/* Copyright (c) 2005, 2015, Oracle and/or its affiliates. All rights reserved. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #ifndef MY_DECIMAL_INCLUDED #define MY_DECIMAL_INCLUDED /** @file It is interface module to fixed precision decimals library. Most functions use 'uint mask' as parameter, if during operation error which fit in this mask is detected then it will be processed automatically here. (errors are E_DEC_* constants, see include/decimal.h) Most function are just inline wrappers around library calls */ #if defined(MYSQL_SERVER) || defined(EMBEDDED_LIBRARY) #include "sql_string.h" /* String */ #endif C_MODE_START #include C_MODE_END class String; typedef struct st_mysql_time MYSQL_TIME; #define DECIMAL_LONGLONG_DIGITS 22 #define DECIMAL_LONG_DIGITS 10 #define DECIMAL_LONG3_DIGITS 8 /** maximum length of buffer in our big digits (uint32). */ #define DECIMAL_BUFF_LENGTH 9 /* the number of digits that my_decimal can possibly contain */ #define DECIMAL_MAX_POSSIBLE_PRECISION (DECIMAL_BUFF_LENGTH * 9) /** maximum guaranteed precision of number in decimal digits (number of our digits * number of decimal digits in one our big digit - number of decimal digits in one our big digit decreased by 1 (because we always put decimal point on the border of our big digits)) */ #define DECIMAL_MAX_PRECISION (DECIMAL_MAX_POSSIBLE_PRECISION - 8*2) #define DECIMAL_MAX_SCALE 30 #define DECIMAL_NOT_SPECIFIED 31 /** maximum length of string representation (number of maximum decimal digits + 1 position for sign + 1 position for decimal point, no terminator) */ #define DECIMAL_MAX_STR_LENGTH (DECIMAL_MAX_POSSIBLE_PRECISION + 2) /** maximum size of packet length. */ #define DECIMAL_MAX_FIELD_SIZE DECIMAL_MAX_PRECISION inline uint my_decimal_size(uint precision, uint scale) { /* Always allocate more space to allow library to put decimal point where it want */ return decimal_size(precision, scale) + 1; } inline int my_decimal_int_part(uint precision, uint decimals) { return precision - ((decimals == DECIMAL_NOT_SPECIFIED) ? 0 : decimals); } /** my_decimal class limits 'decimal_t' type to what we need in MySQL. It contains internally all necessary space needed by the instance so no extra memory is needed. Objects should be moved using copy CTOR or assignment operator, rather than memcpy/memmove. */ class my_decimal :public decimal_t { /* Several of the routines in strings/decimal.c have had buffer overrun/underrun problems. These are *not* caught by valgrind. To catch them, we allocate dummy fields around the buffer, and test that their values do not change. */ #if !defined(DBUG_OFF) int foo1; #endif decimal_digit_t buffer[DECIMAL_BUFF_LENGTH]; #if !defined(DBUG_OFF) int foo2; static const int test_value= 123; #endif public: my_decimal(const my_decimal &rhs) : decimal_t(rhs) { rhs.sanity_check(); #if !defined(DBUG_OFF) foo1= test_value; foo2= test_value; #endif for (uint i= 0; i < DECIMAL_BUFF_LENGTH; i++) buffer[i]= rhs.buffer[i]; buf= buffer; } my_decimal& operator=(const my_decimal &rhs) { sanity_check(); rhs.sanity_check(); if (this == &rhs) return *this; decimal_t::operator=(rhs); for (uint i= 0; i < DECIMAL_BUFF_LENGTH; i++) buffer[i]= rhs.buffer[i]; buf= buffer; return *this; } void init() { #if !defined(DBUG_OFF) foo1= test_value; foo2= test_value; #endif /* Do not initialize more of the base class, we want to catch uninitialized use. */ len= DECIMAL_BUFF_LENGTH; buf= buffer; } my_decimal() { init(); } ~my_decimal() { sanity_check(); } void sanity_check() const { DBUG_ASSERT(foo1 == test_value); DBUG_ASSERT(foo2 == test_value); DBUG_ASSERT(buf == buffer); } bool sign() const { return decimal_t::sign; } void sign(bool s) { decimal_t::sign= s; } uint precision() const { return intg + frac; } /** Swap two my_decimal values */ void swap(my_decimal &rhs) { swap_variables(my_decimal, *this, rhs); } // Error reporting in server code only. int check_result(uint mask, int result) const #ifdef MYSQL_CLIENT { return result; } #endif ; }; #ifndef DBUG_OFF void print_decimal(const my_decimal *dec); void print_decimal_buff(const my_decimal *dec, const uchar* ptr, int length); const char *dbug_decimal_as_string(char *buff, const my_decimal *val); #else #define dbug_decimal_as_string(A) NULL #endif bool str_set_decimal(uint mask, const my_decimal *val, uint fixed_prec, uint fixed_dec, char filler, String *str, const CHARSET_INFO *cs); extern my_decimal decimal_zero; inline void max_my_decimal(my_decimal *to, int precision, int frac) { DBUG_ASSERT((precision <= DECIMAL_MAX_PRECISION)&& (frac <= DECIMAL_MAX_SCALE)); max_decimal(precision, frac, to); } inline void max_internal_decimal(my_decimal *to) { max_my_decimal(to, DECIMAL_MAX_PRECISION, 0); } inline int check_result_and_overflow(uint mask, int result, my_decimal *val) { if (val->check_result(mask, result) & E_DEC_OVERFLOW) { bool sign= val->sign(); val->sanity_check(); max_internal_decimal(val); val->sign(sign); } /* Avoid returning negative zero, cfr. decimal_cmp() For result == E_DEC_DIV_ZERO *val has not been assigned. */ if (result != E_DEC_DIV_ZERO && val->sign() && decimal_is_zero(val)) val->sign(false); return result; } inline uint my_decimal_length_to_precision(uint length, uint scale, bool unsigned_flag) { /* Precision can't be negative thus ignore unsigned_flag when length is 0. */ DBUG_ASSERT(length || !scale); uint retval= (uint) (length - (scale>0 ? 1:0) - (unsigned_flag || !length ? 0:1)); return retval; } inline uint32 my_decimal_precision_to_length_no_truncation(uint precision, uint8 scale, bool unsigned_flag) { /* When precision is 0 it means that original length was also 0. Thus unsigned_flag is ignored in this case. */ DBUG_ASSERT(precision || !scale); uint32 retval= (uint32)(precision + (scale > 0 ? 1 : 0) + (unsigned_flag || !precision ? 0 : 1)); return retval; } inline uint32 my_decimal_precision_to_length(uint precision, uint8 scale, bool unsigned_flag) { /* When precision is 0 it means that original length was also 0. Thus unsigned_flag is ignored in this case. */ DBUG_ASSERT(precision || !scale); set_if_smaller(precision, DECIMAL_MAX_PRECISION); return my_decimal_precision_to_length_no_truncation(precision, scale, unsigned_flag); } inline int my_decimal_string_length(const my_decimal *d) { /* length of string representation including terminating '\0' */ return decimal_string_size(d); } inline int my_decimal_max_length(const my_decimal *d) { /* -1 because we do not count \0 */ return decimal_string_size(d) - 1; } inline int my_decimal_get_binary_size(uint precision, uint scale) { return decimal_bin_size((int)precision, (int)scale); } inline void my_decimal2decimal(const my_decimal *from, my_decimal *to) { *to= *from; } int my_decimal2binary(uint mask, const my_decimal *d, uchar *bin, int prec, int scale); inline int binary2my_decimal(uint mask, const uchar *bin, my_decimal *d, int prec, int scale) { return d->check_result(mask, bin2decimal(bin, d, prec, scale)); } inline int my_decimal_set_zero(my_decimal *d) { /* We need the up-cast here, since my_decimal has sign() member functions, which conflicts with decimal_t::size (and decimal_make_zero is a macro, rather than a funcion). */ decimal_make_zero(static_cast(d)); return 0; } inline bool my_decimal_is_zero(const my_decimal *decimal_value) { return decimal_is_zero(decimal_value); } inline int my_decimal_round(uint mask, const my_decimal *from, int scale, bool truncate, my_decimal *to) { return from->check_result(mask, decimal_round(from, to, scale, (truncate ? TRUNCATE : HALF_UP))); } inline int my_decimal_floor(uint mask, const my_decimal *from, my_decimal *to) { return from->check_result(mask, decimal_round(from, to, 0, FLOOR)); } inline int my_decimal_ceiling(uint mask, const my_decimal *from, my_decimal *to) { return from->check_result(mask, decimal_round(from, to, 0, CEILING)); } inline bool str_set_decimal(const my_decimal *val, String *str, const CHARSET_INFO *cs) { return str_set_decimal(E_DEC_FATAL_ERROR, val, 0, 0, 0, str, cs); } #ifndef MYSQL_CLIENT class String; int my_decimal2string(uint mask, const my_decimal *d, uint fixed_prec, uint fixed_dec, char filler, String *str); #endif inline int my_decimal2int(uint mask, const my_decimal *d, my_bool unsigned_flag, longlong *l) { my_decimal rounded; /* decimal_round can return only E_DEC_TRUNCATED */ decimal_round(d, &rounded, 0, HALF_UP); return d->check_result(mask, (unsigned_flag ? decimal2ulonglong(&rounded, (ulonglong *)l) : decimal2longlong(&rounded, l))); } inline int my_decimal2double(uint, const my_decimal *d, double *result) { /* No need to call check_result as this will always succeed */ return decimal2double(d, result); } inline int my_decimal2lldiv_t(uint mask, const my_decimal *d, lldiv_t *to) { return d->check_result(mask, decimal2lldiv_t(d, to)); } inline int str2my_decimal(uint mask, const char *str, my_decimal *d, char **end) { return check_result_and_overflow(mask, string2decimal(str, d, end), d); } int str2my_decimal(uint mask, const char *from, size_t length, const CHARSET_INFO *charset, my_decimal *decimal_value); #if defined(MYSQL_SERVER) || defined(EMBEDDED_LIBRARY) inline int string2my_decimal(uint mask, const String *str, my_decimal *d) { return str2my_decimal(mask, str->ptr(), (uint)str->length(), str->charset(), d); } my_decimal *date2my_decimal(const MYSQL_TIME *ltime, my_decimal *dec); my_decimal *time2my_decimal(const MYSQL_TIME *ltime, my_decimal *dec); my_decimal *timeval2my_decimal(const struct timeval *tm, my_decimal *dec); #endif /*defined(MYSQL_SERVER) || defined(EMBEDDED_LIBRARY) */ inline int double2my_decimal(uint mask, double val, my_decimal *d) { return check_result_and_overflow(mask, double2decimal(val, d), d); } inline int int2my_decimal(uint mask, longlong i, my_bool unsigned_flag, my_decimal *d) { return d->check_result(mask, (unsigned_flag ? ulonglong2decimal((ulonglong)i, d) : longlong2decimal(i, d))); } inline void my_decimal_neg(decimal_t *arg) { // Avoid returning negative zero, cfr. decimal_cmp() if (decimal_is_zero(arg)) { arg->sign= 0; return; } arg->sign^= 1; } inline int my_decimal_add(uint mask, my_decimal *res, const my_decimal *a, const my_decimal *b) { return check_result_and_overflow(mask, decimal_add(a, b, res), res); } inline int my_decimal_sub(uint mask, my_decimal *res, const my_decimal *a, const my_decimal *b) { return check_result_and_overflow(mask, decimal_sub(a, b, res), res); } inline int my_decimal_mul(uint mask, my_decimal *res, const my_decimal *a, const my_decimal *b) { return check_result_and_overflow(mask, decimal_mul(a, b, res), res); } inline int my_decimal_div(uint mask, my_decimal *res, const my_decimal *a, const my_decimal *b, int div_scale_inc) { return check_result_and_overflow(mask, decimal_div(a, b, res, div_scale_inc), res); } inline int my_decimal_mod(uint mask, my_decimal *res, const my_decimal *a, const my_decimal *b) { return check_result_and_overflow(mask, decimal_mod(a, b, res), res); } /** @return -1 if ab and 0 if a==b */ inline int my_decimal_cmp(const my_decimal *a, const my_decimal *b) { return decimal_cmp(a, b); } inline bool operator<(const my_decimal &lhs, const my_decimal &rhs) { return my_decimal_cmp(&lhs, &rhs) < 0; } inline bool operator!=(const my_decimal &lhs, const my_decimal &rhs) { return my_decimal_cmp(&lhs, &rhs) != 0; } inline int my_decimal_intg(const my_decimal *a) { return decimal_intg(a); } void my_decimal_trim(ulong *precision, uint *scale); #endif // MY_DECIMAL_INCLUDED