/* Copyright (c) 2013, 2015, Oracle and/or its affiliates. All rights reserved. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #ifndef PREALLOCED_ARRAY_INCLUDED #define PREALLOCED_ARRAY_INCLUDED #include "my_global.h" #include "my_sys.h" #include "my_dbug.h" #include /** A typesafe replacement for DYNAMIC_ARRAY. We do our own memory management, and pre-allocate space for a number of elements. The purpose is to pre-allocate enough elements to cover normal use cases, thus saving malloc()/free() overhead. If we run out of space, we use malloc to allocate more space. The interface is chosen to be similar to std::vector. We keep the std::vector property that storage is contiguous. @remark Unlike DYNAMIC_ARRAY, elements are properly copied (rather than memcpy()d) if the underlying array needs to be expanded. @remark Depending on Has_trivial_destructor, we destroy objects which are removed from the array (including when the array object itself is destroyed). @tparam Element_type The type of the elements of the container. Elements must be copyable. @tparam Prealloc Number of elements to pre-allocate. @tparam Has_trivial_destructor If true, we don't destroy elements. We could have used type traits to determine this. __has_trivial_destructor is supported by some (but not all) compilers we use. We set the default to true, since we will most likely store pointers (shuffling objects around may be expensive). */ template class Prealloced_array { /** Casts the raw buffer to the proper Element_type. We use a raw buffer rather than Element_type[] in order to avoid having CTORs/DTORs invoked by the C++ runtime. */ Element_type *cast_rawbuff() { return static_cast(static_cast(&m_buff.data[0])); } public: /// Standard typedefs. typedef Element_type value_type; typedef size_t size_type; typedef ptrdiff_t difference_type; typedef Element_type *iterator; typedef const Element_type *const_iterator; explicit Prealloced_array(PSI_memory_key psi_key) : m_size(0), m_capacity(Prealloc), m_array_ptr(cast_rawbuff()), m_psi_key(psi_key) { // We do not want a zero-size array. compile_time_assert(Prealloc != 0); } /** An object instance "owns" its array, so we do deep copy here. */ Prealloced_array(const Prealloced_array &that) : m_size(0), m_capacity(Prealloc), m_array_ptr(cast_rawbuff()), m_psi_key(that.m_psi_key) { if (this->reserve(that.capacity())) return; for (const Element_type *p= that.begin(); p != that.end(); ++p) this->push_back(*p); } /** Range constructor. Constructs a container with as many elements as the range [first,last), with each element constructed from its corresponding element in that range, in the same order. */ Prealloced_array(PSI_memory_key psi_key, const_iterator first, const_iterator last) : m_size(0), m_capacity(Prealloc), m_array_ptr(cast_rawbuff()), m_psi_key(psi_key) { if (this->reserve(last - first)) return; for (; first != last; ++first) push_back(*first); } /** Copies all the elements from 'that' into this container. Any objects in this container are destroyed first. */ Prealloced_array &operator=(const Prealloced_array &that) { this->clear(); if (this->reserve(that.capacity())) return *this; for (const Element_type *p= that.begin(); p != that.end(); ++p) this->push_back(*p); return *this; } /** Runs DTOR on all elements if needed. Deallocates array if we exceeded the Preallocated amount. */ ~Prealloced_array() { if (!Has_trivial_destructor) { clear(); } if (m_array_ptr != cast_rawbuff()) my_free(m_array_ptr); } size_t capacity() const { return m_capacity; } size_t element_size() const { return sizeof(Element_type); } bool empty() const { return m_size == 0; } size_t size() const { return m_size; } Element_type &at(size_t n) { DBUG_ASSERT(n < size()); return m_array_ptr[n]; } const Element_type &at(size_t n) const { DBUG_ASSERT(n < size()); return m_array_ptr[n]; } Element_type &operator[](size_t n) { return at(n); } const Element_type &operator[](size_t n) const { return at(n); } Element_type &back() { return at(size() - 1); } const Element_type &back() const { return at(size() - 1); } Element_type &front() { return at(0); } const Element_type &front() const { return at(0); } /** begin : Returns a pointer to the first element in the array. end : Returns a pointer to the past-the-end element in the array. */ iterator begin() { return m_array_ptr; } iterator end() { return m_array_ptr + size(); } const_iterator begin() const { return m_array_ptr; } const_iterator end() const { return m_array_ptr + size(); } /** Reserves space for array elements. Copies over existing elements, in case we are re-expanding the array. @param n number of elements. @retval true if out-of-memory, false otherwise. */ bool reserve(size_t n) { if (n <= m_capacity) return false; void *mem= my_malloc(m_psi_key, n * element_size(), MYF(MY_WME)); if (!mem) return true; Element_type *new_array= static_cast(mem); // Copy all the existing elements into the new array. for (size_t ix= 0; ix < m_size; ++ix) { Element_type *new_p= &new_array[ix]; const Element_type &old_p= m_array_ptr[ix]; ::new (new_p) Element_type(old_p); // Copy into new location. if (!Has_trivial_destructor) old_p.~Element_type(); // Destroy the old element. } if (m_array_ptr != cast_rawbuff()) my_free(m_array_ptr); // Forget the old array; m_array_ptr= new_array; m_capacity= n; return false; } /** Copies an element into the back of the array. Complexity: Constant (amortized time, reallocation may happen). @retval true if out-of-memory, false otherwise. */ bool push_back(const Element_type &element) { const size_t expansion_factor= 2; if (m_size == m_capacity && reserve(m_capacity * expansion_factor)) return true; Element_type *p= &m_array_ptr[m_size++]; ::new (p) Element_type(element); return false; } /** Removes the last element in the array, effectively reducing the container size by one. This destroys the removed element. */ void pop_back() { DBUG_ASSERT(!empty()); if (!Has_trivial_destructor) back().~Element_type(); m_size-= 1; } /** The array is extended by inserting a new element before the element at the specified position. This is generally an inefficient operation, since we need to copy elements to make a new "hole" in the array. We use std::copy_backward to move objects, hence Element_type must be assignable. @retval An iterator pointing to the inserted value. */ iterator insert(iterator position, const value_type &val) { const difference_type n= position - begin(); if (position == end()) push_back(val); else { resize(m_size + 1); // resize() may invalidate position, so do not use it here. std::copy_backward(begin() + n, end() - 1, end()); *(begin() + n) = val; } return begin() + n; } /** Similar to std::set<>::insert() Extends the array by inserting a new element, but only if it cannot be found in the array already. Assumes that the array is sorted with std::less Insertion using this function will maintain order. @retval A pair, with its member pair::first set an iterator pointing to either the newly inserted element, or to the equivalent element already in the array. The pair::second element is set to true if the new element was inserted, or false if an equivalent element already existed. */ std::pair insert_unique(const value_type &val) { std::pair p= std::equal_range(begin(), end(), val); // p.first == p.second means we did not find it. if (p.first == p.second) return std::make_pair(insert(p.first, val), true); return std::make_pair(p.first, false); } /** Similar to std::set<>::erase() Removes a single element from the array by value. The removed element is destroyed. This effectively reduces the container size by one. This is generally an inefficient operation, since we need to copy elements to fill the "hole" in the array. Assumes that the array is sorted with std::less. @retval number of elements removed, 0 or 1. */ size_type erase_unique(const value_type &val) { std::pair p= std::equal_range(begin(), end(), val); if (p.first == p.second) return 0; // Not found erase(p.first); return 1; } /** Similar to std::set<>::count() @note Assumes that array is maintained with insert_unique/erase_unique. @retval 1 if element is found, 0 otherwise. */ size_type count_unique(const value_type& val) const { return std::binary_search(begin(), end(), val); } /** Removes a single element from the array. The removed element is destroyed. This effectively reduces the container size by one. This is generally an inefficient operation, since we need to copy elements to fill the "hole" in the array. We use std::copy to move objects, hence Element_type must be assignable. */ iterator erase(iterator position) { DBUG_ASSERT(position != end()); if (position + 1 != end()) std::copy(position + 1, end(), position); this->pop_back(); return position; } /** Removes a single element from the array. */ iterator erase(size_t ix) { DBUG_ASSERT(ix < size()); return erase(begin() + ix); } /** Removes tail elements from the array. The removed elements are destroyed. This effectively reduces the containers size by 'end() - first'. */ void erase_at_end(iterator first) { iterator last= end(); const difference_type diff= last - first; if (!Has_trivial_destructor) { for (; first != last; ++first) first->~Element_type(); } m_size-= diff; } /** Removes a range of elements from the array. The removed elements are destroyed. This effectively reduces the containers size by 'last - first'. This is generally an inefficient operation, since we need to copy elements to fill the "hole" in the array. We use std::copy to move objects, hence Element_type must be assignable. */ iterator erase(iterator first, iterator last) { if (first != last) erase_at_end(std::copy(last, end(), first)); return first; } /** Exchanges the content of the container by the content of rhs, which is another vector object of the same type. Sizes may differ. We use std::swap to do the operation. */ void swap(Prealloced_array &rhs) { // Just swap pointers if both arrays have done malloc. if (m_array_ptr != cast_rawbuff() && rhs.m_array_ptr != rhs.cast_rawbuff()) { std::swap(m_size, rhs.m_size); std::swap(m_capacity, rhs.m_capacity); std::swap(m_array_ptr, rhs.m_array_ptr); std::swap(m_psi_key, rhs.m_psi_key); return; } std::swap(*this, rhs); } /** Requests the container to reduce its capacity to fit its size. */ void shrink_to_fit() { // Cannot shrink the pre-allocated array. if (m_array_ptr == cast_rawbuff()) return; // No point in swapping. if (size() == capacity()) return; Prealloced_array(m_psi_key, begin(), end()).swap(*this); } /** Resizes the container so that it contains n elements. If n is smaller than the current container size, the content is reduced to its first n elements, removing those beyond (and destroying them). If n is greater than the current container size, the content is expanded by inserting at the end as many elements as needed to reach a size of n. If val is specified, the new elements are initialized as copies of val, otherwise, they are value-initialized. If n is also greater than the current container capacity, an automatic reallocation of the allocated storage space takes place. Notice that this function changes the actual content of the container by inserting or erasing elements from it. */ void resize(size_t n, const Element_type &val= Element_type()) { if (n == m_size) return; if (n > m_size) { if (!reserve(n)) { while (n != m_size) push_back(val); } return; } if (!Has_trivial_destructor) { while (n != m_size) pop_back(); } m_size= n; } /** Removes (and destroys) all elements. Does not change capacity. */ void clear() { if (!Has_trivial_destructor) { for (Element_type *p= begin(); p != end(); ++p) p->~Element_type(); // Destroy discarded element. } m_size= 0; } private: size_t m_size; size_t m_capacity; // This buffer must be properly aligned. my_aligned_storagem_buff; Element_type *m_array_ptr; PSI_memory_key m_psi_key; }; #endif // PREALLOCED_ARRAY_INCLUDED