223372036854775808 */
- if (unlikely(from->sign==0 && x == LLONG_MIN))
- {
- *to= LLONG_MAX;
- return E_DEC_OVERFLOW;
- }
-
- *to=from->sign ? x : -x;
- for (frac=from->frac; unlikely(frac > 0); frac-=DIG_PER_DEC1)
- if (*buf++)
- return E_DEC_TRUNCATED;
- return E_DEC_OK;
-}
-
-
-#define LLDIV_MIN -1000000000000000000LL
-#define LLDIV_MAX 1000000000000000000LL
-
-/**
- Convert decimal value to lldiv_t value.
- @param from The decimal value to convert from.
- @param OUT to The lldiv_t variable to convert to.
- @return 0 on success, error code on error.
-*/
-int decimal2lldiv_t(const decimal_t *from, lldiv_t *to)
-{
- int int_part= ROUND_UP(from->intg);
- int frac_part= ROUND_UP(from->frac);
- if (int_part > 2)
- {
- to->rem= 0;
- to->quot= from->sign ? LLDIV_MIN : LLDIV_MAX;
- return E_DEC_OVERFLOW;
- }
- if (int_part == 2)
- to->quot= ((longlong) from->buf[0]) * DIG_BASE + from->buf[1];
- else if (int_part == 1)
- to->quot= from->buf[0];
- else
- to->quot= 0;
- to->rem= frac_part ? from->buf[int_part] : 0;
- if (from->sign)
- {
- to->quot= -to->quot;
- to->rem= -to->rem;
- }
- return 0;
-}
-
-
-/**
- Convert double value to lldiv_t valie.
- @param from The double value to convert from.
- @param OUT to The lldit_t variable to convert to.
- @return 0 on success, error code on error.
-
- Integer part goes into lld.quot.
- Fractional part multiplied to 1000000000 (10^9) goes to lld.rem.
- Typically used in datetime calculations to split seconds
- and nanoseconds.
-*/
-int double2lldiv_t(double nr, lldiv_t *lld)
-{
- if (nr > LLDIV_MAX)
- {
- lld->quot= LLDIV_MAX;
- lld->rem= 0;
- return E_DEC_OVERFLOW;
- }
- else if (nr < LLDIV_MIN)
- {
- lld->quot= LLDIV_MIN;
- lld->rem= 0;
- return E_DEC_OVERFLOW;
- }
- /* Truncate fractional part toward zero and store into "quot" */
- lld->quot= (longlong) (nr > 0 ? floor(nr) : ceil(nr));
- /* Multiply reminder to 10^9 and store into "rem" */
- lld->rem= (longlong) rint((nr - (double) lld->quot) * 1000000000);
- /*
- Sometimes the expression "(double) 0.999999999xxx * (double) 10e9"
- gives 1,000,000,000 instead of 999,999,999 due to lack of double precision.
- The callers do not expect lld->rem to be greater than 999,999,999.
- Let's catch this corner case and put the "nanounit" (e.g. nanosecond)
- value in ldd->rem back into the valid range.
- */
- if (lld->rem > 999999999LL)
- lld->rem= 999999999LL;
- else if (lld->rem < -999999999LL)
- lld->rem= -999999999LL;
- return E_DEC_OK;
-}
-
-
-
-/*
- Convert decimal to its binary fixed-length representation
- two representations of the same length can be compared with memcmp
- with the correct -1/0/+1 result
-
- SYNOPSIS
- decimal2bin()
- from - value to convert
- to - points to buffer where string representation should be stored
- precision/scale - see decimal_bin_size() below
-
- NOTE
- the buffer is assumed to be of the size decimal_bin_size(precision, scale)
-
- RETURN VALUE
- E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW
-
- DESCRIPTION
- for storage decimal numbers are converted to the "binary" format.
-
- This format has the following properties:
- 1. length of the binary representation depends on the {precision, scale}
- as provided by the caller and NOT on the intg/frac of the decimal to
- convert.
- 2. binary representations of the same {precision, scale} can be compared
- with memcmp - with the same result as decimal_cmp() of the original
- decimals (not taking into account possible precision loss during
- conversion).
-
- This binary format is as follows:
- 1. First the number is converted to have a requested precision and scale.
- 2. Every full DIG_PER_DEC1 digits of intg part are stored in 4 bytes
- as is
- 3. The first intg % DIG_PER_DEC1 digits are stored in the reduced
- number of bytes (enough bytes to store this number of digits -
- see dig2bytes)
- 4. same for frac - full decimal_digit_t's are stored as is,
- the last frac % DIG_PER_DEC1 digits - in the reduced number of bytes.
- 5. If the number is negative - every byte is inversed.
- 5. The very first bit of the resulting byte array is inverted (because
- memcmp compares unsigned bytes, see property 2 above)
-
- Example:
-
- 1234567890.1234
-
- internally is represented as 3 decimal_digit_t's
-
- 1 234567890 123400000
-
- (assuming we want a binary representation with precision=14, scale=4)
- in hex it's
-
- 00-00-00-01 0D-FB-38-D2 07-5A-EF-40
-
- now, middle decimal_digit_t is full - it stores 9 decimal digits. It goes
- into binary representation as is:
-
-
- ........... 0D-FB-38-D2 ............
-
- First decimal_digit_t has only one decimal digit. We can store one digit in
- one byte, no need to waste four:
-
- 01 0D-FB-38-D2 ............
-
- now, last digit. It's 123400000. We can store 1234 in two bytes:
-
- 01 0D-FB-38-D2 04-D2
-
- So, we've packed 12 bytes number in 7 bytes.
- And now we invert the highest bit to get the final result:
-
- 81 0D FB 38 D2 04 D2
-
- And for -1234567890.1234 it would be
-
- 7E F2 04 C7 2D FB 2D
-*/
-int decimal2bin(decimal_t *from, uchar *to, int precision, int frac)
-{
- dec1 mask=from->sign ? -1 : 0, *buf1=from->buf, *stop1;
- int error=E_DEC_OK, intg=precision-frac,
- isize1, intg1, intg1x, from_intg,
- intg0=intg/DIG_PER_DEC1,
- frac0=frac/DIG_PER_DEC1,
- intg0x=intg-intg0*DIG_PER_DEC1,
- frac0x=frac-frac0*DIG_PER_DEC1,
- frac1=from->frac/DIG_PER_DEC1,
- frac1x=from->frac-frac1*DIG_PER_DEC1,
- isize0=intg0*sizeof(dec1)+dig2bytes[intg0x],
- fsize0=frac0*sizeof(dec1)+dig2bytes[frac0x],
- fsize1=frac1*sizeof(dec1)+dig2bytes[frac1x];
- const int orig_isize0= isize0;
- const int orig_fsize0= fsize0;
- uchar *orig_to= to;
-
- buf1= remove_leading_zeroes(from, &from_intg);
-
- if (unlikely(from_intg+fsize1==0))
- {
- mask=0; /* just in case */
- intg=1;
- buf1=&mask;
- }
-
- intg1=from_intg/DIG_PER_DEC1;
- intg1x=from_intg-intg1*DIG_PER_DEC1;
- isize1=intg1*sizeof(dec1)+dig2bytes[intg1x];
-
- if (intg < from_intg)
- {
- buf1+=intg1-intg0+(intg1x>0)-(intg0x>0);
- intg1=intg0; intg1x=intg0x;
- error=E_DEC_OVERFLOW;
- }
- else if (isize0 > isize1)
- {
- while (isize0-- > isize1)
- *to++= (char)mask;
- }
- if (fsize0 < fsize1)
- {
- frac1=frac0; frac1x=frac0x;
- error=E_DEC_TRUNCATED;
- }
- else if (fsize0 > fsize1 && frac1x)
- {
- if (frac0 == frac1)
- {
- frac1x=frac0x;
- fsize0= fsize1;
- }
- else
- {
- frac1++;
- frac1x=0;
- }
- }
-
- /* intg1x part */
- if (intg1x)
- {
- int i=dig2bytes[intg1x];
- dec1 x=(*buf1++ % powers10[intg1x]) ^ mask;
- switch (i)
- {
- case 1: mi_int1store(to, x); break;
- case 2: mi_int2store(to, x); break;
- case 3: mi_int3store(to, x); break;
- case 4: mi_int4store(to, x); break;
- default: DBUG_ASSERT(0);
- }
- to+=i;
- }
-
- /* intg1+frac1 part */
- for (stop1=buf1+intg1+frac1; buf1 < stop1; to+=sizeof(dec1))
- {
- dec1 x=*buf1++ ^ mask;
- DBUG_ASSERT(sizeof(dec1) == 4);
- mi_int4store(to, x);
- }
-
- /* frac1x part */
- if (frac1x)
- {
- dec1 x;
- int i=dig2bytes[frac1x],
- lim=(frac1 < frac0 ? DIG_PER_DEC1 : frac0x);
- while (frac1x < lim && dig2bytes[frac1x] == i)
- frac1x++;
- x=(*buf1 / powers10[DIG_PER_DEC1 - frac1x]) ^ mask;
- switch (i)
- {
- case 1: mi_int1store(to, x); break;
- case 2: mi_int2store(to, x); break;
- case 3: mi_int3store(to, x); break;
- case 4: mi_int4store(to, x); break;
- default: DBUG_ASSERT(0);
- }
- to+=i;
- }
- if (fsize0 > fsize1)
- {
- uchar *to_end= orig_to + orig_fsize0 + orig_isize0;
-
- while (fsize0-- > fsize1 && to < to_end)
- *to++= (uchar)mask;
- }
- orig_to[0]^= 0x80;
-
- /* Check that we have written the whole decimal and nothing more */
- DBUG_ASSERT(to == orig_to + orig_fsize0 + orig_isize0);
- return error;
-}
-
-/*
- Restores decimal from its binary fixed-length representation
-
- SYNOPSIS
- bin2decimal()
- from - value to convert
- to - result
- precision/scale - see decimal_bin_size() below
-
- NOTE
- see decimal2bin()
- the buffer is assumed to be of the size decimal_bin_size(precision, scale)
-
- RETURN VALUE
- E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW
-*/
-
-int bin2decimal(const uchar *from, decimal_t *to, int precision, int scale)
-{
- int error=E_DEC_OK, intg=precision-scale,
- intg0=intg/DIG_PER_DEC1, frac0=scale/DIG_PER_DEC1,
- intg0x=intg-intg0*DIG_PER_DEC1, frac0x=scale-frac0*DIG_PER_DEC1,
- intg1=intg0+(intg0x>0), frac1=frac0+(frac0x>0);
- dec1 *buf=to->buf, mask=(*from & 0x80) ? 0 : -1;
- const uchar *stop;
- uchar *d_copy;
- int bin_size= decimal_bin_size(precision, scale);
-
- sanity(to);
- d_copy= (uchar*) my_alloca(bin_size);
- memcpy(d_copy, from, bin_size);
- d_copy[0]^= 0x80;
- from= d_copy;
-
- FIX_INTG_FRAC_ERROR(to->len, intg1, frac1, error);
- if (unlikely(error))
- {
- if (intg1 < intg0+(intg0x>0))
- {
- from+=dig2bytes[intg0x]+sizeof(dec1)*(intg0-intg1);
- frac0=frac0x=intg0x=0;
- intg0=intg1;
- }
- else
- {
- frac0x=0;
- frac0=frac1;
- }
- }
-
- to->sign=(mask != 0);
- to->intg=intg0*DIG_PER_DEC1+intg0x;
- to->frac=frac0*DIG_PER_DEC1+frac0x;
-
- if (intg0x)
- {
- int i=dig2bytes[intg0x];
- dec1 x= 0;
- switch (i)
- {
- case 1: x=mi_sint1korr(from); break;
- case 2: x=mi_sint2korr(from); break;
- case 3: x=mi_sint3korr(from); break;
- case 4: x=mi_sint4korr(from); break;
- default: DBUG_ASSERT(0);
- }
- from+=i;
- *buf=x ^ mask;
- if (((ulonglong)*buf) >= (ulonglong) powers10[intg0x+1])
- goto err;
- if (buf > to->buf || *buf != 0)
- buf++;
- else
- to->intg-=intg0x;
- }
- for (stop=from+intg0*sizeof(dec1); from < stop; from+=sizeof(dec1))
- {
- DBUG_ASSERT(sizeof(dec1) == 4);
- *buf=mi_sint4korr(from) ^ mask;
- if (((uint32)*buf) > DIG_MAX)
- goto err;
- if (buf > to->buf || *buf != 0)
- buf++;
- else
- to->intg-=DIG_PER_DEC1;
- }
- DBUG_ASSERT(to->intg >=0);
- for (stop=from+frac0*sizeof(dec1); from < stop; from+=sizeof(dec1))
- {
- DBUG_ASSERT(sizeof(dec1) == 4);
- *buf=mi_sint4korr(from) ^ mask;
- if (((uint32)*buf) > DIG_MAX)
- goto err;
- buf++;
- }
- if (frac0x)
- {
- int i=dig2bytes[frac0x];
- dec1 x= 0;
- switch (i)
- {
- case 1: x=mi_sint1korr(from); break;
- case 2: x=mi_sint2korr(from); break;
- case 3: x=mi_sint3korr(from); break;
- case 4: x=mi_sint4korr(from); break;
- default: DBUG_ASSERT(0);
- }
- *buf=(x ^ mask) * powers10[DIG_PER_DEC1 - frac0x];
- if (((uint32)*buf) > DIG_MAX)
- goto err;
- buf++;
- }
-
- /*
- No digits? We have read the number zero, of unspecified precision.
- Make it a proper zero, with non-zero precision.
- */
- if (to->intg == 0 && to->frac == 0)
- decimal_make_zero(to);
- return error;
-
-err:
- decimal_make_zero(to);
- return(E_DEC_BAD_NUM);
-}
-
-/*
- Returns the size of array to hold a decimal with given precision and scale
-
- RETURN VALUE
- size in dec1
- (multiply by sizeof(dec1) to get the size if bytes)
-*/
-
-int decimal_size(int precision, int scale)
-{
- DBUG_ASSERT(scale >= 0 && precision > 0 && scale <= precision);
- return ROUND_UP(precision-scale)+ROUND_UP(scale);
-}
-
-/*
- Returns the size of array to hold a binary representation of a decimal
-
- RETURN VALUE
- size in bytes
-*/
-
-int decimal_bin_size(int precision, int scale)
-{
- int intg=precision-scale,
- intg0=intg/DIG_PER_DEC1, frac0=scale/DIG_PER_DEC1,
- intg0x=intg-intg0*DIG_PER_DEC1, frac0x=scale-frac0*DIG_PER_DEC1;
-
- DBUG_ASSERT(scale >= 0 && precision > 0 && scale <= precision);
- DBUG_ASSERT(intg0x >= 0);
- DBUG_ASSERT(intg0x <= DIG_PER_DEC1);
- DBUG_ASSERT(frac0x >= 0);
- DBUG_ASSERT(frac0x <= DIG_PER_DEC1);
- return intg0*sizeof(dec1)+dig2bytes[intg0x]+
- frac0*sizeof(dec1)+dig2bytes[frac0x];
-}
-
-/*
- Rounds the decimal to "scale" digits
-
- SYNOPSIS
- decimal_round()
- from - decimal to round,
- to - result buffer. from==to is allowed
- scale - to what position to round. can be negative!
- mode - round to nearest even or truncate
-
- NOTES
- scale can be negative !
- one TRUNCATED error (line XXX below) isn't treated very logical :(
-
- RETURN VALUE
- E_DEC_OK/E_DEC_TRUNCATED
-*/
-
-int
-decimal_round(const decimal_t *from, decimal_t *to, int scale,
- decimal_round_mode mode)
-{
- int frac0=scale>0 ? ROUND_UP(scale) : (scale + 1)/DIG_PER_DEC1,
- frac1=ROUND_UP(from->frac), round_digit= 0,
- intg0=ROUND_UP(from->intg), error=E_DEC_OK, len=to->len;
-
- dec1 *buf0=from->buf, *buf1=to->buf, x, y, carry=0;
- int first_dig;
-
- sanity(to);
-
- switch (mode) {
- case HALF_UP:
- case HALF_EVEN: round_digit=5; break;
- case CEILING: round_digit= from->sign ? 10 : 0; break;
- case FLOOR: round_digit= from->sign ? 0 : 10; break;
- case TRUNCATE: round_digit=10; break;
- default: DBUG_ASSERT(0);
- }
-
- /*
- For my_decimal we always use len == DECIMAL_BUFF_LENGTH == 9
- For internal testing here (ifdef MAIN) we always use len == 100/4
- */
- DBUG_ASSERT(from->len == to->len);
-
- if (unlikely(frac0+intg0 > len))
- {
- frac0=len-intg0;
- scale=frac0*DIG_PER_DEC1;
- error=E_DEC_TRUNCATED;
- }
-
- if (scale+from->intg < 0)
- {
- decimal_make_zero(to);
- return E_DEC_OK;
- }
-
- if (to != from)
- {
- dec1 *p0= buf0 + intg0 + MY_MAX(frac1, frac0);
- dec1 *p1= buf1 + intg0 + MY_MAX(frac1, frac0);
-
- DBUG_ASSERT(p0 - buf0 <= len);
- DBUG_ASSERT(p1 - buf1 <= len);
-
- while (buf0 < p0)
- *(--p1) = *(--p0);
-
- buf0=to->buf;
- buf1=to->buf;
- to->sign=from->sign;
- to->intg= MY_MIN(intg0, len) * DIG_PER_DEC1;
- }
-
- if (frac0 > frac1)
- {
- buf1+=intg0+frac1;
- while (frac0-- > frac1)
- *buf1++=0;
- goto done;
- }
-
- if (scale >= from->frac)
- goto done; /* nothing to do */
-
- buf0+=intg0+frac0-1;
- buf1+=intg0+frac0-1;
- if (scale == frac0*DIG_PER_DEC1)
- {
- int do_inc= FALSE;
- DBUG_ASSERT(frac0+intg0 >= 0);
- switch (round_digit) {
- case 0:
- {
- dec1 *p0= buf0 + (frac1-frac0);
- for (; p0 > buf0; p0--)
- {
- if (*p0)
- {
- do_inc= TRUE;
- break;
- }
- }
- break;
- }
- case 5:
- {
- x= buf0[1]/DIG_MASK;
- do_inc= (x>5) || ((x == 5) &&
- (mode == HALF_UP || (frac0+intg0 > 0 && *buf0 & 1)));
- break;
- }
- default:
- break;
- }
- if (do_inc)
- {
- if (frac0+intg0>0)
- (*buf1)++;
- else
- *(++buf1)=DIG_BASE;
- }
- else if (frac0+intg0==0)
- {
- decimal_make_zero(to);
- return E_DEC_OK;
- }
- }
- else
- {
- /* TODO - fix this code as it won't work for CEILING mode */
- int pos=frac0*DIG_PER_DEC1-scale-1;
- DBUG_ASSERT(frac0+intg0 > 0);
- x=*buf1 / powers10[pos];
- y=x % 10;
- if (y > round_digit ||
- (round_digit == 5 && y == 5 && (mode == HALF_UP || (x/10) & 1)))
- x+=10;
- *buf1=powers10[pos]*(x-y);
- }
- /*
- In case we're rounding e.g. 1.5e9 to 2.0e9, the decimal_digit_t's inside
- the buffer are as follows.
-
- Before <1, 5e8>
- After <2, 5e8>
-
- Hence we need to set the 2nd field to 0.
- The same holds if we round 1.5e-9 to 2e-9.
- */
- if (frac0 < frac1)
- {
- dec1 *buf= to->buf + ((scale == 0 && intg0 == 0) ? 1 : intg0 + frac0);
- dec1 *end= to->buf + len;
-
- while (buf < end)
- *buf++=0;
- }
- if (*buf1 >= DIG_BASE)
- {
- carry=1;
- *buf1-=DIG_BASE;
- while (carry && --buf1 >= to->buf)
- ADD(*buf1, *buf1, 0, carry);
- if (unlikely(carry))
- {
- /* shifting the number to create space for new digit */
- if (frac0+intg0 >= len)
- {
- frac0--;
- scale=frac0*DIG_PER_DEC1;
- error=E_DEC_TRUNCATED; /* XXX */
- }
- for (buf1=to->buf + intg0 + MY_MAX(frac0, 0); buf1 > to->buf; buf1--)
- {
- /* Avoid out-of-bounds write. */
- if (buf1 < to->buf + len)
- buf1[0]=buf1[-1];
- else
- error= E_DEC_OVERFLOW;
- }
- *buf1=1;
- /* We cannot have more than 9 * 9 = 81 digits. */
- if (to->intg < len * DIG_PER_DEC1)
- to->intg++;
- else
- error= E_DEC_OVERFLOW;
- }
- }
- else
- {
- for (;;)
- {
- if (likely(*buf1))
- break;
- if (buf1-- == to->buf)
- {
- /* making 'zero' with the proper scale */
- dec1 *p0= to->buf + frac0 + 1;
- to->intg=1;
- to->frac= MY_MAX(scale, 0);
- to->sign= 0;
- for (buf1= to->buf; buf1<p0; buf1++)
- *buf1= 0;
- return E_DEC_OK;
- }
- }
- }
-
- /* Here we check 999.9 -> 1000 case when we need to increase intg */
- first_dig= to->intg % DIG_PER_DEC1;
- if (first_dig && (*buf1 >= powers10[first_dig]))
- to->intg++;
-
- if (scale<0)
- scale=0;
-
-done:
- DBUG_ASSERT(to->intg <= (len * DIG_PER_DEC1));
- to->frac=scale;
- return error;
-}
-
-/*
- Returns the size of the result of the operation
-
- SYNOPSIS
- decimal_result_size()
- from1 - operand of the unary operation or first operand of the
- binary operation
- from2 - second operand of the binary operation
- op - operation. one char '+', '-', '*', '/' are allowed
- others may be added later
- param - extra param to the operation. unused for '+', '-', '*'
- scale increment for '/'
-
- NOTE
- returned valued may be larger than the actual buffer requred
- in the operation, as decimal_result_size, by design, operates on
- precision/scale values only and not on the actual decimal number
-
- RETURN VALUE
- size of to->buf array in dec1 elements. to get size in bytes
- multiply by sizeof(dec1)
-*/
-
-int decimal_result_size(decimal_t *from1, decimal_t *from2, char op, int param)
-{
- switch (op) {
- case '-':
- return ROUND_UP(MY_MAX(from1->intg, from2->intg)) +
- ROUND_UP(MY_MAX(from1->frac, from2->frac));
- case '+':
- return ROUND_UP(MY_MAX(from1->intg, from2->intg)+1) +
- ROUND_UP(MY_MAX(from1->frac, from2->frac));
- case '*':
- return ROUND_UP(from1->intg+from2->intg)+
- ROUND_UP(from1->frac)+ROUND_UP(from2->frac);
- case '/':
- return ROUND_UP(from1->intg+from2->intg+1+from1->frac+from2->frac+param);
- default: DBUG_ASSERT(0);
- }
- return -1; /* shut up the warning */
-}
-
-static int do_add(const decimal_t *from1, const decimal_t *from2, decimal_t *to)
-{
- int intg1=ROUND_UP(from1->intg), intg2=ROUND_UP(from2->intg),
- frac1=ROUND_UP(from1->frac), frac2=ROUND_UP(from2->frac),
- frac0= MY_MAX(frac1, frac2), intg0= MY_MAX(intg1, intg2), error;
- dec1 *buf1, *buf2, *buf0, *stop, *stop2, x, carry;
-
- sanity(to);
-
- /* is there a need for extra word because of carry ? */
- x=intg1 > intg2 ? from1->buf[0] :
- intg2 > intg1 ? from2->buf[0] :
- from1->buf[0] + from2->buf[0] ;
- if (unlikely(x > DIG_MAX-1)) /* yes, there is */
- {
- intg0++;
- to->buf[0]=0; /* safety */
- }
-
- FIX_INTG_FRAC_ERROR(to->len, intg0, frac0, error);
- if (unlikely(error == E_DEC_OVERFLOW))
- {
- max_decimal(to->len * DIG_PER_DEC1, 0, to);
- return error;
- }
-
- buf0=to->buf+intg0+frac0;
-
- to->sign=from1->sign;
- to->frac= MY_MAX(from1->frac, from2->frac);
- to->intg=intg0*DIG_PER_DEC1;
- if (unlikely(error))
- {
- set_if_smaller(to->frac, frac0*DIG_PER_DEC1);
- set_if_smaller(frac1, frac0);
- set_if_smaller(frac2, frac0);
- set_if_smaller(intg1, intg0);
- set_if_smaller(intg2, intg0);
- }
-
- /* part 1 - max(frac) ... min (frac) */
- if (frac1 > frac2)
- {
- buf1=from1->buf+intg1+frac1;
- stop=from1->buf+intg1+frac2;
- buf2=from2->buf+intg2+frac2;
- stop2=from1->buf+(intg1 > intg2 ? intg1-intg2 : 0);
- }
- else
- {
- buf1=from2->buf+intg2+frac2;
- stop=from2->buf+intg2+frac1;
- buf2=from1->buf+intg1+frac1;
- stop2=from2->buf+(intg2 > intg1 ? intg2-intg1 : 0);
- }
- while (buf1 > stop)
- *--buf0=*--buf1;
-
- /* part 2 - min(frac) ... min(intg) */
- carry=0;
- while (buf1 > stop2)
- {
- ADD(*--buf0, *--buf1, *--buf2, carry);
- }
-
- /* part 3 - min(intg) ... max(intg) */
- buf1= intg1 > intg2 ? ((stop=from1->buf)+intg1-intg2) :
- ((stop=from2->buf)+intg2-intg1) ;
- while (buf1 > stop)
- {
- ADD(*--buf0, *--buf1, 0, carry);
- }
-
- if (unlikely(carry))
- *--buf0=1;
- DBUG_ASSERT(buf0 == to->buf || buf0 == to->buf+1);
-
- return error;
-}
-
-/* to=from1-from2.
- if to==0, return -1/0/+1 - the result of the comparison */
-static int do_sub(const decimal_t *from1, const decimal_t *from2, decimal_t *to)
-{
- int intg1=ROUND_UP(from1->intg), intg2=ROUND_UP(from2->intg),
- frac1=ROUND_UP(from1->frac), frac2=ROUND_UP(from2->frac);
- int frac0= MY_MAX(frac1, frac2), error;
- dec1 *buf1, *buf2, *buf0, *stop1, *stop2, *start1, *start2, carry=0;
-
- /* let carry:=1 if from2 > from1 */
- start1=buf1=from1->buf; stop1=buf1+intg1;
- start2=buf2=from2->buf; stop2=buf2+intg2;
- if (unlikely(*buf1 == 0))
- {
- while (buf1 < stop1 && *buf1 == 0)
- buf1++;
- start1=buf1;
- intg1= (int) (stop1-buf1);
- }
- if (unlikely(*buf2 == 0))
- {
- while (buf2 < stop2 && *buf2 == 0)
- buf2++;
- start2=buf2;
- intg2= (int) (stop2-buf2);
- }
- if (intg2 > intg1)
- carry=1;
- else if (intg2 == intg1)
- {
- dec1 *end1= stop1 + (frac1 - 1);
- dec1 *end2= stop2 + (frac2 - 1);
- while (unlikely((buf1 <= end1) && (*end1 == 0)))
- end1--;
- while (unlikely((buf2 <= end2) && (*end2 == 0)))
- end2--;
- frac1= (int) (end1 - stop1) + 1;
- frac2= (int) (end2 - stop2) + 1;
- while (buf1 <=end1 && buf2 <= end2 && *buf1 == *buf2)
- buf1++, buf2++;
- if (buf1 <= end1)
- {
- if (buf2 <= end2)
- carry= *buf2 > *buf1;
- else
- carry= 0;
- }
- else
- {
- if (buf2 <= end2)
- carry=1;
- else /* short-circuit everything: from1 == from2 */
- {
- if (to == 0) /* decimal_cmp() */
- return 0;
- decimal_make_zero(to);
- return E_DEC_OK;
- }
- }
- }
-
- if (to == 0) /* decimal_cmp() */
- return carry == from1->sign ? 1 : -1;
-
- sanity(to);
-
- to->sign=from1->sign;
-
- /* ensure that always from1 > from2 (and intg1 >= intg2) */
- if (carry)
- {
- swap_variables(const decimal_t *, from1, from2);
- swap_variables(dec1 *,start1, start2);
- swap_variables(int,intg1,intg2);
- swap_variables(int,frac1,frac2);
- to->sign= 1 - to->sign;
- }
-
- FIX_INTG_FRAC_ERROR(to->len, intg1, frac0, error);
- buf0=to->buf+intg1+frac0;
-
- to->frac= MY_MAX(from1->frac, from2->frac);
- to->intg=intg1*DIG_PER_DEC1;
- if (unlikely(error))
- {
- set_if_smaller(to->frac, frac0*DIG_PER_DEC1);
- set_if_smaller(frac1, frac0);
- set_if_smaller(frac2, frac0);
- set_if_smaller(intg2, intg1);
- }
- carry=0;
-
- /* part 1 - max(frac) ... min (frac) */
- if (frac1 > frac2)
- {
- buf1=start1+intg1+frac1;
- stop1=start1+intg1+frac2;
- buf2=start2+intg2+frac2;
- while (frac0-- > frac1)
- *--buf0=0;
- while (buf1 > stop1)
- *--buf0=*--buf1;
- }
- else
- {
- buf1=start1+intg1+frac1;
- buf2=start2+intg2+frac2;
- stop2=start2+intg2+frac1;
- while (frac0-- > frac2)
- *--buf0=0;
- while (buf2 > stop2)
- {
- SUB(*--buf0, 0, *--buf2, carry);
- }
- }
-
- /* part 2 - min(frac) ... intg2 */
- while (buf2 > start2)
- {
- SUB(*--buf0, *--buf1, *--buf2, carry);
- }
-
- /* part 3 - intg2 ... intg1 */
- while (carry && buf1 > start1)
- {
- SUB(*--buf0, *--buf1, 0, carry);
- }
-
- while (buf1 > start1)
- *--buf0=*--buf1;
-
- while (buf0 > to->buf)
- *--buf0=0;
-
- return error;
-}
-
-int decimal_intg(const decimal_t *from)
-{
- int res;
- remove_leading_zeroes(from, &res);
- return res;
-}
-
-int decimal_add(const decimal_t *from1, const decimal_t *from2, decimal_t *to)
-{
- if (likely(from1->sign == from2->sign))
- return do_add(from1, from2, to);
- return do_sub(from1, from2, to);
-}
-
-int decimal_sub(const decimal_t *from1, const decimal_t *from2, decimal_t *to)
-{
- if (likely(from1->sign == from2->sign))
- return do_sub(from1, from2, to);
- return do_add(from1, from2, to);
-}
-
-int decimal_cmp(const decimal_t *from1, const decimal_t *from2)
-{
- if (likely(from1->sign == from2->sign))
- return do_sub(from1, from2, 0);
-
- // Reject negative zero, cfr. internal_str2dec()
- DBUG_ASSERT(!(decimal_is_zero(from1) && from1->sign));
- DBUG_ASSERT(!(decimal_is_zero(from2) && from2->sign));
-
- return from1->sign > from2->sign ? -1 : 1;
-}
-
-int decimal_is_zero(const decimal_t *from)
-{
- dec1 *buf1=from->buf,
- *end=buf1+ROUND_UP(from->intg)+ROUND_UP(from->frac);
- while (buf1 < end)
- if (*buf1++)
- return 0;
- return 1;
-}
-
-/*
- multiply two decimals
-
- SYNOPSIS
- decimal_mul()
- from1, from2 - factors
- to - product
-
- RETURN VALUE
- E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW;
-
- NOTES
- in this implementation, with sizeof(dec1)=4 we have DIG_PER_DEC1=9,
- and 63-digit number will take only 7 dec1 words (basically a 7-digit
- "base 999999999" number). Thus there's no need in fast multiplication
- algorithms, 7-digit numbers can be multiplied with a naive O(n*n)
- method.
-
- XXX if this library is to be used with huge numbers of thousands of
- digits, fast multiplication must be implemented.
-*/
-int decimal_mul(const decimal_t *from1, const decimal_t *from2, decimal_t *to)
-{
- int intg1=ROUND_UP(from1->intg), intg2=ROUND_UP(from2->intg),
- frac1=ROUND_UP(from1->frac), frac2=ROUND_UP(from2->frac),
- intg0=ROUND_UP(from1->intg+from2->intg),
- frac0=frac1+frac2, error, iii, jjj, d_to_move;
- dec1 *buf1=from1->buf+intg1, *buf2=from2->buf+intg2, *buf0,
- *start2, *stop2, *stop1, *start0, carry;
-
- sanity(to);
-
- iii= intg0; /* save 'ideal' values */
- jjj= frac0;
- FIX_INTG_FRAC_ERROR(to->len, intg0, frac0, error); /* bound size */
- to->sign= from1->sign != from2->sign;
- to->frac= from1->frac + from2->frac; /* store size in digits */
- set_if_smaller(to->frac, NOT_FIXED_DEC);
- to->intg=intg0*DIG_PER_DEC1;
-
- if (unlikely(error))
- {
- set_if_smaller(to->frac, frac0*DIG_PER_DEC1);
- set_if_smaller(to->intg, intg0*DIG_PER_DEC1);
- if (unlikely(iii > intg0)) /* bounded integer-part */
- {
- iii-=intg0;
- jjj= iii >> 1;
- intg1-= jjj;
- intg2-=iii-jjj;
- frac1=frac2=0; /* frac0 is already 0 here */
- }
- else /* bounded fract part */
- {
- jjj-=frac0;
- iii=jjj >> 1;
- if (frac1 <= frac2)
- {
- frac1-= iii;
- frac2-=jjj-iii;
- }
- else
- {
- frac2-= iii;
- frac1-=jjj-iii;
- }
- }
- }
- start0=to->buf+intg0+frac0-1;
- start2=buf2+frac2-1;
- stop1=buf1-intg1;
- stop2=buf2-intg2;
-
- memset(to->buf, 0, (intg0+frac0)*sizeof(dec1));
-
- for (buf1+=frac1-1; buf1 >= stop1; buf1--, start0--)
- {
- carry=0;
- for (buf0=start0, buf2=start2; buf2 >= stop2; buf2--, buf0--)
- {
- dec1 hi, lo;
- dec2 p= ((dec2)*buf1) * ((dec2)*buf2);
- hi=(dec1)(p/DIG_BASE);
- lo=(dec1)(p-((dec2)hi)*DIG_BASE);
- ADD2(*buf0, *buf0, lo, carry);
- carry+=hi;
- }
- if (carry)
- {
- if (buf0 < to->buf)
- return E_DEC_OVERFLOW;
- ADD2(*buf0, *buf0, 0, carry);
- }
- for (buf0--; carry; buf0--)
- {
- if (buf0 < to->buf)
- return E_DEC_OVERFLOW;
- ADD(*buf0, *buf0, 0, carry);
- }
- }
-
- /* Now we have to check for -0.000 case */
- if (to->sign)
- {
- dec1 *buf= to->buf;
- dec1 *end= to->buf + intg0 + frac0;
- DBUG_ASSERT(buf != end);
- for (;;)
- {
- if (*buf)
- break;
- if (++buf == end)
- {
- /* We got decimal zero */
- decimal_make_zero(to);
- break;
- }
- }
- }
- buf1= to->buf;
- d_to_move= intg0 + ROUND_UP(to->frac);
- while (!*buf1 && (to->intg > DIG_PER_DEC1))
- {
- buf1++;
- to->intg-= DIG_PER_DEC1;
- d_to_move--;
- }
- if (to->buf < buf1)
- {
- dec1 *cur_d= to->buf;
- for (; d_to_move--; cur_d++, buf1++)
- *cur_d= *buf1;
- }
- return error;
-}
-
-/*
- naive division algorithm (Knuth's Algorithm D in 4.3.1) -
- it's ok for short numbers
- also we're using alloca() to allocate a temporary buffer
-
- XXX if this library is to be used with huge numbers of thousands of
- digits, fast division must be implemented and alloca should be
- changed to malloc (or at least fallback to malloc if alloca() fails)
- but then, decimal_mul() should be rewritten too :(
-*/
-static int do_div_mod(const decimal_t *from1, const decimal_t *from2,
- decimal_t *to, decimal_t *mod, int scale_incr)
-{
-
- /*
- frac* - number of digits in fractional part of the number
- prec* - precision of the number
- intg* - number of digits in the integer part
- buf* - buffer having the actual number
- All variables ending with 0 - like frac0, intg0 etc are
- for the final result. Similarly frac1, intg1 etc are for
- the first number and frac2, intg2 etc are for the second number
- */
- int frac1=ROUND_UP(from1->frac)*DIG_PER_DEC1, prec1=from1->intg+frac1,
- frac2=ROUND_UP(from2->frac)*DIG_PER_DEC1, prec2=from2->intg+frac2,
- error= 0, i, intg0, frac0, len1, len2,
- dintg, /* Holds the estimate of number of integer digits in final result */
- div_mod=(!mod) /*true if this is division */;
- dec1 *buf0, *buf1=from1->buf, *buf2=from2->buf, *start1, *stop1,
- *start2, *stop2, *stop0 ,norm2, carry, dcarry, *tmp1;
- dec2 norm_factor, x, guess, y;
-
- if (mod)
- to=mod;
-
- sanity(to);
-
- /*
- removing all the leading zeroes in the second number. Leading zeroes are
- added later to the result.
- */
- i= ((prec2 - 1) % DIG_PER_DEC1) + 1;
- while (prec2 > 0 && *buf2 == 0)
- {
- prec2-= i;
- i= DIG_PER_DEC1;
- buf2++;
- }
- if (prec2 <= 0) /* short-circuit everything: from2 == 0 */
- return E_DEC_DIV_ZERO;
-
- /*
- Remove the remanining zeroes . For ex: for 0.000000000001
- the above while loop removes 9 zeroes and the result will have 0.0001
- these remaining zeroes are removed here
- */
- prec2-= count_leading_zeroes((prec2 - 1) % DIG_PER_DEC1, *buf2);
- DBUG_ASSERT(prec2 > 0);
-
- /*
- Do the same for the first number. Remove the leading zeroes.
- Check if the number is actually 0. Then remove the remaining zeroes.
- */
-
- i=((prec1-1) % DIG_PER_DEC1)+1;
- while (prec1 > 0 && *buf1 == 0)
- {
- prec1-=i;
- i=DIG_PER_DEC1;
- buf1++;
- }
- if (prec1 <= 0)
- { /* short-circuit everything: from1 == 0 */
- decimal_make_zero(to);
- return E_DEC_OK;
- }
- prec1-= count_leading_zeroes((prec1-1) % DIG_PER_DEC1, *buf1);
- DBUG_ASSERT(prec1 > 0);
-
- /* let's fix scale_incr, taking into account frac1,frac2 increase */
- if ((scale_incr-= frac1 - from1->frac + frac2 - from2->frac) < 0)
- scale_incr=0;
-
- /* Calculate the integer digits in final result */
- dintg=(prec1-frac1)-(prec2-frac2)+(*buf1 >= *buf2);
- if (dintg < 0)
- {
- dintg/=DIG_PER_DEC1;
- intg0=0;
- }
- else
- intg0=ROUND_UP(dintg);
- if (mod)
- {
- /* we're calculating N1 % N2.
- The result will have
- frac=max(frac1, frac2), as for subtraction
- intg=intg2
- */
- to->sign=from1->sign;
- to->frac= MY_MAX(from1->frac, from2->frac);
- frac0=0;
- }
- else
- {
- /*
- we're calculating N1/N2. N1 is in the buf1, has prec1 digits
- N2 is in the buf2, has prec2 digits. Scales are frac1 and
- frac2 accordingly.
- Thus, the result will have
- frac = ROUND_UP(frac1+frac2+scale_incr)
- and
- intg = (prec1-frac1) - (prec2-frac2) + 1
- prec = intg+frac
- */
- frac0=ROUND_UP(frac1+frac2+scale_incr);
- FIX_INTG_FRAC_ERROR(to->len, intg0, frac0, error);
- to->sign=from1->sign != from2->sign;
- to->intg=intg0*DIG_PER_DEC1;
- to->frac=frac0*DIG_PER_DEC1;
- }
- buf0=to->buf;
- stop0=buf0+intg0+frac0;
- if (likely(div_mod))
- while (dintg++ < 0 && buf0 < &to->buf[to->len])
- {
- *buf0++=0;
- }
-
- len1=(i=ROUND_UP(prec1))+ROUND_UP(2*frac2+scale_incr+1) + 1;
- set_if_bigger(len1, 3);
- if (!(tmp1=(dec1 *)my_alloca(len1*sizeof(dec1))))
- return E_DEC_OOM;
- memcpy(tmp1, buf1, i*sizeof(dec1));
- memset(tmp1+i, 0, (len1-i)*sizeof(dec1));
-
- start1=tmp1;
- stop1=start1+len1;
- start2=buf2;
- stop2=buf2+ROUND_UP(prec2)-1;
-
- /* removing end zeroes */
- while (*stop2 == 0 && stop2 >= start2)
- stop2--;
- len2= (int) (stop2++ - start2);
-
- /*
- calculating norm2 (normalized *start2) - we need *start2 to be large
- (at least > DIG_BASE/2), but unlike Knuth's Alg. D we don't want to
- normalize input numbers (as we don't make a copy of the divisor).
- Thus we normalize first dec1 of buf2 only, and we'll normalize *start1
- on the fly for the purpose of guesstimation only.
- It's also faster, as we're saving on normalization of buf2
- */
- norm_factor=DIG_BASE/(*start2+1);
- norm2=(dec1)(norm_factor*start2[0]);
- if (likely(len2>0))
- norm2+=(dec1)(norm_factor*start2[1]/DIG_BASE);
-
- if (*start1 < *start2)
- dcarry=*start1++;
- else
- dcarry=0;
-
- /* main loop */
- for (; buf0 < stop0; buf0++)
- {
- /* short-circuit, if possible */
- if (unlikely(dcarry == 0 && *start1 < *start2))
- guess=0;
- else
- {
- /* D3: make a guess */
- x=start1[0]+((dec2)dcarry)*DIG_BASE;
- y=start1[1];
- guess=(norm_factor*x+norm_factor*y/DIG_BASE)/norm2;
- if (unlikely(guess >= DIG_BASE))
- guess=DIG_BASE-1;
- if (likely(len2>0))
- {
- /* hmm, this is a suspicious trick - I removed normalization here */
- if (start2[1]*guess > (x-guess*start2[0])*DIG_BASE+y)
- guess--;
- if (unlikely(start2[1]*guess > (x-guess*start2[0])*DIG_BASE+y))
- guess--;
- DBUG_ASSERT(start2[1]*guess <= (x-guess*start2[0])*DIG_BASE+y);
- }
-
- /* D4: multiply and subtract */
- buf2=stop2;
- buf1=start1+len2;
- DBUG_ASSERT(buf1 < stop1);
- for (carry=0; buf2 > start2; buf1--)
- {
- dec1 hi, lo;
- x=guess * (*--buf2);
- hi=(dec1)(x/DIG_BASE);
- lo=(dec1)(x-((dec2)hi)*DIG_BASE);
- SUB2(*buf1, *buf1, lo, carry);
- carry+=hi;
- }
- carry= dcarry < carry;
-
- /* D5: check the remainder */
- if (unlikely(carry))
- {
- /* D6: correct the guess */
- guess--;
- buf2=stop2;
- buf1=start1+len2;
- for (carry=0; buf2 > start2; buf1--)
- {
- ADD(*buf1, *buf1, *--buf2, carry);
- }
- }
- }
- if (likely(div_mod))
- {
- DBUG_ASSERT(buf0 < to->buf + to->len);
- *buf0=(dec1)guess;
- }
- dcarry= *start1;
- start1++;
- }
- if (mod)
- {
- /*
- now the result is in tmp1, it has
- intg=prec1-frac1 if there were no leading zeroes.
- If leading zeroes were present, they have been removed
- earlier. We need to now add them back to the result.
- frac=max(frac1, frac2)=to->frac
- */
- if (dcarry)
- *--start1=dcarry;
- buf0=to->buf;
- /* Calculate the final result's integer digits */
- dintg= (prec1 - frac1) - ((start1 - tmp1) * DIG_PER_DEC1);
- if (dintg < 0)
- {
- /* If leading zeroes in the fractional part were earlier stripped */
- intg0= dintg / DIG_PER_DEC1;
- }
- else
- intg0= ROUND_UP(dintg);
- frac0=ROUND_UP(to->frac);
- error=E_DEC_OK;
- if (unlikely(frac0==0 && intg0==0))
- {
- decimal_make_zero(to);
- goto done;
- }
- if (intg0<=0)
- {
- /* Add back the leading zeroes that were earlier stripped */
- if (unlikely(-intg0 >= to->len))
- {
- decimal_make_zero(to);
- error=E_DEC_TRUNCATED;
- goto done;
- }
- stop1= start1 + frac0 + intg0;
- frac0+=intg0;
- to->intg=0;
- while (intg0++ < 0)
- *buf0++=0;
- }
- else
- {
- if (unlikely(intg0 > to->len))
- {
- frac0=0;
- intg0=to->len;
- error=E_DEC_OVERFLOW;
- goto done;
- }
- DBUG_ASSERT(intg0 <= ROUND_UP(from2->intg));
- stop1=start1+frac0+intg0;
- to->intg= MY_MIN(intg0 * DIG_PER_DEC1, from2->intg);
- }
- if (unlikely(intg0+frac0 > to->len))
- {
- stop1-=frac0+intg0-to->len;
- frac0=to->len-intg0;
- to->frac=frac0*DIG_PER_DEC1;
- error=E_DEC_TRUNCATED;
- }
- DBUG_ASSERT(buf0 + (stop1 - start1) <= to->buf + to->len);
- while (start1 < stop1)
- *buf0++=*start1++;
- }
-done:
- tmp1= remove_leading_zeroes(to, &to->intg);
- if(to->buf != tmp1)
- memmove(to->buf, tmp1,
- (ROUND_UP(to->intg) + ROUND_UP(to->frac)) * sizeof(dec1));
- return error;
-}
-
-/*
- division of two decimals
-
- SYNOPSIS
- decimal_div()
- from1 - dividend
- from2 - divisor
- to - quotient
-
- RETURN VALUE
- E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW/E_DEC_DIV_ZERO;
-
- NOTES
- see do_div_mod()
-*/
-
-int
-decimal_div(const decimal_t *from1, const decimal_t *from2, decimal_t *to,
- int scale_incr)
-{
- return do_div_mod(from1, from2, to, 0, scale_incr);
-}
-
-/*
- modulus
-
- SYNOPSIS
- decimal_mod()
- from1 - dividend
- from2 - divisor
- to - modulus
-
- RETURN VALUE
- E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW/E_DEC_DIV_ZERO;
-
- NOTES
- see do_div_mod()
-
- DESCRIPTION
- the modulus R in R = M mod N
-
- is defined as
-
- 0 <= |R| < |M|
- sign R == sign M
- R = M - k*N, where k is integer
-
- thus, there's no requirement for M or N to be integers
-*/
-
-int decimal_mod(const decimal_t *from1, const decimal_t *from2, decimal_t *to)
-{
- return do_div_mod(from1, from2, 0, to, 0);
-}
-
-#ifdef MAIN
-/*
- The main() program has been converted into a unit test.
- */
-#endif