aboutsummaryrefslogtreecommitdiff
path: root/mysql/strings/dtoa.c
diff options
context:
space:
mode:
Diffstat (limited to 'mysql/strings/dtoa.c')
-rw-r--r--mysql/strings/dtoa.c2784
1 files changed, 2784 insertions, 0 deletions
diff --git a/mysql/strings/dtoa.c b/mysql/strings/dtoa.c
new file mode 100644
index 0000000..e05f86a
--- /dev/null
+++ b/mysql/strings/dtoa.c
@@ -0,0 +1,2784 @@
+/* Copyright (c) 2007, 2013, Oracle and/or its affiliates. All rights reserved.
+
+ This library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Library General Public
+ License as published by the Free Software Foundation; version 2
+ of the License.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
+
+/****************************************************************
+
+ This file incorporates work covered by the following copyright and
+ permission notice:
+
+ The author of this software is David M. Gay.
+
+ Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
+
+ Permission to use, copy, modify, and distribute this software for any
+ purpose without fee is hereby granted, provided that this entire notice
+ is included in all copies of any software which is or includes a copy
+ or modification of this software and in all copies of the supporting
+ documentation for such software.
+
+ THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
+ WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
+ REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
+ OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
+
+ ***************************************************************/
+
+#include <my_global.h>
+#include <m_string.h> /* for memcpy and NOT_FIXED_DEC */
+
+#ifndef EOVERFLOW
+#define EOVERFLOW 84
+#endif
+
+/**
+ Appears to suffice to not call malloc() in most cases.
+ @todo
+ see if it is possible to get rid of malloc().
+ this constant is sufficient to avoid malloc() on all inputs I have tried.
+*/
+#define DTOA_BUFF_SIZE (460 * sizeof(void *))
+
+/* Magic value returned by dtoa() to indicate overflow */
+#define DTOA_OVERFLOW 9999
+
+static double my_strtod_int(const char *, char **, int *, char *, size_t);
+static char *dtoa(double, int, int, int *, int *, char **, char *, size_t);
+static void dtoa_free(char *, char *, size_t);
+
+/**
+ @brief
+ Converts a given floating point number to a zero-terminated string
+ representation using the 'f' format.
+
+ @details
+ This function is a wrapper around dtoa() to do the same as
+ sprintf(to, "%-.*f", precision, x), though the conversion is usually more
+ precise. The only difference is in handling [-,+]infinity and nan values,
+ in which case we print '0\0' to the output string and indicate an overflow.
+
+ @param x the input floating point number.
+ @param precision the number of digits after the decimal point.
+ All properties of sprintf() apply:
+ - if the number of significant digits after the decimal
+ point is less than precision, the resulting string is
+ right-padded with zeros
+ - if the precision is 0, no decimal point appears
+ - if a decimal point appears, at least one digit appears
+ before it
+ @param to pointer to the output buffer. The longest string which
+ my_fcvt() can return is FLOATING_POINT_BUFFER bytes
+ (including the terminating '\0').
+ @param error if not NULL, points to a location where the status of
+ conversion is stored upon return.
+ FALSE successful conversion
+ TRUE the input number is [-,+]infinity or nan.
+ The output string in this case is always '0'.
+ @return number of written characters (excluding terminating '\0')
+*/
+
+size_t my_fcvt(double x, int precision, char *to, my_bool *error)
+{
+ int decpt, sign, len, i;
+ char *res, *src, *end, *dst= to;
+ char buf[DTOA_BUFF_SIZE];
+ DBUG_ASSERT(precision >= 0 && precision < NOT_FIXED_DEC && to != NULL);
+
+ res= dtoa(x, 5, precision, &decpt, &sign, &end, buf, sizeof(buf));
+
+ if (decpt == DTOA_OVERFLOW)
+ {
+ dtoa_free(res, buf, sizeof(buf));
+ *to++= '0';
+ *to= '\0';
+ if (error != NULL)
+ *error= TRUE;
+ return 1;
+ }
+
+ src= res;
+ len= (int)(end - src);
+
+ if (sign)
+ *dst++= '-';
+
+ if (decpt <= 0)
+ {
+ *dst++= '0';
+ *dst++= '.';
+ for (i= decpt; i < 0; i++)
+ *dst++= '0';
+ }
+
+ for (i= 1; i <= len; i++)
+ {
+ *dst++= *src++;
+ if (i == decpt && i < len)
+ *dst++= '.';
+ }
+ while (i++ <= decpt)
+ *dst++= '0';
+
+ if (precision > 0)
+ {
+ if (len <= decpt)
+ *dst++= '.';
+
+ for (i= precision - MY_MAX(0, (len - decpt)); i > 0; i--)
+ *dst++= '0';
+ }
+
+ *dst= '\0';
+ if (error != NULL)
+ *error= FALSE;
+
+ dtoa_free(res, buf, sizeof(buf));
+
+ return dst - to;
+}
+
+/**
+ @brief
+ Converts a given floating point number to a zero-terminated string
+ representation with a given field width using the 'e' format
+ (aka scientific notation) or the 'f' one.
+
+ @details
+ The format is chosen automatically to provide the most number of significant
+ digits (and thus, precision) with a given field width. In many cases, the
+ result is similar to that of sprintf(to, "%g", x) with a few notable
+ differences:
+ - the conversion is usually more precise than C library functions.
+ - there is no 'precision' argument. instead, we specify the number of
+ characters available for conversion (i.e. a field width).
+ - the result never exceeds the specified field width. If the field is too
+ short to contain even a rounded decimal representation, my_gcvt()
+ indicates overflow and truncates the output string to the specified width.
+ - float-type arguments are handled differently than double ones. For a
+ float input number (i.e. when the 'type' argument is MY_GCVT_ARG_FLOAT)
+ we deliberately limit the precision of conversion by FLT_DIG digits to
+ avoid garbage past the significant digits.
+ - unlike sprintf(), in cases where the 'e' format is preferred, we don't
+ zero-pad the exponent to save space for significant digits. The '+' sign
+ for a positive exponent does not appear for the same reason.
+
+ @param x the input floating point number.
+ @param type is either MY_GCVT_ARG_FLOAT or MY_GCVT_ARG_DOUBLE.
+ Specifies the type of the input number (see notes above).
+ @param width field width in characters. The minimal field width to
+ hold any number representation (albeit rounded) is 7
+ characters ("-Ne-NNN").
+ @param to pointer to the output buffer. The result is always
+ zero-terminated, and the longest returned string is thus
+ 'width + 1' bytes.
+ @param error if not NULL, points to a location where the status of
+ conversion is stored upon return.
+ FALSE successful conversion
+ TRUE the input number is [-,+]infinity or nan.
+ The output string in this case is always '0'.
+ @return number of written characters (excluding terminating '\0')
+
+ @todo
+ Check if it is possible and makes sense to do our own rounding on top of
+ dtoa() instead of calling dtoa() twice in (rare) cases when the resulting
+ string representation does not fit in the specified field width and we want
+ to re-round the input number with fewer significant digits. Examples:
+
+ my_gcvt(-9e-3, ..., 4, ...);
+ my_gcvt(-9e-3, ..., 2, ...);
+ my_gcvt(1.87e-3, ..., 4, ...);
+ my_gcvt(55, ..., 1, ...);
+
+ We do our best to minimize such cases by:
+
+ - passing to dtoa() the field width as the number of significant digits
+
+ - removing the sign of the number early (and decreasing the width before
+ passing it to dtoa())
+
+ - choosing the proper format to preserve the most number of significant
+ digits.
+*/
+
+size_t my_gcvt(double x, my_gcvt_arg_type type, int width, char *to,
+ my_bool *error)
+{
+ int decpt, sign, len, exp_len;
+ char *res, *src, *end, *dst= to, *dend= dst + width;
+ char buf[DTOA_BUFF_SIZE];
+ my_bool have_space, force_e_format;
+ DBUG_ASSERT(width > 0 && to != NULL);
+
+ /* We want to remove '-' from equations early */
+ if (x < 0.)
+ width--;
+
+ res= dtoa(x, 4, type == MY_GCVT_ARG_DOUBLE ? width : MY_MIN(width, FLT_DIG),
+ &decpt, &sign, &end, buf, sizeof(buf));
+ if (decpt == DTOA_OVERFLOW)
+ {
+ dtoa_free(res, buf, sizeof(buf));
+ *to++= '0';
+ *to= '\0';
+ if (error != NULL)
+ *error= TRUE;
+ return 1;
+ }
+
+ if (error != NULL)
+ *error= FALSE;
+
+ src= res;
+ len= (int)(end - res);
+
+ /*
+ Number of digits in the exponent from the 'e' conversion.
+ The sign of the exponent is taken into account separetely, we don't need
+ to count it here.
+ */
+ exp_len= 1 + (decpt >= 101 || decpt <= -99) + (decpt >= 11 || decpt <= -9);
+
+ /*
+ Do we have enough space for all digits in the 'f' format?
+ Let 'len' be the number of significant digits returned by dtoa,
+ and F be the length of the resulting decimal representation.
+ Consider the following cases:
+ 1. decpt <= 0, i.e. we have "0.NNN" => F = len - decpt + 2
+ 2. 0 < decpt < len, i.e. we have "NNN.NNN" => F = len + 1
+ 3. len <= decpt, i.e. we have "NNN00" => F = decpt
+ */
+ have_space= (decpt <= 0 ? len - decpt + 2 :
+ decpt > 0 && decpt < len ? len + 1 :
+ decpt) <= width;
+ /*
+ The following is true when no significant digits can be placed with the
+ specified field width using the 'f' format, and the 'e' format
+ will not be truncated.
+ */
+ force_e_format= (decpt <= 0 && width <= 2 - decpt && width >= 3 + exp_len);
+ /*
+ Assume that we don't have enough space to place all significant digits in
+ the 'f' format. We have to choose between the 'e' format and the 'f' one
+ to keep as many significant digits as possible.
+ Let E and F be the lengths of decimal representaion in the 'e' and 'f'
+ formats, respectively. We want to use the 'f' format if, and only if F <= E.
+ Consider the following cases:
+ 1. decpt <= 0.
+ F = len - decpt + 2 (see above)
+ E = len + (len > 1) + 1 + 1 (decpt <= -99) + (decpt <= -9) + 1
+ ("N.NNe-MMM")
+ (F <= E) <=> (len == 1 && decpt >= -1) || (len > 1 && decpt >= -2)
+ We also need to ensure that if the 'f' format is chosen,
+ the field width allows us to place at least one significant digit
+ (i.e. width > 2 - decpt). If not, we prefer the 'e' format.
+ 2. 0 < decpt < len
+ F = len + 1 (see above)
+ E = len + 1 + 1 + ... ("N.NNeMMM")
+ F is always less than E.
+ 3. len <= decpt <= width
+ In this case we have enough space to represent the number in the 'f'
+ format, so we prefer it with some exceptions.
+ 4. width < decpt
+ The number cannot be represented in the 'f' format at all, always use
+ the 'e' 'one.
+ */
+ if ((have_space ||
+ /*
+ Not enough space, let's see if the 'f' format provides the most number
+ of significant digits.
+ */
+ ((decpt <= width && (decpt >= -1 || (decpt == -2 &&
+ (len > 1 || !force_e_format)))) &&
+ !force_e_format)) &&
+
+ /*
+ Use the 'e' format in some cases even if we have enough space for the
+ 'f' one. See comment for MAX_DECPT_FOR_F_FORMAT.
+ */
+ (!have_space || (decpt >= -MAX_DECPT_FOR_F_FORMAT + 1 &&
+ (decpt <= MAX_DECPT_FOR_F_FORMAT || len > decpt))))
+ {
+ /* 'f' format */
+ int i;
+
+ width-= (decpt < len) + (decpt <= 0 ? 1 - decpt : 0);
+
+ /* Do we have to truncate any digits? */
+ if (width < len)
+ {
+ if (width < decpt)
+ {
+ if (error != NULL)
+ *error= TRUE;
+ width= decpt;
+ }
+
+ /*
+ We want to truncate (len - width) least significant digits after the
+ decimal point. For this we are calling dtoa with mode=5, passing the
+ number of significant digits = (len-decpt) - (len-width) = width-decpt
+ */
+ dtoa_free(res, buf, sizeof(buf));
+ res= dtoa(x, 5, width - decpt, &decpt, &sign, &end, buf, sizeof(buf));
+ src= res;
+ len= (int)(end - res);
+ }
+
+ if (len == 0)
+ {
+ /* Underflow. Just print '0' and exit */
+ *dst++= '0';
+ goto end;
+ }
+
+ /*
+ At this point we are sure we have enough space to put all digits
+ returned by dtoa
+ */
+ if (sign && dst < dend)
+ *dst++= '-';
+ if (decpt <= 0)
+ {
+ if (dst < dend)
+ *dst++= '0';
+ if (len > 0 && dst < dend)
+ *dst++= '.';
+ for (; decpt < 0 && dst < dend; decpt++)
+ *dst++= '0';
+ }
+
+ for (i= 1; i <= len && dst < dend; i++)
+ {
+ *dst++= *src++;
+ if (i == decpt && i < len && dst < dend)
+ *dst++= '.';
+ }
+ while (i++ <= decpt && dst < dend)
+ *dst++= '0';
+ }
+ else
+ {
+ /* 'e' format */
+ int decpt_sign= 0;
+
+ if (--decpt < 0)
+ {
+ decpt= -decpt;
+ width--;
+ decpt_sign= 1;
+ }
+ width-= 1 + exp_len; /* eNNN */
+
+ if (len > 1)
+ width--;
+
+ if (width <= 0)
+ {
+ /* Overflow */
+ if (error != NULL)
+ *error= TRUE;
+ width= 0;
+ }
+
+ /* Do we have to truncate any digits? */
+ if (width < len)
+ {
+ /* Yes, re-convert with a smaller width */
+ dtoa_free(res, buf, sizeof(buf));
+ res= dtoa(x, 4, width, &decpt, &sign, &end, buf, sizeof(buf));
+ src= res;
+ len= (int)(end - res);
+ if (--decpt < 0)
+ decpt= -decpt;
+ }
+ /*
+ At this point we are sure we have enough space to put all digits
+ returned by dtoa
+ */
+ if (sign && dst < dend)
+ *dst++= '-';
+ if (dst < dend)
+ *dst++= *src++;
+ if (len > 1 && dst < dend)
+ {
+ *dst++= '.';
+ while (src < end && dst < dend)
+ *dst++= *src++;
+ }
+ if (dst < dend)
+ *dst++= 'e';
+ if (decpt_sign && dst < dend)
+ *dst++= '-';
+
+ if (decpt >= 100 && dst < dend)
+ {
+ *dst++= decpt / 100 + '0';
+ decpt%= 100;
+ if (dst < dend)
+ *dst++= decpt / 10 + '0';
+ }
+ else if (decpt >= 10 && dst < dend)
+ *dst++= decpt / 10 + '0';
+ if (dst < dend)
+ *dst++= decpt % 10 + '0';
+
+ }
+
+end:
+ dtoa_free(res, buf, sizeof(buf));
+ *dst= '\0';
+
+ return dst - to;
+}
+
+/**
+ @brief
+ Converts string to double (string does not have to be zero-terminated)
+
+ @details
+ This is a wrapper around dtoa's version of strtod().
+
+ @param str input string
+ @param end address of a pointer to the first character after the input
+ string. Upon return the pointer is set to point to the first
+ rejected character.
+ @param error Upon return is set to EOVERFLOW in case of underflow or
+ overflow.
+
+ @return The resulting double value. In case of underflow, 0.0 is
+ returned. In case overflow, signed DBL_MAX is returned.
+*/
+
+double my_strtod(const char *str, char **end, int *error)
+{
+ char buf[DTOA_BUFF_SIZE];
+ double res;
+ DBUG_ASSERT(end != NULL && ((str != NULL && *end != NULL) ||
+ (str == NULL && *end == NULL)) &&
+ error != NULL);
+
+ res= my_strtod_int(str, end, error, buf, sizeof(buf));
+ return (*error == 0) ? res : (res < 0 ? -DBL_MAX : DBL_MAX);
+}
+
+
+double my_atof(const char *nptr)
+{
+ int error;
+ const char *end= nptr+65535; /* Should be enough */
+ return (my_strtod(nptr, (char**) &end, &error));
+}
+
+
+/****************************************************************
+ *
+ * The author of this software is David M. Gay.
+ *
+ * Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
+ *
+ * Permission to use, copy, modify, and distribute this software for any
+ * purpose without fee is hereby granted, provided that this entire notice
+ * is included in all copies of any software which is or includes a copy
+ * or modification of this software and in all copies of the supporting
+ * documentation for such software.
+ *
+ * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
+ * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
+ * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
+ * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
+ *
+ ***************************************************************/
+/* Please send bug reports to David M. Gay (dmg at acm dot org,
+ * with " at " changed at "@" and " dot " changed to "."). */
+
+/*
+ Original copy of the software is located at http://www.netlib.org/fp/dtoa.c
+ It was adjusted to serve MySQL server needs:
+ * strtod() was modified to not expect a zero-terminated string.
+ It now honors 'se' (end of string) argument as the input parameter,
+ not just as the output one.
+ * in dtoa(), in case of overflow/underflow/NaN result string now contains "0";
+ decpt is set to DTOA_OVERFLOW to indicate overflow.
+ * support for VAX, IBM mainframe and 16-bit hardware removed
+ * we always assume that 64-bit integer type is available
+ * support for Kernigan-Ritchie style headers (pre-ANSI compilers)
+ removed
+ * all gcc warnings ironed out
+ * we always assume multithreaded environment, so we had to change
+ memory allocation procedures to use stack in most cases;
+ malloc is used as the last resort.
+ * pow5mult rewritten to use pre-calculated pow5 list instead of
+ the one generated on the fly.
+*/
+
+
+/*
+ On a machine with IEEE extended-precision registers, it is
+ necessary to specify double-precision (53-bit) rounding precision
+ before invoking strtod or dtoa. If the machine uses (the equivalent
+ of) Intel 80x87 arithmetic, the call
+ _control87(PC_53, MCW_PC);
+ does this with many compilers. Whether this or another call is
+ appropriate depends on the compiler; for this to work, it may be
+ necessary to #include "float.h" or another system-dependent header
+ file.
+*/
+
+/*
+ #define Honor_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3
+ and dtoa should round accordingly.
+ #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3
+ and Honor_FLT_ROUNDS is not #defined.
+
+ TODO: check if we can get rid of the above two
+*/
+
+typedef int32 Long;
+typedef uint32 ULong;
+typedef int64 LLong;
+typedef uint64 ULLong;
+
+typedef union { double d; ULong L[2]; } U;
+
+#if defined(WORDS_BIGENDIAN) || (defined(__FLOAT_WORD_ORDER) && \
+ (__FLOAT_WORD_ORDER == __BIG_ENDIAN))
+#define word0(x) (x)->L[0]
+#define word1(x) (x)->L[1]
+#else
+#define word0(x) (x)->L[1]
+#define word1(x) (x)->L[0]
+#endif
+
+#define dval(x) (x)->d
+
+/* #define P DBL_MANT_DIG */
+/* Ten_pmax= floor(P*log(2)/log(5)) */
+/* Bletch= (highest power of 2 < DBL_MAX_10_EXP) / 16 */
+/* Quick_max= floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
+/* Int_max= floor(P*log(FLT_RADIX)/log(10) - 1) */
+
+#define Exp_shift 20
+#define Exp_shift1 20
+#define Exp_msk1 0x100000
+#define Exp_mask 0x7ff00000
+#define P 53
+#define Bias 1023
+#define Emin (-1022)
+#define Exp_1 0x3ff00000
+#define Exp_11 0x3ff00000
+#define Ebits 11
+#define Frac_mask 0xfffff
+#define Frac_mask1 0xfffff
+#define Ten_pmax 22
+#define Bletch 0x10
+#define Bndry_mask 0xfffff
+#define Bndry_mask1 0xfffff
+#define LSB 1
+#define Sign_bit 0x80000000
+#define Log2P 1
+#define Tiny1 1
+#define Quick_max 14
+#define Int_max 14
+
+#ifndef Flt_Rounds
+#ifdef FLT_ROUNDS
+#define Flt_Rounds FLT_ROUNDS
+#else
+#define Flt_Rounds 1
+#endif
+#endif /*Flt_Rounds*/
+
+#ifdef Honor_FLT_ROUNDS
+#define Rounding rounding
+#undef Check_FLT_ROUNDS
+#define Check_FLT_ROUNDS
+#else
+#define Rounding Flt_Rounds
+#endif
+
+#define rounded_product(a,b) a*= b
+#define rounded_quotient(a,b) a/= b
+
+#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
+#define Big1 0xffffffff
+#define FFFFFFFF 0xffffffffUL
+
+/* This is tested to be enough for dtoa */
+
+#define Kmax 15
+
+#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \
+ 2*sizeof(int) + y->wds*sizeof(ULong))
+
+/* Arbitrary-length integer */
+
+typedef struct Bigint
+{
+ union {
+ ULong *x; /* points right after this Bigint object */
+ struct Bigint *next; /* to maintain free lists */
+ } p;
+ int k; /* 2^k = maxwds */
+ int maxwds; /* maximum length in 32-bit words */
+ int sign; /* not zero if number is negative */
+ int wds; /* current length in 32-bit words */
+} Bigint;
+
+
+/* A simple stack-memory based allocator for Bigints */
+
+typedef struct Stack_alloc
+{
+ char *begin;
+ char *free;
+ char *end;
+ /*
+ Having list of free blocks lets us reduce maximum required amount
+ of memory from ~4000 bytes to < 1680 (tested on x86).
+ */
+ Bigint *freelist[Kmax+1];
+} Stack_alloc;
+
+
+/*
+ Try to allocate object on stack, and resort to malloc if all
+ stack memory is used. Ensure allocated objects to be aligned by the pointer
+ size in order to not break the alignment rules when storing a pointer to a
+ Bigint.
+*/
+
+static Bigint *Balloc(int k, Stack_alloc *alloc)
+{
+ Bigint *rv;
+ DBUG_ASSERT(k <= Kmax);
+ if (k <= Kmax && alloc->freelist[k])
+ {
+ rv= alloc->freelist[k];
+ alloc->freelist[k]= rv->p.next;
+ }
+ else
+ {
+ int x, len;
+
+ x= 1 << k;
+ len= MY_ALIGN(sizeof(Bigint) + x * sizeof(ULong), SIZEOF_CHARP);
+
+ if (alloc->free + len <= alloc->end)
+ {
+ rv= (Bigint*) alloc->free;
+ alloc->free+= len;
+ }
+ else
+ rv= (Bigint*) malloc(len);
+
+ rv->k= k;
+ rv->maxwds= x;
+ }
+ rv->sign= rv->wds= 0;
+ rv->p.x= (ULong*) (rv + 1);
+ return rv;
+}
+
+
+/*
+ If object was allocated on stack, try putting it to the free
+ list. Otherwise call free().
+*/
+
+static void Bfree(Bigint *v, Stack_alloc *alloc)
+{
+ char *gptr= (char*) v; /* generic pointer */
+ if (gptr < alloc->begin || gptr >= alloc->end)
+ free(gptr);
+ else if (v->k <= Kmax)
+ {
+ /*
+ Maintain free lists only for stack objects: this way we don't
+ have to bother with freeing lists in the end of dtoa;
+ heap should not be used normally anyway.
+ */
+ v->p.next= alloc->freelist[v->k];
+ alloc->freelist[v->k]= v;
+ }
+}
+
+
+/*
+ This is to place return value of dtoa in: tries to use stack
+ as well, but passes by free lists management and just aligns len by
+ the pointer size in order to not break the alignment rules when storing a
+ pointer to a Bigint.
+*/
+
+static char *dtoa_alloc(int i, Stack_alloc *alloc)
+{
+ char *rv;
+ int aligned_size= MY_ALIGN(i, SIZEOF_CHARP);
+ if (alloc->free + aligned_size <= alloc->end)
+ {
+ rv= alloc->free;
+ alloc->free+= aligned_size;
+ }
+ else
+ rv= malloc(i);
+ return rv;
+}
+
+
+/*
+ dtoa_free() must be used to free values s returned by dtoa()
+ This is the counterpart of dtoa_alloc()
+*/
+
+static void dtoa_free(char *gptr, char *buf, size_t buf_size)
+{
+ if (gptr < buf || gptr >= buf + buf_size)
+ free(gptr);
+}
+
+
+/* Bigint arithmetic functions */
+
+/* Multiply by m and add a */
+
+static Bigint *multadd(Bigint *b, int m, int a, Stack_alloc *alloc)
+{
+ int i, wds;
+ ULong *x;
+ ULLong carry, y;
+ Bigint *b1;
+
+ wds= b->wds;
+ x= b->p.x;
+ i= 0;
+ carry= a;
+ do
+ {
+ y= *x * (ULLong)m + carry;
+ carry= y >> 32;
+ *x++= (ULong)(y & FFFFFFFF);
+ }
+ while (++i < wds);
+ if (carry)
+ {
+ if (wds >= b->maxwds)
+ {
+ b1= Balloc(b->k+1, alloc);
+ Bcopy(b1, b);
+ Bfree(b, alloc);
+ b= b1;
+ }
+ b->p.x[wds++]= (ULong) carry;
+ b->wds= wds;
+ }
+ return b;
+}
+
+/**
+ Converts a string to Bigint.
+
+ Now we have nd0 digits, starting at s, followed by a
+ decimal point, followed by nd-nd0 digits.
+ Unless nd0 == nd, in which case we have a number of the form:
+ ".xxxxxx" or "xxxxxx."
+
+ @param s Input string, already partially parsed by my_strtod_int().
+ @param nd0 Number of digits before decimal point.
+ @param nd Total number of digits.
+ @param y9 Pre-computed value of the first nine digits.
+ @param alloc Stack allocator for Bigints.
+ */
+static Bigint *s2b(const char *s, int nd0, int nd, ULong y9, Stack_alloc *alloc)
+{
+ Bigint *b;
+ int i, k;
+ Long x, y;
+
+ x= (nd + 8) / 9;
+ for (k= 0, y= 1; x > y; y <<= 1, k++) ;
+ b= Balloc(k, alloc);
+ b->p.x[0]= y9;
+ b->wds= 1;
+
+ i= 9;
+ if (9 < nd0)
+ {
+ s+= 9;
+ do
+ b= multadd(b, 10, *s++ - '0', alloc);
+ while (++i < nd0);
+ s++; /* skip '.' */
+ }
+ else
+ s+= 10;
+ /* now do the fractional part */
+ for(; i < nd; i++)
+ b= multadd(b, 10, *s++ - '0', alloc);
+ return b;
+}
+
+
+static int hi0bits(ULong x)
+{
+ int k= 0;
+
+ if (!(x & 0xffff0000))
+ {
+ k= 16;
+ x<<= 16;
+ }
+ if (!(x & 0xff000000))
+ {
+ k+= 8;
+ x<<= 8;
+ }
+ if (!(x & 0xf0000000))
+ {
+ k+= 4;
+ x<<= 4;
+ }
+ if (!(x & 0xc0000000))
+ {
+ k+= 2;
+ x<<= 2;
+ }
+ if (!(x & 0x80000000))
+ {
+ k++;
+ if (!(x & 0x40000000))
+ return 32;
+ }
+ return k;
+}
+
+
+static int lo0bits(ULong *y)
+{
+ int k;
+ ULong x= *y;
+
+ if (x & 7)
+ {
+ if (x & 1)
+ return 0;
+ if (x & 2)
+ {
+ *y= x >> 1;
+ return 1;
+ }
+ *y= x >> 2;
+ return 2;
+ }
+ k= 0;
+ if (!(x & 0xffff))
+ {
+ k= 16;
+ x>>= 16;
+ }
+ if (!(x & 0xff))
+ {
+ k+= 8;
+ x>>= 8;
+ }
+ if (!(x & 0xf))
+ {
+ k+= 4;
+ x>>= 4;
+ }
+ if (!(x & 0x3))
+ {
+ k+= 2;
+ x>>= 2;
+ }
+ if (!(x & 1))
+ {
+ k++;
+ x>>= 1;
+ if (!x)
+ return 32;
+ }
+ *y= x;
+ return k;
+}
+
+
+/* Convert integer to Bigint number */
+
+static Bigint *i2b(int i, Stack_alloc *alloc)
+{
+ Bigint *b;
+
+ b= Balloc(1, alloc);
+ b->p.x[0]= i;
+ b->wds= 1;
+ return b;
+}
+
+
+/* Multiply two Bigint numbers */
+
+static Bigint *mult(Bigint *a, Bigint *b, Stack_alloc *alloc)
+{
+ Bigint *c;
+ int k, wa, wb, wc;
+ ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0;
+ ULong y;
+ ULLong carry, z;
+
+ if (a->wds < b->wds)
+ {
+ c= a;
+ a= b;
+ b= c;
+ }
+ k= a->k;
+ wa= a->wds;
+ wb= b->wds;
+ wc= wa + wb;
+ if (wc > a->maxwds)
+ k++;
+ c= Balloc(k, alloc);
+ for (x= c->p.x, xa= x + wc; x < xa; x++)
+ *x= 0;
+ xa= a->p.x;
+ xae= xa + wa;
+ xb= b->p.x;
+ xbe= xb + wb;
+ xc0= c->p.x;
+ for (; xb < xbe; xc0++)
+ {
+ if ((y= *xb++))
+ {
+ x= xa;
+ xc= xc0;
+ carry= 0;
+ do
+ {
+ z= *x++ * (ULLong)y + *xc + carry;
+ carry= z >> 32;
+ *xc++= (ULong) (z & FFFFFFFF);
+ }
+ while (x < xae);
+ *xc= (ULong) carry;
+ }
+ }
+ for (xc0= c->p.x, xc= xc0 + wc; wc > 0 && !*--xc; --wc) ;
+ c->wds= wc;
+ return c;
+}
+
+
+/*
+ Precalculated array of powers of 5: tested to be enough for
+ vasting majority of dtoa_r cases.
+*/
+
+static ULong powers5[]=
+{
+ 625UL,
+
+ 390625UL,
+
+ 2264035265UL, 35UL,
+
+ 2242703233UL, 762134875UL, 1262UL,
+
+ 3211403009UL, 1849224548UL, 3668416493UL, 3913284084UL, 1593091UL,
+
+ 781532673UL, 64985353UL, 253049085UL, 594863151UL, 3553621484UL,
+ 3288652808UL, 3167596762UL, 2788392729UL, 3911132675UL, 590UL,
+
+ 2553183233UL, 3201533787UL, 3638140786UL, 303378311UL, 1809731782UL,
+ 3477761648UL, 3583367183UL, 649228654UL, 2915460784UL, 487929380UL,
+ 1011012442UL, 1677677582UL, 3428152256UL, 1710878487UL, 1438394610UL,
+ 2161952759UL, 4100910556UL, 1608314830UL, 349175UL
+};
+
+
+static Bigint p5_a[]=
+{
+ /* { x } - k - maxwds - sign - wds */
+ { { powers5 }, 1, 1, 0, 1 },
+ { { powers5 + 1 }, 1, 1, 0, 1 },
+ { { powers5 + 2 }, 1, 2, 0, 2 },
+ { { powers5 + 4 }, 2, 3, 0, 3 },
+ { { powers5 + 7 }, 3, 5, 0, 5 },
+ { { powers5 + 12 }, 4, 10, 0, 10 },
+ { { powers5 + 22 }, 5, 19, 0, 19 }
+};
+
+#define P5A_MAX (sizeof(p5_a)/sizeof(*p5_a) - 1)
+
+static Bigint *pow5mult(Bigint *b, int k, Stack_alloc *alloc)
+{
+ Bigint *b1, *p5, *p51=NULL;
+ int i;
+ static int p05[3]= { 5, 25, 125 };
+ my_bool overflow= FALSE;
+
+ if ((i= k & 3))
+ b= multadd(b, p05[i-1], 0, alloc);
+
+ if (!(k>>= 2))
+ return b;
+ p5= p5_a;
+ for (;;)
+ {
+ if (k & 1)
+ {
+ b1= mult(b, p5, alloc);
+ Bfree(b, alloc);
+ b= b1;
+ }
+ if (!(k>>= 1))
+ break;
+ /* Calculate next power of 5 */
+ if (overflow)
+ {
+ p51= mult(p5, p5, alloc);
+ Bfree(p5, alloc);
+ p5= p51;
+ }
+ else if (p5 < p5_a + P5A_MAX)
+ ++p5;
+ else if (p5 == p5_a + P5A_MAX)
+ {
+ p5= mult(p5, p5, alloc);
+ overflow= TRUE;
+ }
+ }
+ if (p51)
+ Bfree(p51, alloc);
+ return b;
+}
+
+
+static Bigint *lshift(Bigint *b, int k, Stack_alloc *alloc)
+{
+ int i, k1, n, n1;
+ Bigint *b1;
+ ULong *x, *x1, *xe, z;
+
+ n= k >> 5;
+ k1= b->k;
+ n1= n + b->wds + 1;
+ for (i= b->maxwds; n1 > i; i<<= 1)
+ k1++;
+ b1= Balloc(k1, alloc);
+ x1= b1->p.x;
+ for (i= 0; i < n; i++)
+ *x1++= 0;
+ x= b->p.x;
+ xe= x + b->wds;
+ if (k&= 0x1f)
+ {
+ k1= 32 - k;
+ z= 0;
+ do
+ {
+ *x1++= *x << k | z;
+ z= *x++ >> k1;
+ }
+ while (x < xe);
+ if ((*x1= z))
+ ++n1;
+ }
+ else
+ do
+ *x1++= *x++;
+ while (x < xe);
+ b1->wds= n1 - 1;
+ Bfree(b, alloc);
+ return b1;
+}
+
+
+static int cmp(Bigint *a, Bigint *b)
+{
+ ULong *xa, *xa0, *xb, *xb0;
+ int i, j;
+
+ i= a->wds;
+ j= b->wds;
+ if (i-= j)
+ return i;
+ xa0= a->p.x;
+ xa= xa0 + j;
+ xb0= b->p.x;
+ xb= xb0 + j;
+ for (;;)
+ {
+ if (*--xa != *--xb)
+ return *xa < *xb ? -1 : 1;
+ if (xa <= xa0)
+ break;
+ }
+ return 0;
+}
+
+
+static Bigint *diff(Bigint *a, Bigint *b, Stack_alloc *alloc)
+{
+ Bigint *c;
+ int i, wa, wb;
+ ULong *xa, *xae, *xb, *xbe, *xc;
+ ULLong borrow, y;
+
+ i= cmp(a,b);
+ if (!i)
+ {
+ c= Balloc(0, alloc);
+ c->wds= 1;
+ c->p.x[0]= 0;
+ return c;
+ }
+ if (i < 0)
+ {
+ c= a;
+ a= b;
+ b= c;
+ i= 1;
+ }
+ else
+ i= 0;
+ c= Balloc(a->k, alloc);
+ c->sign= i;
+ wa= a->wds;
+ xa= a->p.x;
+ xae= xa + wa;
+ wb= b->wds;
+ xb= b->p.x;
+ xbe= xb + wb;
+ xc= c->p.x;
+ borrow= 0;
+ do
+ {
+ y= (ULLong)*xa++ - *xb++ - borrow;
+ borrow= y >> 32 & (ULong)1;
+ *xc++= (ULong) (y & FFFFFFFF);
+ }
+ while (xb < xbe);
+ while (xa < xae)
+ {
+ y= *xa++ - borrow;
+ borrow= y >> 32 & (ULong)1;
+ *xc++= (ULong) (y & FFFFFFFF);
+ }
+ while (!*--xc)
+ wa--;
+ c->wds= wa;
+ return c;
+}
+
+
+static double ulp(U *x)
+{
+ Long L;
+ U u;
+
+ L= (word0(x) & Exp_mask) - (P - 1)*Exp_msk1;
+ word0(&u) = L;
+ word1(&u) = 0;
+ return dval(&u);
+}
+
+
+static double b2d(Bigint *a, int *e)
+{
+ ULong *xa, *xa0, w, y, z;
+ int k;
+ U d;
+#define d0 word0(&d)
+#define d1 word1(&d)
+
+ xa0= a->p.x;
+ xa= xa0 + a->wds;
+ y= *--xa;
+ k= hi0bits(y);
+ *e= 32 - k;
+ if (k < Ebits)
+ {
+ d0= Exp_1 | y >> (Ebits - k);
+ w= xa > xa0 ? *--xa : 0;
+ d1= y << ((32-Ebits) + k) | w >> (Ebits - k);
+ goto ret_d;
+ }
+ z= xa > xa0 ? *--xa : 0;
+ if (k-= Ebits)
+ {
+ d0= Exp_1 | y << k | z >> (32 - k);
+ y= xa > xa0 ? *--xa : 0;
+ d1= z << k | y >> (32 - k);
+ }
+ else
+ {
+ d0= Exp_1 | y;
+ d1= z;
+ }
+ ret_d:
+#undef d0
+#undef d1
+ return dval(&d);
+}
+
+
+static Bigint *d2b(U *d, int *e, int *bits, Stack_alloc *alloc)
+{
+ Bigint *b;
+ int de, k;
+ ULong *x, y, z;
+ int i;
+#define d0 word0(d)
+#define d1 word1(d)
+
+ b= Balloc(1, alloc);
+ x= b->p.x;
+
+ z= d0 & Frac_mask;
+ d0 &= 0x7fffffff; /* clear sign bit, which we ignore */
+ if ((de= (int)(d0 >> Exp_shift)))
+ z|= Exp_msk1;
+ if ((y= d1))
+ {
+ if ((k= lo0bits(&y)))
+ {
+ x[0]= y | z << (32 - k);
+ z>>= k;
+ }
+ else
+ x[0]= y;
+ i= b->wds= (x[1]= z) ? 2 : 1;
+ }
+ else
+ {
+ k= lo0bits(&z);
+ x[0]= z;
+ i= b->wds= 1;
+ k+= 32;
+ }
+ if (de)
+ {
+ *e= de - Bias - (P-1) + k;
+ *bits= P - k;
+ }
+ else
+ {
+ *e= de - Bias - (P-1) + 1 + k;
+ *bits= 32*i - hi0bits(x[i-1]);
+ }
+ return b;
+#undef d0
+#undef d1
+}
+
+
+static double ratio(Bigint *a, Bigint *b)
+{
+ U da, db;
+ int k, ka, kb;
+
+ dval(&da)= b2d(a, &ka);
+ dval(&db)= b2d(b, &kb);
+ k= ka - kb + 32*(a->wds - b->wds);
+ if (k > 0)
+ word0(&da)+= k*Exp_msk1;
+ else
+ {
+ k= -k;
+ word0(&db)+= k*Exp_msk1;
+ }
+ return dval(&da) / dval(&db);
+}
+
+static const double tens[] =
+{
+ 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
+ 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
+ 1e20, 1e21, 1e22
+};
+
+static const double bigtens[]= { 1e16, 1e32, 1e64, 1e128, 1e256 };
+static const double tinytens[]=
+{ 1e-16, 1e-32, 1e-64, 1e-128,
+ 9007199254740992.*9007199254740992.e-256 /* = 2^106 * 1e-53 */
+};
+/*
+ The factor of 2^53 in tinytens[4] helps us avoid setting the underflow
+ flag unnecessarily. It leads to a song and dance at the end of strtod.
+*/
+#define Scale_Bit 0x10
+#define n_bigtens 5
+
+/*
+ strtod for IEEE--arithmetic machines.
+
+ This strtod returns a nearest machine number to the input decimal
+ string (or sets errno to EOVERFLOW). Ties are broken by the IEEE round-even
+ rule.
+
+ Inspired loosely by William D. Clinger's paper "How to Read Floating
+ Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
+
+ Modifications:
+
+ 1. We only require IEEE (not IEEE double-extended).
+ 2. We get by with floating-point arithmetic in a case that
+ Clinger missed -- when we're computing d * 10^n
+ for a small integer d and the integer n is not too
+ much larger than 22 (the maximum integer k for which
+ we can represent 10^k exactly), we may be able to
+ compute (d*10^k) * 10^(e-k) with just one roundoff.
+ 3. Rather than a bit-at-a-time adjustment of the binary
+ result in the hard case, we use floating-point
+ arithmetic to determine the adjustment to within
+ one bit; only in really hard cases do we need to
+ compute a second residual.
+ 4. Because of 3., we don't need a large table of powers of 10
+ for ten-to-e (just some small tables, e.g. of 10^k
+ for 0 <= k <= 22).
+*/
+
+static double my_strtod_int(const char *s00, char **se, int *error, char *buf, size_t buf_size)
+{
+ int scale;
+ int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c= 0, dsign,
+ e, e1, esign, i, j, k, nd, nd0, nf, nz, nz0, sign;
+ const char *s, *s0, *s1, *end = *se;
+ double aadj, aadj1;
+ U aadj2, adj, rv, rv0;
+ Long L;
+ ULong y, z;
+ Bigint *bb, *bb1, *bd, *bd0, *bs, *delta;
+#ifdef Honor_FLT_ROUNDS
+ int rounding;
+#endif
+ Stack_alloc alloc;
+
+ *error= 0;
+
+ alloc.begin= alloc.free= buf;
+ alloc.end= buf + buf_size;
+ memset(alloc.freelist, 0, sizeof(alloc.freelist));
+
+ sign= nz0= nz= 0;
+ dval(&rv)= 0.;
+ for (s= s00; s < end; s++)
+ switch (*s) {
+ case '-':
+ sign= 1;
+ /* no break */
+ case '+':
+ s++;
+ goto break2;
+ case '\t':
+ case '\n':
+ case '\v':
+ case '\f':
+ case '\r':
+ case ' ':
+ continue;
+ default:
+ goto break2;
+ }
+ break2:
+ if (s >= end)
+ goto ret0;
+
+ if (*s == '0')
+ {
+ nz0= 1;
+ while (++s < end && *s == '0') ;
+ if (s >= end)
+ goto ret;
+ }
+ s0= s;
+ y= z= 0;
+ for (nd= nf= 0; s < end && (c= *s) >= '0' && c <= '9'; nd++, s++)
+ if (nd < 9)
+ y= 10*y + c - '0';
+ else if (nd < 16)
+ z= 10*z + c - '0';
+ nd0= nd;
+ if (s < end && c == '.')
+ {
+ c= *++s;
+ if (!nd)
+ {
+ for (; s < end; ++s)
+ {
+ c= *s;
+ if (c != '0')
+ break;
+ nz++;
+ }
+ if (s < end && c > '0' && c <= '9')
+ {
+ s0= s;
+ nf+= nz;
+ nz= 0;
+ }
+ else
+ goto dig_done;
+ }
+ for (; s < end; ++s)
+ {
+ c= *s;
+ if (c < '0' || c > '9')
+ break;
+ /*
+ Here we are parsing the fractional part.
+ We can stop counting digits after a while: the extra digits
+ will not contribute to the actual result produced by s2b().
+ We have to continue scanning, in case there is an exponent part.
+ */
+ if (nd < 2 * DBL_DIG)
+ {
+ nz++;
+ if (c-= '0')
+ {
+ nf+= nz;
+ for (i= 1; i < nz; i++)
+ if (nd++ < 9)
+ y*= 10;
+ else if (nd <= DBL_DIG + 1)
+ z*= 10;
+ if (nd++ < 9)
+ y= 10*y + c;
+ else if (nd <= DBL_DIG + 1)
+ z= 10*z + c;
+ nz= 0;
+ }
+ }
+ }
+ }
+ dig_done:
+ e= 0;
+ if (s < end && (c == 'e' || c == 'E'))
+ {
+ if (!nd && !nz && !nz0)
+ goto ret0;
+ s00= s;
+ esign= 0;
+ if (++s < end)
+ switch (c= *s) {
+ case '-':
+ esign= 1;
+ case '+':
+ if (++s < end)
+ c= *s;
+ }
+ if (s < end && c >= '0' && c <= '9')
+ {
+ while (s < end && c == '0')
+ c= *++s;
+ if (s < end && c > '0' && c <= '9') {
+ L= c - '0';
+ s1= s;
+ while (++s < end && (c= *s) >= '0' && c <= '9')
+ L= 10*L + c - '0';
+ if (s - s1 > 8 || L > 19999)
+ /* Avoid confusion from exponents
+ * so large that e might overflow.
+ */
+ e= 19999; /* safe for 16 bit ints */
+ else
+ e= (int)L;
+ if (esign)
+ e= -e;
+ }
+ else
+ e= 0;
+ }
+ else
+ s= s00;
+ }
+ if (!nd)
+ {
+ if (!nz && !nz0)
+ {
+ ret0:
+ s= s00;
+ sign= 0;
+ }
+ goto ret;
+ }
+ e1= e -= nf;
+
+ /*
+ Now we have nd0 digits, starting at s0, followed by a
+ decimal point, followed by nd-nd0 digits. The number we're
+ after is the integer represented by those digits times
+ 10**e
+ */
+
+ if (!nd0)
+ nd0= nd;
+ k= nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
+ dval(&rv)= y;
+ if (k > 9)
+ {
+ dval(&rv)= tens[k - 9] * dval(&rv) + z;
+ }
+ bd0= 0;
+ if (nd <= DBL_DIG
+#ifndef Honor_FLT_ROUNDS
+ && Flt_Rounds == 1
+#endif
+ )
+ {
+ if (!e)
+ goto ret;
+ if (e > 0)
+ {
+ if (e <= Ten_pmax)
+ {
+#ifdef Honor_FLT_ROUNDS
+ /* round correctly FLT_ROUNDS = 2 or 3 */
+ if (sign)
+ {
+ rv.d= -rv.d;
+ sign= 0;
+ }
+#endif
+ /* rv = */ rounded_product(dval(&rv), tens[e]);
+ goto ret;
+ }
+ i= DBL_DIG - nd;
+ if (e <= Ten_pmax + i)
+ {
+ /*
+ A fancier test would sometimes let us do
+ this for larger i values.
+ */
+#ifdef Honor_FLT_ROUNDS
+ /* round correctly FLT_ROUNDS = 2 or 3 */
+ if (sign)
+ {
+ rv.d= -rv.d;
+ sign= 0;
+ }
+#endif
+ e-= i;
+ dval(&rv)*= tens[i];
+ /* rv = */ rounded_product(dval(&rv), tens[e]);
+ goto ret;
+ }
+ }
+#ifndef Inaccurate_Divide
+ else if (e >= -Ten_pmax)
+ {
+#ifdef Honor_FLT_ROUNDS
+ /* round correctly FLT_ROUNDS = 2 or 3 */
+ if (sign)
+ {
+ rv.d= -rv.d;
+ sign= 0;
+ }
+#endif
+ /* rv = */ rounded_quotient(dval(&rv), tens[-e]);
+ goto ret;
+ }
+#endif
+ }
+ e1+= nd - k;
+
+ scale= 0;
+#ifdef Honor_FLT_ROUNDS
+ if ((rounding= Flt_Rounds) >= 2)
+ {
+ if (sign)
+ rounding= rounding == 2 ? 0 : 2;
+ else
+ if (rounding != 2)
+ rounding= 0;
+ }
+#endif
+
+ /* Get starting approximation = rv * 10**e1 */
+
+ if (e1 > 0)
+ {
+ if ((i= e1 & 15))
+ dval(&rv)*= tens[i];
+ if (e1&= ~15)
+ {
+ if (e1 > DBL_MAX_10_EXP)
+ {
+ ovfl:
+ *error= EOVERFLOW;
+ /* Can't trust HUGE_VAL */
+#ifdef Honor_FLT_ROUNDS
+ switch (rounding)
+ {
+ case 0: /* toward 0 */
+ case 3: /* toward -infinity */
+ word0(&rv)= Big0;
+ word1(&rv)= Big1;
+ break;
+ default:
+ word0(&rv)= Exp_mask;
+ word1(&rv)= 0;
+ }
+#else /*Honor_FLT_ROUNDS*/
+ word0(&rv)= Exp_mask;
+ word1(&rv)= 0;
+#endif /*Honor_FLT_ROUNDS*/
+ if (bd0)
+ goto retfree;
+ goto ret;
+ }
+ e1>>= 4;
+ for(j= 0; e1 > 1; j++, e1>>= 1)
+ if (e1 & 1)
+ dval(&rv)*= bigtens[j];
+ /* The last multiplication could overflow. */
+ word0(&rv)-= P*Exp_msk1;
+ dval(&rv)*= bigtens[j];
+ if ((z= word0(&rv) & Exp_mask) > Exp_msk1 * (DBL_MAX_EXP + Bias - P))
+ goto ovfl;
+ if (z > Exp_msk1 * (DBL_MAX_EXP + Bias - 1 - P))
+ {
+ /* set to largest number (Can't trust DBL_MAX) */
+ word0(&rv)= Big0;
+ word1(&rv)= Big1;
+ }
+ else
+ word0(&rv)+= P*Exp_msk1;
+ }
+ }
+ else if (e1 < 0)
+ {
+ e1= -e1;
+ if ((i= e1 & 15))
+ dval(&rv)/= tens[i];
+ if ((e1>>= 4))
+ {
+ if (e1 >= 1 << n_bigtens)
+ goto undfl;
+ if (e1 & Scale_Bit)
+ scale= 2 * P;
+ for(j= 0; e1 > 0; j++, e1>>= 1)
+ if (e1 & 1)
+ dval(&rv)*= tinytens[j];
+ if (scale && (j = 2 * P + 1 - ((word0(&rv) & Exp_mask) >> Exp_shift)) > 0)
+ {
+ /* scaled rv is denormal; zap j low bits */
+ if (j >= 32)
+ {
+ word1(&rv)= 0;
+ if (j >= 53)
+ word0(&rv)= (P + 2) * Exp_msk1;
+ else
+ word0(&rv)&= 0xffffffff << (j - 32);
+ }
+ else
+ word1(&rv)&= 0xffffffff << j;
+ }
+ if (!dval(&rv))
+ {
+ undfl:
+ dval(&rv)= 0.;
+ if (bd0)
+ goto retfree;
+ goto ret;
+ }
+ }
+ }
+
+ /* Now the hard part -- adjusting rv to the correct value.*/
+
+ /* Put digits into bd: true value = bd * 10^e */
+
+ bd0= s2b(s0, nd0, nd, y, &alloc);
+
+ for(;;)
+ {
+ bd= Balloc(bd0->k, &alloc);
+ Bcopy(bd, bd0);
+ bb= d2b(&rv, &bbe, &bbbits, &alloc); /* rv = bb * 2^bbe */
+ bs= i2b(1, &alloc);
+
+ if (e >= 0)
+ {
+ bb2= bb5= 0;
+ bd2= bd5= e;
+ }
+ else
+ {
+ bb2= bb5= -e;
+ bd2= bd5= 0;
+ }
+ if (bbe >= 0)
+ bb2+= bbe;
+ else
+ bd2-= bbe;
+ bs2= bb2;
+#ifdef Honor_FLT_ROUNDS
+ if (rounding != 1)
+ bs2++;
+#endif
+ j= bbe - scale;
+ i= j + bbbits - 1; /* logb(rv) */
+ if (i < Emin) /* denormal */
+ j+= P - Emin;
+ else
+ j= P + 1 - bbbits;
+ bb2+= j;
+ bd2+= j;
+ bd2+= scale;
+ i= bb2 < bd2 ? bb2 : bd2;
+ if (i > bs2)
+ i= bs2;
+ if (i > 0)
+ {
+ bb2-= i;
+ bd2-= i;
+ bs2-= i;
+ }
+ if (bb5 > 0)
+ {
+ bs= pow5mult(bs, bb5, &alloc);
+ bb1= mult(bs, bb, &alloc);
+ Bfree(bb, &alloc);
+ bb= bb1;
+ }
+ if (bb2 > 0)
+ bb= lshift(bb, bb2, &alloc);
+ if (bd5 > 0)
+ bd= pow5mult(bd, bd5, &alloc);
+ if (bd2 > 0)
+ bd= lshift(bd, bd2, &alloc);
+ if (bs2 > 0)
+ bs= lshift(bs, bs2, &alloc);
+ delta= diff(bb, bd, &alloc);
+ dsign= delta->sign;
+ delta->sign= 0;
+ i= cmp(delta, bs);
+#ifdef Honor_FLT_ROUNDS
+ if (rounding != 1)
+ {
+ if (i < 0)
+ {
+ /* Error is less than an ulp */
+ if (!delta->p.x[0] && delta->wds <= 1)
+ {
+ /* exact */
+ break;
+ }
+ if (rounding)
+ {
+ if (dsign)
+ {
+ adj.d= 1.;
+ goto apply_adj;
+ }
+ }
+ else if (!dsign)
+ {
+ adj.d= -1.;
+ if (!word1(&rv) && !(word0(&rv) & Frac_mask))
+ {
+ y= word0(&rv) & Exp_mask;
+ if (!scale || y > 2*P*Exp_msk1)
+ {
+ delta= lshift(delta, Log2P, &alloc);
+ if (cmp(delta, bs) <= 0)
+ adj.d= -0.5;
+ }
+ }
+ apply_adj:
+ if (scale && (y= word0(&rv) & Exp_mask) <= 2 * P * Exp_msk1)
+ word0(&adj)+= (2 * P + 1) * Exp_msk1 - y;
+ dval(&rv)+= adj.d * ulp(&rv);
+ }
+ break;
+ }
+ adj.d= ratio(delta, bs);
+ if (adj.d < 1.)
+ adj.d= 1.;
+ if (adj.d <= 0x7ffffffe)
+ {
+ /* adj = rounding ? ceil(adj) : floor(adj); */
+ y= adj.d;
+ if (y != adj.d)
+ {
+ if (!((rounding >> 1) ^ dsign))
+ y++;
+ adj.d= y;
+ }
+ }
+ if (scale && (y= word0(&rv) & Exp_mask) <= 2 * P * Exp_msk1)
+ word0(&adj)+= (2 * P + 1) * Exp_msk1 - y;
+ adj.d*= ulp(&rv);
+ if (dsign)
+ dval(&rv)+= adj.d;
+ else
+ dval(&rv)-= adj.d;
+ goto cont;
+ }
+#endif /*Honor_FLT_ROUNDS*/
+
+ if (i < 0)
+ {
+ /*
+ Error is less than half an ulp -- check for special case of mantissa
+ a power of two.
+ */
+ if (dsign || word1(&rv) || word0(&rv) & Bndry_mask ||
+ (word0(&rv) & Exp_mask) <= (2 * P + 1) * Exp_msk1)
+ {
+ break;
+ }
+ if (!delta->p.x[0] && delta->wds <= 1)
+ {
+ /* exact result */
+ break;
+ }
+ delta= lshift(delta, Log2P, &alloc);
+ if (cmp(delta, bs) > 0)
+ goto drop_down;
+ break;
+ }
+ if (i == 0)
+ {
+ /* exactly half-way between */
+ if (dsign)
+ {
+ if ((word0(&rv) & Bndry_mask1) == Bndry_mask1 &&
+ word1(&rv) ==
+ ((scale && (y = word0(&rv) & Exp_mask) <= 2 * P * Exp_msk1) ?
+ (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) :
+ 0xffffffff))
+ {
+ /*boundary case -- increment exponent*/
+ word0(&rv)= (word0(&rv) & Exp_mask) + Exp_msk1;
+ word1(&rv) = 0;
+ dsign = 0;
+ break;
+ }
+ }
+ else if (!(word0(&rv) & Bndry_mask) && !word1(&rv))
+ {
+ drop_down:
+ /* boundary case -- decrement exponent */
+ if (scale)
+ {
+ L= word0(&rv) & Exp_mask;
+ if (L <= (2 *P + 1) * Exp_msk1)
+ {
+ if (L > (P + 2) * Exp_msk1)
+ /* round even ==> accept rv */
+ break;
+ /* rv = smallest denormal */
+ goto undfl;
+ }
+ }
+ L= (word0(&rv) & Exp_mask) - Exp_msk1;
+ word0(&rv)= L | Bndry_mask1;
+ word1(&rv)= 0xffffffff;
+ break;
+ }
+ if (!(word1(&rv) & LSB))
+ break;
+ if (dsign)
+ dval(&rv)+= ulp(&rv);
+ else
+ {
+ dval(&rv)-= ulp(&rv);
+ if (!dval(&rv))
+ goto undfl;
+ }
+ dsign= 1 - dsign;
+ break;
+ }
+ if ((aadj= ratio(delta, bs)) <= 2.)
+ {
+ if (dsign)
+ aadj= aadj1= 1.;
+ else if (word1(&rv) || word0(&rv) & Bndry_mask)
+ {
+ if (word1(&rv) == Tiny1 && !word0(&rv))
+ goto undfl;
+ aadj= 1.;
+ aadj1= -1.;
+ }
+ else
+ {
+ /* special case -- power of FLT_RADIX to be rounded down... */
+ if (aadj < 2. / FLT_RADIX)
+ aadj= 1. / FLT_RADIX;
+ else
+ aadj*= 0.5;
+ aadj1= -aadj;
+ }
+ }
+ else
+ {
+ aadj*= 0.5;
+ aadj1= dsign ? aadj : -aadj;
+#ifdef Check_FLT_ROUNDS
+ switch (Rounding)
+ {
+ case 2: /* towards +infinity */
+ aadj1-= 0.5;
+ break;
+ case 0: /* towards 0 */
+ case 3: /* towards -infinity */
+ aadj1+= 0.5;
+ }
+#else
+ if (Flt_Rounds == 0)
+ aadj1+= 0.5;
+#endif /*Check_FLT_ROUNDS*/
+ }
+ y= word0(&rv) & Exp_mask;
+
+ /* Check for overflow */
+
+ if (y == Exp_msk1 * (DBL_MAX_EXP + Bias - 1))
+ {
+ dval(&rv0)= dval(&rv);
+ word0(&rv)-= P * Exp_msk1;
+ adj.d= aadj1 * ulp(&rv);
+ dval(&rv)+= adj.d;
+ if ((word0(&rv) & Exp_mask) >= Exp_msk1 * (DBL_MAX_EXP + Bias - P))
+ {
+ if (word0(&rv0) == Big0 && word1(&rv0) == Big1)
+ goto ovfl;
+ word0(&rv)= Big0;
+ word1(&rv)= Big1;
+ goto cont;
+ }
+ else
+ word0(&rv)+= P * Exp_msk1;
+ }
+ else
+ {
+ if (scale && y <= 2 * P * Exp_msk1)
+ {
+ if (aadj <= 0x7fffffff)
+ {
+ if ((z= (ULong) aadj) <= 0)
+ z= 1;
+ aadj= z;
+ aadj1= dsign ? aadj : -aadj;
+ }
+ dval(&aadj2) = aadj1;
+ word0(&aadj2)+= (2 * P + 1) * Exp_msk1 - y;
+ aadj1= dval(&aadj2);
+ adj.d= aadj1 * ulp(&rv);
+ dval(&rv)+= adj.d;
+ if (rv.d == 0.)
+ goto undfl;
+ }
+ else
+ {
+ adj.d= aadj1 * ulp(&rv);
+ dval(&rv)+= adj.d;
+ }
+ }
+ z= word0(&rv) & Exp_mask;
+ if (!scale)
+ if (y == z)
+ {
+ /* Can we stop now? */
+ L= (Long)aadj;
+ aadj-= L;
+ /* The tolerances below are conservative. */
+ if (dsign || word1(&rv) || word0(&rv) & Bndry_mask)
+ {
+ if (aadj < .4999999 || aadj > .5000001)
+ break;
+ }
+ else if (aadj < .4999999 / FLT_RADIX)
+ break;
+ }
+ cont:
+ Bfree(bb, &alloc);
+ Bfree(bd, &alloc);
+ Bfree(bs, &alloc);
+ Bfree(delta, &alloc);
+ }
+ if (scale)
+ {
+ word0(&rv0)= Exp_1 - 2 * P * Exp_msk1;
+ word1(&rv0)= 0;
+ dval(&rv)*= dval(&rv0);
+ }
+ retfree:
+ Bfree(bb, &alloc);
+ Bfree(bd, &alloc);
+ Bfree(bs, &alloc);
+ Bfree(bd0, &alloc);
+ Bfree(delta, &alloc);
+ ret:
+ *se= (char *)s;
+ return sign ? -dval(&rv) : dval(&rv);
+}
+
+
+static int quorem(Bigint *b, Bigint *S)
+{
+ int n;
+ ULong *bx, *bxe, q, *sx, *sxe;
+ ULLong borrow, carry, y, ys;
+
+ n= S->wds;
+ if (b->wds < n)
+ return 0;
+ sx= S->p.x;
+ sxe= sx + --n;
+ bx= b->p.x;
+ bxe= bx + n;
+ q= *bxe / (*sxe + 1); /* ensure q <= true quotient */
+ if (q)
+ {
+ borrow= 0;
+ carry= 0;
+ do
+ {
+ ys= *sx++ * (ULLong)q + carry;
+ carry= ys >> 32;
+ y= *bx - (ys & FFFFFFFF) - borrow;
+ borrow= y >> 32 & (ULong)1;
+ *bx++= (ULong) (y & FFFFFFFF);
+ }
+ while (sx <= sxe);
+ if (!*bxe)
+ {
+ bx= b->p.x;
+ while (--bxe > bx && !*bxe)
+ --n;
+ b->wds= n;
+ }
+ }
+ if (cmp(b, S) >= 0)
+ {
+ q++;
+ borrow= 0;
+ carry= 0;
+ bx= b->p.x;
+ sx= S->p.x;
+ do
+ {
+ ys= *sx++ + carry;
+ carry= ys >> 32;
+ y= *bx - (ys & FFFFFFFF) - borrow;
+ borrow= y >> 32 & (ULong)1;
+ *bx++= (ULong) (y & FFFFFFFF);
+ }
+ while (sx <= sxe);
+ bx= b->p.x;
+ bxe= bx + n;
+ if (!*bxe)
+ {
+ while (--bxe > bx && !*bxe)
+ --n;
+ b->wds= n;
+ }
+ }
+ return q;
+}
+
+
+/*
+ dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
+
+ Inspired by "How to Print Floating-Point Numbers Accurately" by
+ Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
+
+ Modifications:
+ 1. Rather than iterating, we use a simple numeric overestimate
+ to determine k= floor(log10(d)). We scale relevant
+ quantities using O(log2(k)) rather than O(k) multiplications.
+ 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
+ try to generate digits strictly left to right. Instead, we
+ compute with fewer bits and propagate the carry if necessary
+ when rounding the final digit up. This is often faster.
+ 3. Under the assumption that input will be rounded nearest,
+ mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
+ That is, we allow equality in stopping tests when the
+ round-nearest rule will give the same floating-point value
+ as would satisfaction of the stopping test with strict
+ inequality.
+ 4. We remove common factors of powers of 2 from relevant
+ quantities.
+ 5. When converting floating-point integers less than 1e16,
+ we use floating-point arithmetic rather than resorting
+ to multiple-precision integers.
+ 6. When asked to produce fewer than 15 digits, we first try
+ to get by with floating-point arithmetic; we resort to
+ multiple-precision integer arithmetic only if we cannot
+ guarantee that the floating-point calculation has given
+ the correctly rounded result. For k requested digits and
+ "uniformly" distributed input, the probability is
+ something like 10^(k-15) that we must resort to the Long
+ calculation.
+ */
+
+static char *dtoa(double dd, int mode, int ndigits, int *decpt, int *sign,
+ char **rve, char *buf, size_t buf_size)
+{
+ /*
+ Arguments ndigits, decpt, sign are similar to those
+ of ecvt and fcvt; trailing zeros are suppressed from
+ the returned string. If not null, *rve is set to point
+ to the end of the return value. If d is +-Infinity or NaN,
+ then *decpt is set to DTOA_OVERFLOW.
+
+ mode:
+ 0 ==> shortest string that yields d when read in
+ and rounded to nearest.
+ 1 ==> like 0, but with Steele & White stopping rule;
+ e.g. with IEEE P754 arithmetic , mode 0 gives
+ 1e23 whereas mode 1 gives 9.999999999999999e22.
+ 2 ==> max(1,ndigits) significant digits. This gives a
+ return value similar to that of ecvt, except
+ that trailing zeros are suppressed.
+ 3 ==> through ndigits past the decimal point. This
+ gives a return value similar to that from fcvt,
+ except that trailing zeros are suppressed, and
+ ndigits can be negative.
+ 4,5 ==> similar to 2 and 3, respectively, but (in
+ round-nearest mode) with the tests of mode 0 to
+ possibly return a shorter string that rounds to d.
+ With IEEE arithmetic and compilation with
+ -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same
+ as modes 2 and 3 when FLT_ROUNDS != 1.
+ 6-9 ==> Debugging modes similar to mode - 4: don't try
+ fast floating-point estimate (if applicable).
+
+ Values of mode other than 0-9 are treated as mode 0.
+
+ Sufficient space is allocated to the return value
+ to hold the suppressed trailing zeros.
+ */
+
+ int bbits, b2, b5, be, dig, i, ieps, ilim= 0, ilim0,
+ ilim1= 0, j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,
+ spec_case, try_quick;
+ Long L;
+ int denorm;
+ ULong x;
+ Bigint *b, *b1, *delta, *mlo, *mhi, *S;
+ U d2, eps, u;
+ double ds;
+ char *s, *s0;
+#ifdef Honor_FLT_ROUNDS
+ int rounding;
+#endif
+ Stack_alloc alloc;
+
+ alloc.begin= alloc.free= buf;
+ alloc.end= buf + buf_size;
+ memset(alloc.freelist, 0, sizeof(alloc.freelist));
+
+ u.d= dd;
+ if (word0(&u) & Sign_bit)
+ {
+ /* set sign for everything, including 0's and NaNs */
+ *sign= 1;
+ word0(&u) &= ~Sign_bit; /* clear sign bit */
+ }
+ else
+ *sign= 0;
+
+ /* If infinity, set decpt to DTOA_OVERFLOW, if 0 set it to 1 */
+ if (((word0(&u) & Exp_mask) == Exp_mask && (*decpt= DTOA_OVERFLOW)) ||
+ (!dval(&u) && (*decpt= 1)))
+ {
+ /* Infinity, NaN, 0 */
+ char *res= (char*) dtoa_alloc(2, &alloc);
+ res[0]= '0';
+ res[1]= '\0';
+ if (rve)
+ *rve= res + 1;
+ return res;
+ }
+
+#ifdef Honor_FLT_ROUNDS
+ if ((rounding= Flt_Rounds) >= 2)
+ {
+ if (*sign)
+ rounding= rounding == 2 ? 0 : 2;
+ else
+ if (rounding != 2)
+ rounding= 0;
+ }
+#endif
+
+ b= d2b(&u, &be, &bbits, &alloc);
+ if ((i= (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1))))
+ {
+ dval(&d2)= dval(&u);
+ word0(&d2) &= Frac_mask1;
+ word0(&d2) |= Exp_11;
+
+ /*
+ log(x) ~=~ log(1.5) + (x-1.5)/1.5
+ log10(x) = log(x) / log(10)
+ ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
+ log10(d)= (i-Bias)*log(2)/log(10) + log10(d2)
+
+ This suggests computing an approximation k to log10(d) by
+
+ k= (i - Bias)*0.301029995663981
+ + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
+
+ We want k to be too large rather than too small.
+ The error in the first-order Taylor series approximation
+ is in our favor, so we just round up the constant enough
+ to compensate for any error in the multiplication of
+ (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
+ and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
+ adding 1e-13 to the constant term more than suffices.
+ Hence we adjust the constant term to 0.1760912590558.
+ (We could get a more accurate k by invoking log10,
+ but this is probably not worthwhile.)
+ */
+
+ i-= Bias;
+ denorm= 0;
+ }
+ else
+ {
+ /* d is denormalized */
+
+ i= bbits + be + (Bias + (P-1) - 1);
+ x= i > 32 ? word0(&u) << (64 - i) | word1(&u) >> (i - 32)
+ : word1(&u) << (32 - i);
+ dval(&d2)= x;
+ word0(&d2)-= 31*Exp_msk1; /* adjust exponent */
+ i-= (Bias + (P-1) - 1) + 1;
+ denorm= 1;
+ }
+ ds= (dval(&d2)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
+ k= (int)ds;
+ if (ds < 0. && ds != k)
+ k--; /* want k= floor(ds) */
+ k_check= 1;
+ if (k >= 0 && k <= Ten_pmax)
+ {
+ if (dval(&u) < tens[k])
+ k--;
+ k_check= 0;
+ }
+ j= bbits - i - 1;
+ if (j >= 0)
+ {
+ b2= 0;
+ s2= j;
+ }
+ else
+ {
+ b2= -j;
+ s2= 0;
+ }
+ if (k >= 0)
+ {
+ b5= 0;
+ s5= k;
+ s2+= k;
+ }
+ else
+ {
+ b2-= k;
+ b5= -k;
+ s5= 0;
+ }
+ if (mode < 0 || mode > 9)
+ mode= 0;
+
+#ifdef Check_FLT_ROUNDS
+ try_quick= Rounding == 1;
+#else
+ try_quick= 1;
+#endif
+
+ if (mode > 5)
+ {
+ mode-= 4;
+ try_quick= 0;
+ }
+ leftright= 1;
+ switch (mode) {
+ case 0:
+ case 1:
+ ilim= ilim1= -1;
+ i= 18;
+ ndigits= 0;
+ break;
+ case 2:
+ leftright= 0;
+ /* no break */
+ case 4:
+ if (ndigits <= 0)
+ ndigits= 1;
+ ilim= ilim1= i= ndigits;
+ break;
+ case 3:
+ leftright= 0;
+ /* no break */
+ case 5:
+ i= ndigits + k + 1;
+ ilim= i;
+ ilim1= i - 1;
+ if (i <= 0)
+ i= 1;
+ }
+ s= s0= dtoa_alloc(i, &alloc);
+
+#ifdef Honor_FLT_ROUNDS
+ if (mode > 1 && rounding != 1)
+ leftright= 0;
+#endif
+
+ if (ilim >= 0 && ilim <= Quick_max && try_quick)
+ {
+ /* Try to get by with floating-point arithmetic. */
+ i= 0;
+ dval(&d2)= dval(&u);
+ k0= k;
+ ilim0= ilim;
+ ieps= 2; /* conservative */
+ if (k > 0)
+ {
+ ds= tens[k&0xf];
+ j= k >> 4;
+ if (j & Bletch)
+ {
+ /* prevent overflows */
+ j&= Bletch - 1;
+ dval(&u)/= bigtens[n_bigtens-1];
+ ieps++;
+ }
+ for (; j; j>>= 1, i++)
+ {
+ if (j & 1)
+ {
+ ieps++;
+ ds*= bigtens[i];
+ }
+ }
+ dval(&u)/= ds;
+ }
+ else if ((j1= -k))
+ {
+ dval(&u)*= tens[j1 & 0xf];
+ for (j= j1 >> 4; j; j>>= 1, i++)
+ {
+ if (j & 1)
+ {
+ ieps++;
+ dval(&u)*= bigtens[i];
+ }
+ }
+ }
+ if (k_check && dval(&u) < 1. && ilim > 0)
+ {
+ if (ilim1 <= 0)
+ goto fast_failed;
+ ilim= ilim1;
+ k--;
+ dval(&u)*= 10.;
+ ieps++;
+ }
+ dval(&eps)= ieps*dval(&u) + 7.;
+ word0(&eps)-= (P-1)*Exp_msk1;
+ if (ilim == 0)
+ {
+ S= mhi= 0;
+ dval(&u)-= 5.;
+ if (dval(&u) > dval(&eps))
+ goto one_digit;
+ if (dval(&u) < -dval(&eps))
+ goto no_digits;
+ goto fast_failed;
+ }
+ if (leftright)
+ {
+ /* Use Steele & White method of only generating digits needed. */
+ dval(&eps)= 0.5/tens[ilim-1] - dval(&eps);
+ for (i= 0;;)
+ {
+ L= (Long) dval(&u);
+ dval(&u)-= L;
+ *s++= '0' + (int)L;
+ if (dval(&u) < dval(&eps))
+ goto ret1;
+ if (1. - dval(&u) < dval(&eps))
+ goto bump_up;
+ if (++i >= ilim)
+ break;
+ dval(&eps)*= 10.;
+ dval(&u)*= 10.;
+ }
+ }
+ else
+ {
+ /* Generate ilim digits, then fix them up. */
+ dval(&eps)*= tens[ilim-1];
+ for (i= 1;; i++, dval(&u)*= 10.)
+ {
+ L= (Long)(dval(&u));
+ if (!(dval(&u)-= L))
+ ilim= i;
+ *s++= '0' + (int)L;
+ if (i == ilim)
+ {
+ if (dval(&u) > 0.5 + dval(&eps))
+ goto bump_up;
+ else if (dval(&u) < 0.5 - dval(&eps))
+ {
+ while (*--s == '0');
+ s++;
+ goto ret1;
+ }
+ break;
+ }
+ }
+ }
+ fast_failed:
+ s= s0;
+ dval(&u)= dval(&d2);
+ k= k0;
+ ilim= ilim0;
+ }
+
+ /* Do we have a "small" integer? */
+
+ if (be >= 0 && k <= Int_max)
+ {
+ /* Yes. */
+ ds= tens[k];
+ if (ndigits < 0 && ilim <= 0)
+ {
+ S= mhi= 0;
+ if (ilim < 0 || dval(&u) <= 5*ds)
+ goto no_digits;
+ goto one_digit;
+ }
+ for (i= 1;; i++, dval(&u)*= 10.)
+ {
+ L= (Long)(dval(&u) / ds);
+ dval(&u)-= L*ds;
+#ifdef Check_FLT_ROUNDS
+ /* If FLT_ROUNDS == 2, L will usually be high by 1 */
+ if (dval(&u) < 0)
+ {
+ L--;
+ dval(&u)+= ds;
+ }
+#endif
+ *s++= '0' + (int)L;
+ if (!dval(&u))
+ {
+ break;
+ }
+ if (i == ilim)
+ {
+#ifdef Honor_FLT_ROUNDS
+ if (mode > 1)
+ {
+ switch (rounding) {
+ case 0: goto ret1;
+ case 2: goto bump_up;
+ }
+ }
+#endif
+ dval(&u)+= dval(&u);
+ if (dval(&u) > ds || (dval(&u) == ds && L & 1))
+ {
+bump_up:
+ while (*--s == '9')
+ if (s == s0)
+ {
+ k++;
+ *s= '0';
+ break;
+ }
+ ++*s++;
+ }
+ break;
+ }
+ }
+ goto ret1;
+ }
+
+ m2= b2;
+ m5= b5;
+ mhi= mlo= 0;
+ if (leftright)
+ {
+ i = denorm ? be + (Bias + (P-1) - 1 + 1) : 1 + P - bbits;
+ b2+= i;
+ s2+= i;
+ mhi= i2b(1, &alloc);
+ }
+ if (m2 > 0 && s2 > 0)
+ {
+ i= m2 < s2 ? m2 : s2;
+ b2-= i;
+ m2-= i;
+ s2-= i;
+ }
+ if (b5 > 0)
+ {
+ if (leftright)
+ {
+ if (m5 > 0)
+ {
+ mhi= pow5mult(mhi, m5, &alloc);
+ b1= mult(mhi, b, &alloc);
+ Bfree(b, &alloc);
+ b= b1;
+ }
+ if ((j= b5 - m5))
+ b= pow5mult(b, j, &alloc);
+ }
+ else
+ b= pow5mult(b, b5, &alloc);
+ }
+ S= i2b(1, &alloc);
+ if (s5 > 0)
+ S= pow5mult(S, s5, &alloc);
+
+ /* Check for special case that d is a normalized power of 2. */
+
+ spec_case= 0;
+ if ((mode < 2 || leftright)
+#ifdef Honor_FLT_ROUNDS
+ && rounding == 1
+#endif
+ )
+ {
+ if (!word1(&u) && !(word0(&u) & Bndry_mask) &&
+ word0(&u) & (Exp_mask & ~Exp_msk1)
+ )
+ {
+ /* The special case */
+ b2+= Log2P;
+ s2+= Log2P;
+ spec_case= 1;
+ }
+ }
+
+ /*
+ Arrange for convenient computation of quotients:
+ shift left if necessary so divisor has 4 leading 0 bits.
+
+ Perhaps we should just compute leading 28 bits of S once
+ a nd for all and pass them and a shift to quorem, so it
+ can do shifts and ors to compute the numerator for q.
+ */
+ if ((i= ((s5 ? 32 - hi0bits(S->p.x[S->wds-1]) : 1) + s2) & 0x1f))
+ i= 32 - i;
+ if (i > 4)
+ {
+ i-= 4;
+ b2+= i;
+ m2+= i;
+ s2+= i;
+ }
+ else if (i < 4)
+ {
+ i+= 28;
+ b2+= i;
+ m2+= i;
+ s2+= i;
+ }
+ if (b2 > 0)
+ b= lshift(b, b2, &alloc);
+ if (s2 > 0)
+ S= lshift(S, s2, &alloc);
+ if (k_check)
+ {
+ if (cmp(b,S) < 0)
+ {
+ k--;
+ /* we botched the k estimate */
+ b= multadd(b, 10, 0, &alloc);
+ if (leftright)
+ mhi= multadd(mhi, 10, 0, &alloc);
+ ilim= ilim1;
+ }
+ }
+ if (ilim <= 0 && (mode == 3 || mode == 5))
+ {
+ if (ilim < 0 || cmp(b,S= multadd(S,5,0, &alloc)) <= 0)
+ {
+ /* no digits, fcvt style */
+no_digits:
+ k= -1 - ndigits;
+ goto ret;
+ }
+one_digit:
+ *s++= '1';
+ k++;
+ goto ret;
+ }
+ if (leftright)
+ {
+ if (m2 > 0)
+ mhi= lshift(mhi, m2, &alloc);
+
+ /*
+ Compute mlo -- check for special case that d is a normalized power of 2.
+ */
+
+ mlo= mhi;
+ if (spec_case)
+ {
+ mhi= Balloc(mhi->k, &alloc);
+ Bcopy(mhi, mlo);
+ mhi= lshift(mhi, Log2P, &alloc);
+ }
+
+ for (i= 1;;i++)
+ {
+ dig= quorem(b,S) + '0';
+ /* Do we yet have the shortest decimal string that will round to d? */
+ j= cmp(b, mlo);
+ delta= diff(S, mhi, &alloc);
+ j1= delta->sign ? 1 : cmp(b, delta);
+ Bfree(delta, &alloc);
+ if (j1 == 0 && mode != 1 && !(word1(&u) & 1)
+#ifdef Honor_FLT_ROUNDS
+ && rounding >= 1
+#endif
+ )
+ {
+ if (dig == '9')
+ goto round_9_up;
+ if (j > 0)
+ dig++;
+ *s++= dig;
+ goto ret;
+ }
+ if (j < 0 || (j == 0 && mode != 1 && !(word1(&u) & 1)))
+ {
+ if (!b->p.x[0] && b->wds <= 1)
+ {
+ goto accept_dig;
+ }
+#ifdef Honor_FLT_ROUNDS
+ if (mode > 1)
+ switch (rounding) {
+ case 0: goto accept_dig;
+ case 2: goto keep_dig;
+ }
+#endif /*Honor_FLT_ROUNDS*/
+ if (j1 > 0)
+ {
+ b= lshift(b, 1, &alloc);
+ j1= cmp(b, S);
+ if ((j1 > 0 || (j1 == 0 && dig & 1))
+ && dig++ == '9')
+ goto round_9_up;
+ }
+accept_dig:
+ *s++= dig;
+ goto ret;
+ }
+ if (j1 > 0)
+ {
+#ifdef Honor_FLT_ROUNDS
+ if (!rounding)
+ goto accept_dig;
+#endif
+ if (dig == '9')
+ { /* possible if i == 1 */
+round_9_up:
+ *s++= '9';
+ goto roundoff;
+ }
+ *s++= dig + 1;
+ goto ret;
+ }
+#ifdef Honor_FLT_ROUNDS
+keep_dig:
+#endif
+ *s++= dig;
+ if (i == ilim)
+ break;
+ b= multadd(b, 10, 0, &alloc);
+ if (mlo == mhi)
+ mlo= mhi= multadd(mhi, 10, 0, &alloc);
+ else
+ {
+ mlo= multadd(mlo, 10, 0, &alloc);
+ mhi= multadd(mhi, 10, 0, &alloc);
+ }
+ }
+ }
+ else
+ for (i= 1;; i++)
+ {
+ *s++= dig= quorem(b,S) + '0';
+ if (!b->p.x[0] && b->wds <= 1)
+ {
+ goto ret;
+ }
+ if (i >= ilim)
+ break;
+ b= multadd(b, 10, 0, &alloc);
+ }
+
+ /* Round off last digit */
+
+#ifdef Honor_FLT_ROUNDS
+ switch (rounding) {
+ case 0: goto trimzeros;
+ case 2: goto roundoff;
+ }
+#endif
+ b= lshift(b, 1, &alloc);
+ j= cmp(b, S);
+ if (j > 0 || (j == 0 && dig & 1))
+ {
+roundoff:
+ while (*--s == '9')
+ if (s == s0)
+ {
+ k++;
+ *s++= '1';
+ goto ret;
+ }
+ ++*s++;
+ }
+ else
+ {
+#ifdef Honor_FLT_ROUNDS
+trimzeros:
+#endif
+ while (*--s == '0');
+ s++;
+ }
+ret:
+ Bfree(S, &alloc);
+ if (mhi)
+ {
+ if (mlo && mlo != mhi)
+ Bfree(mlo, &alloc);
+ Bfree(mhi, &alloc);
+ }
+ret1:
+ Bfree(b, &alloc);
+ *s= 0;
+ *decpt= k + 1;
+ if (rve)
+ *rve= s;
+ return s0;
+}