aboutsummaryrefslogtreecommitdiff
path: root/mysql/strings/decimal.c
diff options
context:
space:
mode:
Diffstat (limited to 'mysql/strings/decimal.c')
-rw-r--r--mysql/strings/decimal.c2640
1 files changed, 2640 insertions, 0 deletions
diff --git a/mysql/strings/decimal.c b/mysql/strings/decimal.c
new file mode 100644
index 0000000..fc4e397
--- /dev/null
+++ b/mysql/strings/decimal.c
@@ -0,0 +1,2640 @@
+/* Copyright (c) 2004, 2016, Oracle and/or its affiliates. All rights reserved.
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; version 2 of the License.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */
+
+/*
+=======================================================================
+ NOTE: this library implements SQL standard "exact numeric" type
+ and is not at all generic, but rather intentinally crippled to
+ follow the standard :)
+=======================================================================
+ Quoting the standard
+ (SQL:2003, Part 2 Foundations, aka ISO/IEC 9075-2:2003)
+
+4.4.2 Characteristics of numbers, page 27:
+
+ An exact numeric type has a precision P and a scale S. P is a positive
+ integer that determines the number of significant digits in a
+ particular radix R, where R is either 2 or 10. S is a non-negative
+ integer. Every value of an exact numeric type of scale S is of the
+ form n*10^{-S}, where n is an integer such that ­-R^P <= n <= R^P.
+
+ [...]
+
+ If an assignment of some number would result in a loss of its most
+ significant digit, an exception condition is raised. If least
+ significant digits are lost, implementation-defined rounding or
+ truncating occurs, with no exception condition being raised.
+
+ [...]
+
+ Whenever an exact or approximate numeric value is assigned to an exact
+ numeric value site, an approximation of its value that preserves
+ leading significant digits after rounding or truncating is represented
+ in the declared type of the target. The value is converted to have the
+ precision and scale of the target. The choice of whether to truncate
+ or round is implementation-defined.
+
+ [...]
+
+ All numeric values between the smallest and the largest value,
+ inclusive, in a given exact numeric type have an approximation
+ obtained by rounding or truncation for that type; it is
+ implementation-defined which other numeric values have such
+ approximations.
+
+5.3 <literal>, page 143
+
+ <exact numeric literal> ::=
+ <unsigned integer> [ <period> [ <unsigned integer> ] ]
+ | <period> <unsigned integer>
+
+6.1 <data type>, page 165:
+
+ 19) The <scale> of an <exact numeric type> shall not be greater than
+ the <precision> of the <exact numeric type>.
+
+ 20) For the <exact numeric type>s DECIMAL and NUMERIC:
+
+ a) The maximum value of <precision> is implementation-defined.
+ <precision> shall not be greater than this value.
+ b) The maximum value of <scale> is implementation-defined. <scale>
+ shall not be greater than this maximum value.
+
+ 21) NUMERIC specifies the data type exact numeric, with the decimal
+ precision and scale specified by the <precision> and <scale>.
+
+ 22) DECIMAL specifies the data type exact numeric, with the decimal
+ scale specified by the <scale> and the implementation-defined
+ decimal precision equal to or greater than the value of the
+ specified <precision>.
+
+6.26 <numeric value expression>, page 241:
+
+ 1) If the declared type of both operands of a dyadic arithmetic
+ operator is exact numeric, then the declared type of the result is
+ an implementation-defined exact numeric type, with precision and
+ scale determined as follows:
+
+ a) Let S1 and S2 be the scale of the first and second operands
+ respectively.
+ b) The precision of the result of addition and subtraction is
+ implementation-defined, and the scale is the maximum of S1 and S2.
+ c) The precision of the result of multiplication is
+ implementation-defined, and the scale is S1 + S2.
+ d) The precision and scale of the result of division are
+ implementation-defined.
+*/
+
+#include <my_global.h>
+#include <m_ctype.h>
+#include <myisampack.h>
+#include <my_sys.h> /* for my_alloca */
+#include <m_string.h>
+#include <decimal.h>
+
+/*
+ Internally decimal numbers are stored base 10^9 (see DIG_BASE below)
+ So one variable of type decimal_digit_t is limited:
+
+ 0 < decimal_digit <= DIG_MAX < DIG_BASE
+
+ in the struct st_decimal_t:
+
+ intg is the number of *decimal* digits (NOT number of decimal_digit_t's !)
+ before the point
+ frac - number of decimal digits after the point
+ buf is an array of decimal_digit_t's
+ len is the length of buf (length of allocated space) in decimal_digit_t's,
+ not in bytes
+*/
+typedef decimal_digit_t dec1;
+typedef longlong dec2;
+
+#define DIG_PER_DEC1 9
+#define DIG_MASK 100000000
+#define DIG_BASE 1000000000
+#define DIG_MAX (DIG_BASE-1)
+#define DIG_BASE2 ((dec2)DIG_BASE * (dec2)DIG_BASE)
+#define ROUND_UP(X) (((X)+DIG_PER_DEC1-1)/DIG_PER_DEC1)
+static const dec1 powers10[DIG_PER_DEC1+1]={
+ 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000};
+static const int dig2bytes[DIG_PER_DEC1+1]={0, 1, 1, 2, 2, 3, 3, 4, 4, 4};
+static const dec1 frac_max[DIG_PER_DEC1-1]={
+ 900000000, 990000000, 999000000,
+ 999900000, 999990000, 999999000,
+ 999999900, 999999990 };
+
+#define sanity(d) DBUG_ASSERT((d)->len >0)
+
+#define FIX_INTG_FRAC_ERROR(len, intg1, frac1, error) \
+ do \
+ { \
+ if (unlikely(intg1+frac1 > (len))) \
+ { \
+ if (unlikely(intg1 > (len))) \
+ { \
+ intg1=(len); \
+ frac1=0; \
+ error=E_DEC_OVERFLOW; \
+ } \
+ else \
+ { \
+ frac1=(len)-intg1; \
+ error=E_DEC_TRUNCATED; \
+ } \
+ } \
+ else \
+ error=E_DEC_OK; \
+ } while(0)
+
+#define ADD(to, from1, from2, carry) /* assume carry <= 1 */ \
+ do \
+ { \
+ dec1 a=(from1)+(from2)+(carry); \
+ DBUG_ASSERT((carry) <= 1); \
+ if (((carry)= a >= DIG_BASE)) /* no division here! */ \
+ a-=DIG_BASE; \
+ (to)=a; \
+ } while(0)
+
+#define ADD2(to, from1, from2, carry) \
+ do \
+ { \
+ dec2 a=((dec2)(from1))+(from2)+(carry); \
+ if (((carry)= a >= DIG_BASE)) \
+ a-=DIG_BASE; \
+ if (unlikely(a >= DIG_BASE)) \
+ { \
+ a-=DIG_BASE; \
+ carry++; \
+ } \
+ (to)=(dec1) a; \
+ } while(0)
+
+#define SUB(to, from1, from2, carry) /* to=from1-from2 */ \
+ do \
+ { \
+ dec1 a=(from1)-(from2)-(carry); \
+ if (((carry)= a < 0)) \
+ a+=DIG_BASE; \
+ (to)=a; \
+ } while(0)
+
+#define SUB2(to, from1, from2, carry) /* to=from1-from2 */ \
+ do \
+ { \
+ dec1 a=(from1)-(from2)-(carry); \
+ if (((carry)= a < 0)) \
+ a+=DIG_BASE; \
+ if (unlikely(a < 0)) \
+ { \
+ a+=DIG_BASE; \
+ carry++; \
+ } \
+ (to)=a; \
+ } while(0)
+
+
+/*
+ This is a direct loop unrolling of code that used to look like this:
+ for (; *buf_beg < powers10[i--]; start++) ;
+
+ @param i start index
+ @param val value to compare against list of powers of 10
+
+ @retval Number of leading zeroes that can be removed from fraction.
+
+ @note Why unroll? To get rid of lots of compiler warnings [-Warray-bounds]
+ Nice bonus: unrolled code is significantly faster.
+ */
+static inline int count_leading_zeroes(int i, dec1 val)
+{
+ int ret= 0;
+ switch (i)
+ {
+ /* @note Intentional fallthrough in all case labels */
+ case 9: if (val >= 1000000000) break; ++ret;
+ case 8: if (val >= 100000000) break; ++ret;
+ case 7: if (val >= 10000000) break; ++ret;
+ case 6: if (val >= 1000000) break; ++ret;
+ case 5: if (val >= 100000) break; ++ret;
+ case 4: if (val >= 10000) break; ++ret;
+ case 3: if (val >= 1000) break; ++ret;
+ case 2: if (val >= 100) break; ++ret;
+ case 1: if (val >= 10) break; ++ret;
+ case 0: if (val >= 1) break; ++ret;
+ default: { DBUG_ASSERT(FALSE); }
+ }
+ return ret;
+}
+
+/*
+ This is a direct loop unrolling of code that used to look like this:
+ for (; *buf_end % powers10[i++] == 0; stop--) ;
+
+ @param i start index
+ @param val value to compare against list of powers of 10
+
+ @retval Number of trailing zeroes that can be removed from fraction.
+
+ @note Why unroll? To get rid of lots of compiler warnings [-Warray-bounds]
+ Nice bonus: unrolled code is significantly faster.
+ */
+static inline int count_trailing_zeroes(int i, dec1 val)
+{
+ int ret= 0;
+ switch(i)
+ {
+ /* @note Intentional fallthrough in all case labels */
+ case 0: if ((val % 1) != 0) break; ++ret;
+ case 1: if ((val % 10) != 0) break; ++ret;
+ case 2: if ((val % 100) != 0) break; ++ret;
+ case 3: if ((val % 1000) != 0) break; ++ret;
+ case 4: if ((val % 10000) != 0) break; ++ret;
+ case 5: if ((val % 100000) != 0) break; ++ret;
+ case 6: if ((val % 1000000) != 0) break; ++ret;
+ case 7: if ((val % 10000000) != 0) break; ++ret;
+ case 8: if ((val % 100000000) != 0) break; ++ret;
+ case 9: if ((val % 1000000000) != 0) break; ++ret;
+ default: { DBUG_ASSERT(FALSE); }
+ }
+ return ret;
+}
+
+
+/*
+ Get maximum value for given precision and scale
+
+ SYNOPSIS
+ max_decimal()
+ precision/scale - see decimal_bin_size() below
+ to - decimal where where the result will be stored
+ to->buf and to->len must be set.
+*/
+
+void max_decimal(int precision, int frac, decimal_t *to)
+{
+ int intpart;
+ dec1 *buf= to->buf;
+ DBUG_ASSERT(precision && precision >= frac);
+
+ to->sign= 0;
+ if ((intpart= to->intg= (precision - frac)))
+ {
+ int firstdigits= intpart % DIG_PER_DEC1;
+ if (firstdigits)
+ *buf++= powers10[firstdigits] - 1; /* get 9 99 999 ... */
+ for(intpart/= DIG_PER_DEC1; intpart; intpart--)
+ *buf++= DIG_MAX;
+ }
+
+ if ((to->frac= frac))
+ {
+ int lastdigits= frac % DIG_PER_DEC1;
+ for(frac/= DIG_PER_DEC1; frac; frac--)
+ *buf++= DIG_MAX;
+ if (lastdigits)
+ *buf= frac_max[lastdigits - 1];
+ }
+}
+
+
+static dec1 *remove_leading_zeroes(const decimal_t *from, int *intg_result)
+{
+ int intg= from->intg, i;
+ dec1 *buf0= from->buf;
+ i= ((intg - 1) % DIG_PER_DEC1) + 1;
+ while (intg > 0 && *buf0 == 0)
+ {
+ intg-= i;
+ i= DIG_PER_DEC1;
+ buf0++;
+ }
+ if (intg > 0)
+ {
+ intg-= count_leading_zeroes((intg - 1) % DIG_PER_DEC1, *buf0);
+ DBUG_ASSERT(intg > 0);
+ }
+ else
+ intg=0;
+ *intg_result= intg;
+ return buf0;
+}
+
+
+/*
+ Count actual length of fraction part (without ending zeroes)
+
+ SYNOPSIS
+ decimal_actual_fraction()
+ from number for processing
+*/
+
+int decimal_actual_fraction(decimal_t *from)
+{
+ int frac= from->frac, i;
+ dec1 *buf0= from->buf + ROUND_UP(from->intg) + ROUND_UP(frac) - 1;
+
+ if (frac == 0)
+ return 0;
+
+ i= ((frac - 1) % DIG_PER_DEC1 + 1);
+ while (frac > 0 && *buf0 == 0)
+ {
+ frac-= i;
+ i= DIG_PER_DEC1;
+ buf0--;
+ }
+ if (frac > 0)
+ {
+ frac-=
+ count_trailing_zeroes(DIG_PER_DEC1 - ((frac - 1) % DIG_PER_DEC1), *buf0);
+ }
+ return frac;
+}
+
+
+/*
+ Convert decimal to its printable string representation
+
+ SYNOPSIS
+ decimal2string()
+ from - value to convert
+ to - points to buffer where string representation
+ should be stored
+ *to_len - in: size of to buffer (incl. terminating '\0')
+ out: length of the actually written string (excl. '\0')
+ fixed_precision - 0 if representation can be variable length and
+ fixed_decimals will not be checked in this case.
+ Put number as with fixed point position with this
+ number of digits (sign counted and decimal point is
+ counted)
+ fixed_decimals - number digits after point.
+ filler - character to fill gaps in case of fixed_precision > 0
+
+ RETURN VALUE
+ E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW
+*/
+
+int decimal2string(const decimal_t *from, char *to, int *to_len,
+ int fixed_precision, int fixed_decimals,
+ char filler)
+{
+ /* {intg_len, frac_len} output widths; {intg, frac} places in input */
+ int len, intg, frac= from->frac, i, intg_len, frac_len, fill;
+ /* number digits before decimal point */
+ int fixed_intg= (fixed_precision ?
+ (fixed_precision - fixed_decimals) : 0);
+ int error=E_DEC_OK;
+ char *s=to;
+ dec1 *buf, *buf0=from->buf, tmp;
+
+ DBUG_ASSERT(*to_len >= 2+from->sign);
+
+ /* removing leading zeroes */
+ buf0= remove_leading_zeroes(from, &intg);
+ if (unlikely(intg+frac==0))
+ {
+ intg=1;
+ tmp=0;
+ buf0=&tmp;
+ }
+
+ if (!(intg_len= fixed_precision ? fixed_intg : intg))
+ intg_len= 1;
+ frac_len= fixed_precision ? fixed_decimals : frac;
+ len= from->sign + intg_len + MY_TEST(frac) + frac_len;
+ if (fixed_precision)
+ {
+ if (frac > fixed_decimals)
+ {
+ error= E_DEC_TRUNCATED;
+ frac= fixed_decimals;
+ }
+ if (intg > fixed_intg)
+ {
+ error= E_DEC_OVERFLOW;
+ intg= fixed_intg;
+ }
+ }
+ else if (unlikely(len > --*to_len)) /* reserve one byte for \0 */
+ {
+ int j= len - *to_len; /* excess printable chars */
+ error= (frac && j <= frac + 1) ? E_DEC_TRUNCATED : E_DEC_OVERFLOW;
+
+ /*
+ If we need to cut more places than frac is wide, we'll end up
+ dropping the decimal point as well. Account for this.
+ */
+ if (frac && j >= frac + 1)
+ j--;
+
+ if (j > frac)
+ {
+ intg_len= intg-= j-frac;
+ frac= 0;
+ }
+ else
+ frac-=j;
+ frac_len= frac;
+ len= from->sign + intg_len + MY_TEST(frac) + frac_len;
+ }
+ *to_len= len;
+ s[len]= 0;
+
+ if (from->sign)
+ *s++='-';
+
+ if (frac)
+ {
+ char *s1= s + intg_len;
+ fill= frac_len - frac;
+ buf=buf0+ROUND_UP(intg);
+ *s1++='.';
+ for (; frac>0; frac-=DIG_PER_DEC1)
+ {
+ dec1 x=*buf++;
+ for (i= MY_MIN(frac, DIG_PER_DEC1); i; i--)
+ {
+ dec1 y=x/DIG_MASK;
+ *s1++='0'+(uchar)y;
+ x-=y*DIG_MASK;
+ x*=10;
+ }
+ }
+ for(; fill > 0; fill--)
+ *s1++=filler;
+ }
+
+ fill= intg_len - intg;
+ if (intg == 0)
+ fill--; /* symbol 0 before digital point */
+ for(; fill > 0; fill--)
+ *s++=filler;
+ if (intg)
+ {
+ s+=intg;
+ for (buf=buf0+ROUND_UP(intg); intg>0; intg-=DIG_PER_DEC1)
+ {
+ dec1 x=*--buf;
+ for (i= MY_MIN(intg, DIG_PER_DEC1); i; i--)
+ {
+ dec1 y=x/10;
+ *--s='0'+(uchar)(x-y*10);
+ x=y;
+ }
+ }
+ }
+ else
+ *s= '0';
+
+ return error;
+}
+
+
+/*
+ Return bounds of decimal digits in the number
+
+ SYNOPSIS
+ digits_bounds()
+ from - decimal number for processing
+ start_result - index (from 0 ) of first decimal digits will
+ be written by this address
+ end_result - index of position just after last decimal digit
+ be written by this address
+*/
+
+static void digits_bounds(decimal_t *from, int *start_result, int *end_result)
+{
+ int start, stop, i;
+ dec1 *buf_beg= from->buf;
+ dec1 *end= from->buf + ROUND_UP(from->intg) + ROUND_UP(from->frac);
+ dec1 *buf_end= end - 1;
+
+ /* find non-zero digit from number begining */
+ while (buf_beg < end && *buf_beg == 0)
+ buf_beg++;
+
+ if (buf_beg >= end)
+ {
+ /* it is zero */
+ *start_result= *end_result= 0;
+ return;
+ }
+
+ /* find non-zero decimal digit from number begining */
+ if (buf_beg == from->buf && from->intg)
+ {
+ start= DIG_PER_DEC1 - (i= ((from->intg-1) % DIG_PER_DEC1 + 1));
+ i--;
+ }
+ else
+ {
+ i= DIG_PER_DEC1 - 1;
+ start= (int) ((buf_beg - from->buf) * DIG_PER_DEC1);
+ }
+ if (buf_beg < end)
+ start+= count_leading_zeroes(i, *buf_beg);
+
+ *start_result= start; /* index of first decimal digit (from 0) */
+
+ /* find non-zero digit at the end */
+ while (buf_end > buf_beg && *buf_end == 0)
+ buf_end--;
+ /* find non-zero decimal digit from the end */
+ if (buf_end == end - 1 && from->frac)
+ {
+ stop= (int) (((buf_end - from->buf) * DIG_PER_DEC1 +
+ (i= ((from->frac - 1) % DIG_PER_DEC1 + 1))));
+ i= DIG_PER_DEC1 - i + 1;
+ }
+ else
+ {
+ stop= (int) ((buf_end - from->buf + 1) * DIG_PER_DEC1);
+ i= 1;
+ }
+ stop-= count_trailing_zeroes(i, *buf_end);
+ *end_result= stop; /* index of position after last decimal digit (from 0) */
+}
+
+
+/*
+ Left shift for alignment of data in buffer
+
+ SYNOPSIS
+ do_mini_left_shift()
+ dec pointer to decimal number which have to be shifted
+ shift number of decimal digits on which it should be shifted
+ beg/end bounds of decimal digits (see digits_bounds())
+
+ NOTE
+ Result fitting in the buffer should be garanted.
+ 'shift' have to be from 1 to DIG_PER_DEC1-1 (inclusive)
+*/
+
+void do_mini_left_shift(decimal_t *dec, int shift, int beg, int last)
+{
+ dec1 *from= dec->buf + ROUND_UP(beg + 1) - 1;
+ dec1 *end= dec->buf + ROUND_UP(last) - 1;
+ int c_shift= DIG_PER_DEC1 - shift;
+ DBUG_ASSERT(from >= dec->buf);
+ DBUG_ASSERT(end < dec->buf + dec->len);
+ if (beg % DIG_PER_DEC1 < shift)
+ *(from - 1)= (*from) / powers10[c_shift];
+ for(; from < end; from++)
+ *from= ((*from % powers10[c_shift]) * powers10[shift] +
+ (*(from + 1)) / powers10[c_shift]);
+ *from= (*from % powers10[c_shift]) * powers10[shift];
+}
+
+
+/*
+ Right shift for alignment of data in buffer
+
+ SYNOPSIS
+ do_mini_left_shift()
+ dec pointer to decimal number which have to be shifted
+ shift number of decimal digits on which it should be shifted
+ beg/end bounds of decimal digits (see digits_bounds())
+
+ NOTE
+ Result fitting in the buffer should be garanted.
+ 'shift' have to be from 1 to DIG_PER_DEC1-1 (inclusive)
+*/
+
+void do_mini_right_shift(decimal_t *dec, int shift, int beg, int last)
+{
+ dec1 *from= dec->buf + ROUND_UP(last) - 1;
+ dec1 *end= dec->buf + ROUND_UP(beg + 1) - 1;
+ int c_shift= DIG_PER_DEC1 - shift;
+ DBUG_ASSERT(from < dec->buf + dec->len);
+ DBUG_ASSERT(end >= dec->buf);
+ if (DIG_PER_DEC1 - ((last - 1) % DIG_PER_DEC1 + 1) < shift)
+ *(from + 1)= (*from % powers10[shift]) * powers10[c_shift];
+ for(; from > end; from--)
+ *from= (*from / powers10[shift] +
+ (*(from - 1) % powers10[shift]) * powers10[c_shift]);
+ *from= *from / powers10[shift];
+}
+
+
+/*
+ Shift of decimal digits in given number (with rounding if it need)
+
+ SYNOPSIS
+ decimal_shift()
+ dec number to be shifted
+ shift number of decimal positions
+ shift > 0 means shift to left shift
+ shift < 0 meand right shift
+ NOTE
+ In fact it is multipling on 10^shift.
+ RETURN
+ E_DEC_OK OK
+ E_DEC_OVERFLOW operation lead to overflow, number is untoched
+ E_DEC_TRUNCATED number was rounded to fit into buffer
+*/
+
+int decimal_shift(decimal_t *dec, int shift)
+{
+ /* index of first non zero digit (all indexes from 0) */
+ int beg;
+ /* index of position after last decimal digit */
+ int end;
+ /* index of digit position just after point */
+ int point= ROUND_UP(dec->intg) * DIG_PER_DEC1;
+ /* new point position */
+ int new_point= point + shift;
+ /* number of digits in result */
+ int digits_int, digits_frac;
+ /* length of result and new fraction in big digits*/
+ int new_len, new_frac_len;
+ /* return code */
+ int err= E_DEC_OK;
+ int new_front;
+
+ if (shift == 0)
+ return E_DEC_OK;
+
+ digits_bounds(dec, &beg, &end);
+
+ if (beg == end)
+ {
+ decimal_make_zero(dec);
+ return E_DEC_OK;
+ }
+
+ digits_int= new_point - beg;
+ set_if_bigger(digits_int, 0);
+ digits_frac= end - new_point;
+ set_if_bigger(digits_frac, 0);
+
+ if ((new_len= ROUND_UP(digits_int) + (new_frac_len= ROUND_UP(digits_frac))) >
+ dec->len)
+ {
+ int lack= new_len - dec->len;
+ int diff;
+
+ if (new_frac_len < lack)
+ return E_DEC_OVERFLOW; /* lack more then we have in fraction */
+
+ /* cat off fraction part to allow new number to fit in our buffer */
+ err= E_DEC_TRUNCATED;
+ new_frac_len-= lack;
+ diff= digits_frac - (new_frac_len * DIG_PER_DEC1);
+ /* Make rounding method as parameter? */
+ decimal_round(dec, dec, end - point - diff, HALF_UP);
+ end-= diff;
+ digits_frac= new_frac_len * DIG_PER_DEC1;
+
+ if (end <= beg)
+ {
+ /*
+ we lost all digits (they will be shifted out of buffer), so we can
+ just return 0
+ */
+ decimal_make_zero(dec);
+ return E_DEC_TRUNCATED;
+ }
+ }
+
+ if (shift % DIG_PER_DEC1)
+ {
+ int l_mini_shift, r_mini_shift, mini_shift;
+ int do_left;
+ /*
+ Calculate left/right shift to align decimal digits inside our bug
+ digits correctly
+ */
+ if (shift > 0)
+ {
+ l_mini_shift= shift % DIG_PER_DEC1;
+ r_mini_shift= DIG_PER_DEC1 - l_mini_shift;
+ /*
+ It is left shift so prefer left shift, but if we have not place from
+ left, we have to have it from right, because we checked length of
+ result
+ */
+ do_left= l_mini_shift <= beg;
+ DBUG_ASSERT(do_left || (dec->len * DIG_PER_DEC1 - end) >= r_mini_shift);
+ }
+ else
+ {
+ r_mini_shift= (-shift) % DIG_PER_DEC1;
+ l_mini_shift= DIG_PER_DEC1 - r_mini_shift;
+ /* see comment above */
+ do_left= !((dec->len * DIG_PER_DEC1 - end) >= r_mini_shift);
+ DBUG_ASSERT(!do_left || l_mini_shift <= beg);
+ }
+ if (do_left)
+ {
+ do_mini_left_shift(dec, l_mini_shift, beg, end);
+ mini_shift= -l_mini_shift;
+ }
+ else
+ {
+ do_mini_right_shift(dec, r_mini_shift, beg, end);
+ mini_shift= r_mini_shift;
+ }
+ new_point+= mini_shift;
+ /*
+ If number is shifted and correctly aligned in buffer we can
+ finish
+ */
+ if (!(shift+= mini_shift) && (new_point - digits_int) < DIG_PER_DEC1)
+ {
+ dec->intg= digits_int;
+ dec->frac= digits_frac;
+ return err; /* already shifted as it should be */
+ }
+ beg+= mini_shift;
+ end+= mini_shift;
+ }
+
+ /* if new 'decimal front' is in first digit, we do not need move digits */
+ if ((new_front= (new_point - digits_int)) >= DIG_PER_DEC1 ||
+ new_front < 0)
+ {
+ /* need to move digits */
+ int d_shift;
+ dec1 *to, *barier;
+ if (new_front > 0)
+ {
+ /* move left */
+ d_shift= new_front / DIG_PER_DEC1;
+ to= dec->buf + (ROUND_UP(beg + 1) - 1 - d_shift);
+ barier= dec->buf + (ROUND_UP(end) - 1 - d_shift);
+ DBUG_ASSERT(to >= dec->buf);
+ DBUG_ASSERT(barier + d_shift < dec->buf + dec->len);
+ for(; to <= barier; to++)
+ *to= *(to + d_shift);
+ for(barier+= d_shift; to <= barier; to++)
+ *to= 0;
+ d_shift= -d_shift;
+ }
+ else
+ {
+ /* move right */
+ d_shift= (1 - new_front) / DIG_PER_DEC1;
+ to= dec->buf + ROUND_UP(end) - 1 + d_shift;
+ barier= dec->buf + ROUND_UP(beg + 1) - 1 + d_shift;
+ DBUG_ASSERT(to < dec->buf + dec->len);
+ DBUG_ASSERT(barier - d_shift >= dec->buf);
+ for(; to >= barier; to--)
+ *to= *(to - d_shift);
+ for(barier-= d_shift; to >= barier; to--)
+ *to= 0;
+ }
+ d_shift*= DIG_PER_DEC1;
+ beg+= d_shift;
+ end+= d_shift;
+ new_point+= d_shift;
+ }
+
+ /*
+ If there are gaps then fill ren with 0.
+
+ Only one of following 'for' loops will work becouse beg <= end
+ */
+ beg= ROUND_UP(beg + 1) - 1;
+ end= ROUND_UP(end) - 1;
+ DBUG_ASSERT(new_point >= 0);
+
+ /* We don't want negative new_point below */
+ if (new_point != 0)
+ new_point= ROUND_UP(new_point) - 1;
+
+ if (new_point > end)
+ {
+ do
+ {
+ dec->buf[new_point]=0;
+ } while (--new_point > end);
+ }
+ else
+ {
+ for (; new_point < beg; new_point++)
+ dec->buf[new_point]= 0;
+ }
+ dec->intg= digits_int;
+ dec->frac= digits_frac;
+ return err;
+}
+
+
+/*
+ Convert string to decimal
+
+ SYNOPSIS
+ internal_str2decl()
+ from - value to convert. Doesn't have to be \0 terminated!
+ to - decimal where where the result will be stored
+ to->buf and to->len must be set.
+ end - Pointer to pointer to end of string. Will on return be
+ set to the char after the last used character
+ fixed - use to->intg, to->frac as limits for input number
+
+ NOTE
+ to->intg and to->frac can be modified even when fixed=1
+ (but only decreased, in this case)
+
+ RETURN VALUE
+ E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW/E_DEC_BAD_NUM/E_DEC_OOM
+ In case of E_DEC_FATAL_ERROR *to is set to decimal zero
+ (to make error handling easier)
+*/
+
+int
+internal_str2dec(const char *from, decimal_t *to, char **end, my_bool fixed)
+{
+ const char *s= from, *s1, *endp, *end_of_string= *end;
+ int i, intg, frac, error, intg1, frac1;
+ dec1 x,*buf;
+ sanity(to);
+
+ error= E_DEC_BAD_NUM; /* In case of bad number */
+ while (s < end_of_string && my_isspace(&my_charset_latin1, *s))
+ s++;
+ if (s == end_of_string)
+ goto fatal_error;
+
+ if ((to->sign= (*s == '-')))
+ s++;
+ else if (*s == '+')
+ s++;
+
+ s1=s;
+ while (s < end_of_string && my_isdigit(&my_charset_latin1, *s))
+ s++;
+ intg= (int) (s-s1);
+ if (s < end_of_string && *s=='.')
+ {
+ endp= s+1;
+ while (endp < end_of_string && my_isdigit(&my_charset_latin1, *endp))
+ endp++;
+ frac= (int) (endp - s - 1);
+ }
+ else
+ {
+ frac= 0;
+ endp= s;
+ }
+
+ *end= (char*) endp;
+
+ if (frac+intg == 0)
+ goto fatal_error;
+
+ error= 0;
+ if (fixed)
+ {
+ if (frac > to->frac)
+ {
+ error=E_DEC_TRUNCATED;
+ frac=to->frac;
+ }
+ if (intg > to->intg)
+ {
+ error=E_DEC_OVERFLOW;
+ intg=to->intg;
+ }
+ intg1=ROUND_UP(intg);
+ frac1=ROUND_UP(frac);
+ if (intg1+frac1 > to->len)
+ {
+ error= E_DEC_OOM;
+ goto fatal_error;
+ }
+ }
+ else
+ {
+ intg1=ROUND_UP(intg);
+ frac1=ROUND_UP(frac);
+ FIX_INTG_FRAC_ERROR(to->len, intg1, frac1, error);
+ if (unlikely(error))
+ {
+ frac=frac1*DIG_PER_DEC1;
+ if (error == E_DEC_OVERFLOW)
+ intg=intg1*DIG_PER_DEC1;
+ }
+ }
+ /* Error is guranteed to be set here */
+ to->intg=intg;
+ to->frac=frac;
+
+ buf=to->buf+intg1;
+ s1=s;
+
+ for (x=0, i=0; intg; intg--)
+ {
+ x+= (*--s - '0')*powers10[i];
+
+ if (unlikely(++i == DIG_PER_DEC1))
+ {
+ *--buf=x;
+ x=0;
+ i=0;
+ }
+ }
+ if (i)
+ *--buf=x;
+
+ buf=to->buf+intg1;
+ for (x=0, i=0; frac; frac--)
+ {
+ x= (*++s1 - '0') + x*10;
+
+ if (unlikely(++i == DIG_PER_DEC1))
+ {
+ *buf++=x;
+ x=0;
+ i=0;
+ }
+ }
+ if (i)
+ *buf=x*powers10[DIG_PER_DEC1-i];
+
+ /* Handle exponent */
+ if (endp+1 < end_of_string && (*endp == 'e' || *endp == 'E'))
+ {
+ int str_error;
+ longlong exponent= my_strtoll10(endp+1, (char**) &end_of_string,
+ &str_error);
+
+ if (end_of_string != endp +1) /* If at least one digit */
+ {
+ *end= (char*) end_of_string;
+ if (str_error > 0)
+ {
+ error= E_DEC_BAD_NUM;
+ goto fatal_error;
+ }
+ if (exponent > INT_MAX/2 || (str_error == 0 && exponent < 0))
+ {
+ error= E_DEC_OVERFLOW;
+ goto fatal_error;
+ }
+ if (exponent < INT_MIN/2 && error != E_DEC_OVERFLOW)
+ {
+ error= E_DEC_TRUNCATED;
+ goto fatal_error;
+ }
+ if (error != E_DEC_OVERFLOW)
+ error= decimal_shift(to, (int) exponent);
+ }
+ }
+ /* Avoid returning negative zero, cfr. decimal_cmp() */
+ if (to->sign && decimal_is_zero(to))
+ to->sign= FALSE;
+ return error;
+
+fatal_error:
+ decimal_make_zero(to);
+ return error;
+}
+
+
+/*
+ Convert decimal to double
+
+ SYNOPSIS
+ decimal2double()
+ from - value to convert
+ to - result will be stored there
+
+ RETURN VALUE
+ E_DEC_OK/E_DEC_OVERFLOW/E_DEC_TRUNCATED
+*/
+
+int decimal2double(const decimal_t *from, double *to)
+{
+ char strbuf[FLOATING_POINT_BUFFER], *end;
+ int len= sizeof(strbuf);
+ int rc, error;
+
+ rc = decimal2string(from, strbuf, &len, 0, 0, 0);
+ end= strbuf + len;
+
+ DBUG_PRINT("info", ("interm.: %s", strbuf));
+
+ *to= my_strtod(strbuf, &end, &error);
+
+ DBUG_PRINT("info", ("result: %f", *to));
+
+ return (rc != E_DEC_OK) ? rc : (error ? E_DEC_OVERFLOW : E_DEC_OK);
+}
+
+/*
+ Convert double to decimal
+
+ SYNOPSIS
+ double2decimal()
+ from - value to convert
+ to - result will be stored there
+
+ RETURN VALUE
+ E_DEC_OK/E_DEC_OVERFLOW/E_DEC_TRUNCATED
+*/
+
+int double2decimal(double from, decimal_t *to)
+{
+ char buff[FLOATING_POINT_BUFFER], *end;
+ int res;
+ DBUG_ENTER("double2decimal");
+ end= buff + my_gcvt(from, MY_GCVT_ARG_DOUBLE, (int)sizeof(buff) - 1, buff, NULL);
+ res= string2decimal(buff, to, &end);
+ DBUG_PRINT("exit", ("res: %d", res));
+ DBUG_RETURN(res);
+}
+
+
+static int ull2dec(ulonglong from, decimal_t *to)
+{
+ int intg1;
+ int error= E_DEC_OK;
+ ulonglong x= from;
+ dec1 *buf;
+
+ sanity(to);
+
+ if (from == 0)
+ intg1= 1;
+ else
+ {
+ /* Count the number of decimal_digit_t's we need. */
+ for (intg1= 0; from != 0; intg1++, from/= DIG_BASE)
+ ;
+ }
+ if (unlikely(intg1 > to->len))
+ {
+ intg1= to->len;
+ error= E_DEC_OVERFLOW;
+ }
+ to->frac= 0;
+ to->intg= intg1 * DIG_PER_DEC1;
+
+ for (buf= to->buf + intg1; intg1; intg1--)
+ {
+ ulonglong y= x / DIG_BASE;
+ *--buf=(dec1)(x - y * DIG_BASE);
+ x= y;
+ }
+ return error;
+}
+
+int ulonglong2decimal(ulonglong from, decimal_t *to)
+{
+ to->sign=0;
+ return ull2dec(from, to);
+}
+
+int longlong2decimal(longlong from, decimal_t *to)
+{
+ if ((to->sign= from < 0))
+ return ull2dec(-from, to);
+ return ull2dec(from, to);
+}
+
+int decimal2ulonglong(decimal_t *from, ulonglong *to)
+{
+ dec1 *buf=from->buf;
+ ulonglong x=0;
+ int intg, frac;
+
+ if (from->sign)
+ {
+ *to=0ULL;
+ return E_DEC_OVERFLOW;
+ }
+
+ for (intg=from->intg; intg > 0; intg-=DIG_PER_DEC1)
+ {
+ ulonglong y=x;
+ x=x*DIG_BASE + *buf++;
+ if (unlikely(y > ((ulonglong) ULLONG_MAX/DIG_BASE) || x < y))
+ {
+ *to=ULLONG_MAX;
+ return E_DEC_OVERFLOW;
+ }
+ }
+ *to=x;
+ for (frac=from->frac; unlikely(frac > 0); frac-=DIG_PER_DEC1)
+ if (*buf++)
+ return E_DEC_TRUNCATED;
+ return E_DEC_OK;
+}
+
+int decimal2longlong(decimal_t *from, longlong *to)
+{
+ dec1 *buf=from->buf;
+ longlong x=0;
+ int intg, frac;
+
+ for (intg=from->intg; intg > 0; intg-=DIG_PER_DEC1)
+ {
+ longlong y=x;
+ /*
+ Attention: trick!
+ we're calculating -|from| instead of |from| here
+ because |LLONG_MIN| > LLONG_MAX
+ so we can convert -9223372036854775808 correctly
+ */
+ x=x*DIG_BASE - *buf++;
+ if (unlikely(y < (LLONG_MIN/DIG_BASE) || x > y))
+ {
+ /*
+ the decimal is bigger than any possible integer
+ return border integer depending on the sign
+ */
+ *to= from->sign ? LLONG_MIN : LLONG_MAX;
+ return E_DEC_OVERFLOW;
+ }
+ }
+ /* boundary case: 9223372036854775808 */
+ if (unlikely(from->sign==0 && x == LLONG_MIN))
+ {
+ *to= LLONG_MAX;
+ return E_DEC_OVERFLOW;
+ }
+
+ *to=from->sign ? x : -x;
+ for (frac=from->frac; unlikely(frac > 0); frac-=DIG_PER_DEC1)
+ if (*buf++)
+ return E_DEC_TRUNCATED;
+ return E_DEC_OK;
+}
+
+
+#define LLDIV_MIN -1000000000000000000LL
+#define LLDIV_MAX 1000000000000000000LL
+
+/**
+ Convert decimal value to lldiv_t value.
+ @param from The decimal value to convert from.
+ @param OUT to The lldiv_t variable to convert to.
+ @return 0 on success, error code on error.
+*/
+int decimal2lldiv_t(const decimal_t *from, lldiv_t *to)
+{
+ int int_part= ROUND_UP(from->intg);
+ int frac_part= ROUND_UP(from->frac);
+ if (int_part > 2)
+ {
+ to->rem= 0;
+ to->quot= from->sign ? LLDIV_MIN : LLDIV_MAX;
+ return E_DEC_OVERFLOW;
+ }
+ if (int_part == 2)
+ to->quot= ((longlong) from->buf[0]) * DIG_BASE + from->buf[1];
+ else if (int_part == 1)
+ to->quot= from->buf[0];
+ else
+ to->quot= 0;
+ to->rem= frac_part ? from->buf[int_part] : 0;
+ if (from->sign)
+ {
+ to->quot= -to->quot;
+ to->rem= -to->rem;
+ }
+ return 0;
+}
+
+
+/**
+ Convert double value to lldiv_t valie.
+ @param from The double value to convert from.
+ @param OUT to The lldit_t variable to convert to.
+ @return 0 on success, error code on error.
+
+ Integer part goes into lld.quot.
+ Fractional part multiplied to 1000000000 (10^9) goes to lld.rem.
+ Typically used in datetime calculations to split seconds
+ and nanoseconds.
+*/
+int double2lldiv_t(double nr, lldiv_t *lld)
+{
+ if (nr > LLDIV_MAX)
+ {
+ lld->quot= LLDIV_MAX;
+ lld->rem= 0;
+ return E_DEC_OVERFLOW;
+ }
+ else if (nr < LLDIV_MIN)
+ {
+ lld->quot= LLDIV_MIN;
+ lld->rem= 0;
+ return E_DEC_OVERFLOW;
+ }
+ /* Truncate fractional part toward zero and store into "quot" */
+ lld->quot= (longlong) (nr > 0 ? floor(nr) : ceil(nr));
+ /* Multiply reminder to 10^9 and store into "rem" */
+ lld->rem= (longlong) rint((nr - (double) lld->quot) * 1000000000);
+ /*
+ Sometimes the expression "(double) 0.999999999xxx * (double) 10e9"
+ gives 1,000,000,000 instead of 999,999,999 due to lack of double precision.
+ The callers do not expect lld->rem to be greater than 999,999,999.
+ Let's catch this corner case and put the "nanounit" (e.g. nanosecond)
+ value in ldd->rem back into the valid range.
+ */
+ if (lld->rem > 999999999LL)
+ lld->rem= 999999999LL;
+ else if (lld->rem < -999999999LL)
+ lld->rem= -999999999LL;
+ return E_DEC_OK;
+}
+
+
+
+/*
+ Convert decimal to its binary fixed-length representation
+ two representations of the same length can be compared with memcmp
+ with the correct -1/0/+1 result
+
+ SYNOPSIS
+ decimal2bin()
+ from - value to convert
+ to - points to buffer where string representation should be stored
+ precision/scale - see decimal_bin_size() below
+
+ NOTE
+ the buffer is assumed to be of the size decimal_bin_size(precision, scale)
+
+ RETURN VALUE
+ E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW
+
+ DESCRIPTION
+ for storage decimal numbers are converted to the "binary" format.
+
+ This format has the following properties:
+ 1. length of the binary representation depends on the {precision, scale}
+ as provided by the caller and NOT on the intg/frac of the decimal to
+ convert.
+ 2. binary representations of the same {precision, scale} can be compared
+ with memcmp - with the same result as decimal_cmp() of the original
+ decimals (not taking into account possible precision loss during
+ conversion).
+
+ This binary format is as follows:
+ 1. First the number is converted to have a requested precision and scale.
+ 2. Every full DIG_PER_DEC1 digits of intg part are stored in 4 bytes
+ as is
+ 3. The first intg % DIG_PER_DEC1 digits are stored in the reduced
+ number of bytes (enough bytes to store this number of digits -
+ see dig2bytes)
+ 4. same for frac - full decimal_digit_t's are stored as is,
+ the last frac % DIG_PER_DEC1 digits - in the reduced number of bytes.
+ 5. If the number is negative - every byte is inversed.
+ 5. The very first bit of the resulting byte array is inverted (because
+ memcmp compares unsigned bytes, see property 2 above)
+
+ Example:
+
+ 1234567890.1234
+
+ internally is represented as 3 decimal_digit_t's
+
+ 1 234567890 123400000
+
+ (assuming we want a binary representation with precision=14, scale=4)
+ in hex it's
+
+ 00-00-00-01 0D-FB-38-D2 07-5A-EF-40
+
+ now, middle decimal_digit_t is full - it stores 9 decimal digits. It goes
+ into binary representation as is:
+
+
+ ........... 0D-FB-38-D2 ............
+
+ First decimal_digit_t has only one decimal digit. We can store one digit in
+ one byte, no need to waste four:
+
+ 01 0D-FB-38-D2 ............
+
+ now, last digit. It's 123400000. We can store 1234 in two bytes:
+
+ 01 0D-FB-38-D2 04-D2
+
+ So, we've packed 12 bytes number in 7 bytes.
+ And now we invert the highest bit to get the final result:
+
+ 81 0D FB 38 D2 04 D2
+
+ And for -1234567890.1234 it would be
+
+ 7E F2 04 C7 2D FB 2D
+*/
+int decimal2bin(decimal_t *from, uchar *to, int precision, int frac)
+{
+ dec1 mask=from->sign ? -1 : 0, *buf1=from->buf, *stop1;
+ int error=E_DEC_OK, intg=precision-frac,
+ isize1, intg1, intg1x, from_intg,
+ intg0=intg/DIG_PER_DEC1,
+ frac0=frac/DIG_PER_DEC1,
+ intg0x=intg-intg0*DIG_PER_DEC1,
+ frac0x=frac-frac0*DIG_PER_DEC1,
+ frac1=from->frac/DIG_PER_DEC1,
+ frac1x=from->frac-frac1*DIG_PER_DEC1,
+ isize0=intg0*sizeof(dec1)+dig2bytes[intg0x],
+ fsize0=frac0*sizeof(dec1)+dig2bytes[frac0x],
+ fsize1=frac1*sizeof(dec1)+dig2bytes[frac1x];
+ const int orig_isize0= isize0;
+ const int orig_fsize0= fsize0;
+ uchar *orig_to= to;
+
+ buf1= remove_leading_zeroes(from, &from_intg);
+
+ if (unlikely(from_intg+fsize1==0))
+ {
+ mask=0; /* just in case */
+ intg=1;
+ buf1=&mask;
+ }
+
+ intg1=from_intg/DIG_PER_DEC1;
+ intg1x=from_intg-intg1*DIG_PER_DEC1;
+ isize1=intg1*sizeof(dec1)+dig2bytes[intg1x];
+
+ if (intg < from_intg)
+ {
+ buf1+=intg1-intg0+(intg1x>0)-(intg0x>0);
+ intg1=intg0; intg1x=intg0x;
+ error=E_DEC_OVERFLOW;
+ }
+ else if (isize0 > isize1)
+ {
+ while (isize0-- > isize1)
+ *to++= (char)mask;
+ }
+ if (fsize0 < fsize1)
+ {
+ frac1=frac0; frac1x=frac0x;
+ error=E_DEC_TRUNCATED;
+ }
+ else if (fsize0 > fsize1 && frac1x)
+ {
+ if (frac0 == frac1)
+ {
+ frac1x=frac0x;
+ fsize0= fsize1;
+ }
+ else
+ {
+ frac1++;
+ frac1x=0;
+ }
+ }
+
+ /* intg1x part */
+ if (intg1x)
+ {
+ int i=dig2bytes[intg1x];
+ dec1 x=(*buf1++ % powers10[intg1x]) ^ mask;
+ switch (i)
+ {
+ case 1: mi_int1store(to, x); break;
+ case 2: mi_int2store(to, x); break;
+ case 3: mi_int3store(to, x); break;
+ case 4: mi_int4store(to, x); break;
+ default: DBUG_ASSERT(0);
+ }
+ to+=i;
+ }
+
+ /* intg1+frac1 part */
+ for (stop1=buf1+intg1+frac1; buf1 < stop1; to+=sizeof(dec1))
+ {
+ dec1 x=*buf1++ ^ mask;
+ DBUG_ASSERT(sizeof(dec1) == 4);
+ mi_int4store(to, x);
+ }
+
+ /* frac1x part */
+ if (frac1x)
+ {
+ dec1 x;
+ int i=dig2bytes[frac1x],
+ lim=(frac1 < frac0 ? DIG_PER_DEC1 : frac0x);
+ while (frac1x < lim && dig2bytes[frac1x] == i)
+ frac1x++;
+ x=(*buf1 / powers10[DIG_PER_DEC1 - frac1x]) ^ mask;
+ switch (i)
+ {
+ case 1: mi_int1store(to, x); break;
+ case 2: mi_int2store(to, x); break;
+ case 3: mi_int3store(to, x); break;
+ case 4: mi_int4store(to, x); break;
+ default: DBUG_ASSERT(0);
+ }
+ to+=i;
+ }
+ if (fsize0 > fsize1)
+ {
+ uchar *to_end= orig_to + orig_fsize0 + orig_isize0;
+
+ while (fsize0-- > fsize1 && to < to_end)
+ *to++= (uchar)mask;
+ }
+ orig_to[0]^= 0x80;
+
+ /* Check that we have written the whole decimal and nothing more */
+ DBUG_ASSERT(to == orig_to + orig_fsize0 + orig_isize0);
+ return error;
+}
+
+/*
+ Restores decimal from its binary fixed-length representation
+
+ SYNOPSIS
+ bin2decimal()
+ from - value to convert
+ to - result
+ precision/scale - see decimal_bin_size() below
+
+ NOTE
+ see decimal2bin()
+ the buffer is assumed to be of the size decimal_bin_size(precision, scale)
+
+ RETURN VALUE
+ E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW
+*/
+
+int bin2decimal(const uchar *from, decimal_t *to, int precision, int scale)
+{
+ int error=E_DEC_OK, intg=precision-scale,
+ intg0=intg/DIG_PER_DEC1, frac0=scale/DIG_PER_DEC1,
+ intg0x=intg-intg0*DIG_PER_DEC1, frac0x=scale-frac0*DIG_PER_DEC1,
+ intg1=intg0+(intg0x>0), frac1=frac0+(frac0x>0);
+ dec1 *buf=to->buf, mask=(*from & 0x80) ? 0 : -1;
+ const uchar *stop;
+ uchar *d_copy;
+ int bin_size= decimal_bin_size(precision, scale);
+
+ sanity(to);
+ d_copy= (uchar*) my_alloca(bin_size);
+ memcpy(d_copy, from, bin_size);
+ d_copy[0]^= 0x80;
+ from= d_copy;
+
+ FIX_INTG_FRAC_ERROR(to->len, intg1, frac1, error);
+ if (unlikely(error))
+ {
+ if (intg1 < intg0+(intg0x>0))
+ {
+ from+=dig2bytes[intg0x]+sizeof(dec1)*(intg0-intg1);
+ frac0=frac0x=intg0x=0;
+ intg0=intg1;
+ }
+ else
+ {
+ frac0x=0;
+ frac0=frac1;
+ }
+ }
+
+ to->sign=(mask != 0);
+ to->intg=intg0*DIG_PER_DEC1+intg0x;
+ to->frac=frac0*DIG_PER_DEC1+frac0x;
+
+ if (intg0x)
+ {
+ int i=dig2bytes[intg0x];
+ dec1 x= 0;
+ switch (i)
+ {
+ case 1: x=mi_sint1korr(from); break;
+ case 2: x=mi_sint2korr(from); break;
+ case 3: x=mi_sint3korr(from); break;
+ case 4: x=mi_sint4korr(from); break;
+ default: DBUG_ASSERT(0);
+ }
+ from+=i;
+ *buf=x ^ mask;
+ if (((ulonglong)*buf) >= (ulonglong) powers10[intg0x+1])
+ goto err;
+ if (buf > to->buf || *buf != 0)
+ buf++;
+ else
+ to->intg-=intg0x;
+ }
+ for (stop=from+intg0*sizeof(dec1); from < stop; from+=sizeof(dec1))
+ {
+ DBUG_ASSERT(sizeof(dec1) == 4);
+ *buf=mi_sint4korr(from) ^ mask;
+ if (((uint32)*buf) > DIG_MAX)
+ goto err;
+ if (buf > to->buf || *buf != 0)
+ buf++;
+ else
+ to->intg-=DIG_PER_DEC1;
+ }
+ DBUG_ASSERT(to->intg >=0);
+ for (stop=from+frac0*sizeof(dec1); from < stop; from+=sizeof(dec1))
+ {
+ DBUG_ASSERT(sizeof(dec1) == 4);
+ *buf=mi_sint4korr(from) ^ mask;
+ if (((uint32)*buf) > DIG_MAX)
+ goto err;
+ buf++;
+ }
+ if (frac0x)
+ {
+ int i=dig2bytes[frac0x];
+ dec1 x= 0;
+ switch (i)
+ {
+ case 1: x=mi_sint1korr(from); break;
+ case 2: x=mi_sint2korr(from); break;
+ case 3: x=mi_sint3korr(from); break;
+ case 4: x=mi_sint4korr(from); break;
+ default: DBUG_ASSERT(0);
+ }
+ *buf=(x ^ mask) * powers10[DIG_PER_DEC1 - frac0x];
+ if (((uint32)*buf) > DIG_MAX)
+ goto err;
+ buf++;
+ }
+
+ /*
+ No digits? We have read the number zero, of unspecified precision.
+ Make it a proper zero, with non-zero precision.
+ */
+ if (to->intg == 0 && to->frac == 0)
+ decimal_make_zero(to);
+ return error;
+
+err:
+ decimal_make_zero(to);
+ return(E_DEC_BAD_NUM);
+}
+
+/*
+ Returns the size of array to hold a decimal with given precision and scale
+
+ RETURN VALUE
+ size in dec1
+ (multiply by sizeof(dec1) to get the size if bytes)
+*/
+
+int decimal_size(int precision, int scale)
+{
+ DBUG_ASSERT(scale >= 0 && precision > 0 && scale <= precision);
+ return ROUND_UP(precision-scale)+ROUND_UP(scale);
+}
+
+/*
+ Returns the size of array to hold a binary representation of a decimal
+
+ RETURN VALUE
+ size in bytes
+*/
+
+int decimal_bin_size(int precision, int scale)
+{
+ int intg=precision-scale,
+ intg0=intg/DIG_PER_DEC1, frac0=scale/DIG_PER_DEC1,
+ intg0x=intg-intg0*DIG_PER_DEC1, frac0x=scale-frac0*DIG_PER_DEC1;
+
+ DBUG_ASSERT(scale >= 0 && precision > 0 && scale <= precision);
+ DBUG_ASSERT(intg0x >= 0);
+ DBUG_ASSERT(intg0x <= DIG_PER_DEC1);
+ DBUG_ASSERT(frac0x >= 0);
+ DBUG_ASSERT(frac0x <= DIG_PER_DEC1);
+ return intg0*sizeof(dec1)+dig2bytes[intg0x]+
+ frac0*sizeof(dec1)+dig2bytes[frac0x];
+}
+
+/*
+ Rounds the decimal to "scale" digits
+
+ SYNOPSIS
+ decimal_round()
+ from - decimal to round,
+ to - result buffer. from==to is allowed
+ scale - to what position to round. can be negative!
+ mode - round to nearest even or truncate
+
+ NOTES
+ scale can be negative !
+ one TRUNCATED error (line XXX below) isn't treated very logical :(
+
+ RETURN VALUE
+ E_DEC_OK/E_DEC_TRUNCATED
+*/
+
+int
+decimal_round(const decimal_t *from, decimal_t *to, int scale,
+ decimal_round_mode mode)
+{
+ int frac0=scale>0 ? ROUND_UP(scale) : (scale + 1)/DIG_PER_DEC1,
+ frac1=ROUND_UP(from->frac), round_digit= 0,
+ intg0=ROUND_UP(from->intg), error=E_DEC_OK, len=to->len;
+
+ dec1 *buf0=from->buf, *buf1=to->buf, x, y, carry=0;
+ int first_dig;
+
+ sanity(to);
+
+ switch (mode) {
+ case HALF_UP:
+ case HALF_EVEN: round_digit=5; break;
+ case CEILING: round_digit= from->sign ? 10 : 0; break;
+ case FLOOR: round_digit= from->sign ? 0 : 10; break;
+ case TRUNCATE: round_digit=10; break;
+ default: DBUG_ASSERT(0);
+ }
+
+ /*
+ For my_decimal we always use len == DECIMAL_BUFF_LENGTH == 9
+ For internal testing here (ifdef MAIN) we always use len == 100/4
+ */
+ DBUG_ASSERT(from->len == to->len);
+
+ if (unlikely(frac0+intg0 > len))
+ {
+ frac0=len-intg0;
+ scale=frac0*DIG_PER_DEC1;
+ error=E_DEC_TRUNCATED;
+ }
+
+ if (scale+from->intg < 0)
+ {
+ decimal_make_zero(to);
+ return E_DEC_OK;
+ }
+
+ if (to != from)
+ {
+ dec1 *p0= buf0 + intg0 + MY_MAX(frac1, frac0);
+ dec1 *p1= buf1 + intg0 + MY_MAX(frac1, frac0);
+
+ DBUG_ASSERT(p0 - buf0 <= len);
+ DBUG_ASSERT(p1 - buf1 <= len);
+
+ while (buf0 < p0)
+ *(--p1) = *(--p0);
+
+ buf0=to->buf;
+ buf1=to->buf;
+ to->sign=from->sign;
+ to->intg= MY_MIN(intg0, len) * DIG_PER_DEC1;
+ }
+
+ if (frac0 > frac1)
+ {
+ buf1+=intg0+frac1;
+ while (frac0-- > frac1)
+ *buf1++=0;
+ goto done;
+ }
+
+ if (scale >= from->frac)
+ goto done; /* nothing to do */
+
+ buf0+=intg0+frac0-1;
+ buf1+=intg0+frac0-1;
+ if (scale == frac0*DIG_PER_DEC1)
+ {
+ int do_inc= FALSE;
+ DBUG_ASSERT(frac0+intg0 >= 0);
+ switch (round_digit) {
+ case 0:
+ {
+ dec1 *p0= buf0 + (frac1-frac0);
+ for (; p0 > buf0; p0--)
+ {
+ if (*p0)
+ {
+ do_inc= TRUE;
+ break;
+ }
+ }
+ break;
+ }
+ case 5:
+ {
+ x= buf0[1]/DIG_MASK;
+ do_inc= (x>5) || ((x == 5) &&
+ (mode == HALF_UP || (frac0+intg0 > 0 && *buf0 & 1)));
+ break;
+ }
+ default:
+ break;
+ }
+ if (do_inc)
+ {
+ if (frac0+intg0>0)
+ (*buf1)++;
+ else
+ *(++buf1)=DIG_BASE;
+ }
+ else if (frac0+intg0==0)
+ {
+ decimal_make_zero(to);
+ return E_DEC_OK;
+ }
+ }
+ else
+ {
+ /* TODO - fix this code as it won't work for CEILING mode */
+ int pos=frac0*DIG_PER_DEC1-scale-1;
+ DBUG_ASSERT(frac0+intg0 > 0);
+ x=*buf1 / powers10[pos];
+ y=x % 10;
+ if (y > round_digit ||
+ (round_digit == 5 && y == 5 && (mode == HALF_UP || (x/10) & 1)))
+ x+=10;
+ *buf1=powers10[pos]*(x-y);
+ }
+ /*
+ In case we're rounding e.g. 1.5e9 to 2.0e9, the decimal_digit_t's inside
+ the buffer are as follows.
+
+ Before <1, 5e8>
+ After <2, 5e8>
+
+ Hence we need to set the 2nd field to 0.
+ The same holds if we round 1.5e-9 to 2e-9.
+ */
+ if (frac0 < frac1)
+ {
+ dec1 *buf= to->buf + ((scale == 0 && intg0 == 0) ? 1 : intg0 + frac0);
+ dec1 *end= to->buf + len;
+
+ while (buf < end)
+ *buf++=0;
+ }
+ if (*buf1 >= DIG_BASE)
+ {
+ carry=1;
+ *buf1-=DIG_BASE;
+ while (carry && --buf1 >= to->buf)
+ ADD(*buf1, *buf1, 0, carry);
+ if (unlikely(carry))
+ {
+ /* shifting the number to create space for new digit */
+ if (frac0+intg0 >= len)
+ {
+ frac0--;
+ scale=frac0*DIG_PER_DEC1;
+ error=E_DEC_TRUNCATED; /* XXX */
+ }
+ for (buf1=to->buf + intg0 + MY_MAX(frac0, 0); buf1 > to->buf; buf1--)
+ {
+ /* Avoid out-of-bounds write. */
+ if (buf1 < to->buf + len)
+ buf1[0]=buf1[-1];
+ else
+ error= E_DEC_OVERFLOW;
+ }
+ *buf1=1;
+ /* We cannot have more than 9 * 9 = 81 digits. */
+ if (to->intg < len * DIG_PER_DEC1)
+ to->intg++;
+ else
+ error= E_DEC_OVERFLOW;
+ }
+ }
+ else
+ {
+ for (;;)
+ {
+ if (likely(*buf1))
+ break;
+ if (buf1-- == to->buf)
+ {
+ /* making 'zero' with the proper scale */
+ dec1 *p0= to->buf + frac0 + 1;
+ to->intg=1;
+ to->frac= MY_MAX(scale, 0);
+ to->sign= 0;
+ for (buf1= to->buf; buf1<p0; buf1++)
+ *buf1= 0;
+ return E_DEC_OK;
+ }
+ }
+ }
+
+ /* Here we check 999.9 -> 1000 case when we need to increase intg */
+ first_dig= to->intg % DIG_PER_DEC1;
+ if (first_dig && (*buf1 >= powers10[first_dig]))
+ to->intg++;
+
+ if (scale<0)
+ scale=0;
+
+done:
+ DBUG_ASSERT(to->intg <= (len * DIG_PER_DEC1));
+ to->frac=scale;
+ return error;
+}
+
+/*
+ Returns the size of the result of the operation
+
+ SYNOPSIS
+ decimal_result_size()
+ from1 - operand of the unary operation or first operand of the
+ binary operation
+ from2 - second operand of the binary operation
+ op - operation. one char '+', '-', '*', '/' are allowed
+ others may be added later
+ param - extra param to the operation. unused for '+', '-', '*'
+ scale increment for '/'
+
+ NOTE
+ returned valued may be larger than the actual buffer requred
+ in the operation, as decimal_result_size, by design, operates on
+ precision/scale values only and not on the actual decimal number
+
+ RETURN VALUE
+ size of to->buf array in dec1 elements. to get size in bytes
+ multiply by sizeof(dec1)
+*/
+
+int decimal_result_size(decimal_t *from1, decimal_t *from2, char op, int param)
+{
+ switch (op) {
+ case '-':
+ return ROUND_UP(MY_MAX(from1->intg, from2->intg)) +
+ ROUND_UP(MY_MAX(from1->frac, from2->frac));
+ case '+':
+ return ROUND_UP(MY_MAX(from1->intg, from2->intg)+1) +
+ ROUND_UP(MY_MAX(from1->frac, from2->frac));
+ case '*':
+ return ROUND_UP(from1->intg+from2->intg)+
+ ROUND_UP(from1->frac)+ROUND_UP(from2->frac);
+ case '/':
+ return ROUND_UP(from1->intg+from2->intg+1+from1->frac+from2->frac+param);
+ default: DBUG_ASSERT(0);
+ }
+ return -1; /* shut up the warning */
+}
+
+static int do_add(const decimal_t *from1, const decimal_t *from2, decimal_t *to)
+{
+ int intg1=ROUND_UP(from1->intg), intg2=ROUND_UP(from2->intg),
+ frac1=ROUND_UP(from1->frac), frac2=ROUND_UP(from2->frac),
+ frac0= MY_MAX(frac1, frac2), intg0= MY_MAX(intg1, intg2), error;
+ dec1 *buf1, *buf2, *buf0, *stop, *stop2, x, carry;
+
+ sanity(to);
+
+ /* is there a need for extra word because of carry ? */
+ x=intg1 > intg2 ? from1->buf[0] :
+ intg2 > intg1 ? from2->buf[0] :
+ from1->buf[0] + from2->buf[0] ;
+ if (unlikely(x > DIG_MAX-1)) /* yes, there is */
+ {
+ intg0++;
+ to->buf[0]=0; /* safety */
+ }
+
+ FIX_INTG_FRAC_ERROR(to->len, intg0, frac0, error);
+ if (unlikely(error == E_DEC_OVERFLOW))
+ {
+ max_decimal(to->len * DIG_PER_DEC1, 0, to);
+ return error;
+ }
+
+ buf0=to->buf+intg0+frac0;
+
+ to->sign=from1->sign;
+ to->frac= MY_MAX(from1->frac, from2->frac);
+ to->intg=intg0*DIG_PER_DEC1;
+ if (unlikely(error))
+ {
+ set_if_smaller(to->frac, frac0*DIG_PER_DEC1);
+ set_if_smaller(frac1, frac0);
+ set_if_smaller(frac2, frac0);
+ set_if_smaller(intg1, intg0);
+ set_if_smaller(intg2, intg0);
+ }
+
+ /* part 1 - max(frac) ... min (frac) */
+ if (frac1 > frac2)
+ {
+ buf1=from1->buf+intg1+frac1;
+ stop=from1->buf+intg1+frac2;
+ buf2=from2->buf+intg2+frac2;
+ stop2=from1->buf+(intg1 > intg2 ? intg1-intg2 : 0);
+ }
+ else
+ {
+ buf1=from2->buf+intg2+frac2;
+ stop=from2->buf+intg2+frac1;
+ buf2=from1->buf+intg1+frac1;
+ stop2=from2->buf+(intg2 > intg1 ? intg2-intg1 : 0);
+ }
+ while (buf1 > stop)
+ *--buf0=*--buf1;
+
+ /* part 2 - min(frac) ... min(intg) */
+ carry=0;
+ while (buf1 > stop2)
+ {
+ ADD(*--buf0, *--buf1, *--buf2, carry);
+ }
+
+ /* part 3 - min(intg) ... max(intg) */
+ buf1= intg1 > intg2 ? ((stop=from1->buf)+intg1-intg2) :
+ ((stop=from2->buf)+intg2-intg1) ;
+ while (buf1 > stop)
+ {
+ ADD(*--buf0, *--buf1, 0, carry);
+ }
+
+ if (unlikely(carry))
+ *--buf0=1;
+ DBUG_ASSERT(buf0 == to->buf || buf0 == to->buf+1);
+
+ return error;
+}
+
+/* to=from1-from2.
+ if to==0, return -1/0/+1 - the result of the comparison */
+static int do_sub(const decimal_t *from1, const decimal_t *from2, decimal_t *to)
+{
+ int intg1=ROUND_UP(from1->intg), intg2=ROUND_UP(from2->intg),
+ frac1=ROUND_UP(from1->frac), frac2=ROUND_UP(from2->frac);
+ int frac0= MY_MAX(frac1, frac2), error;
+ dec1 *buf1, *buf2, *buf0, *stop1, *stop2, *start1, *start2, carry=0;
+
+ /* let carry:=1 if from2 > from1 */
+ start1=buf1=from1->buf; stop1=buf1+intg1;
+ start2=buf2=from2->buf; stop2=buf2+intg2;
+ if (unlikely(*buf1 == 0))
+ {
+ while (buf1 < stop1 && *buf1 == 0)
+ buf1++;
+ start1=buf1;
+ intg1= (int) (stop1-buf1);
+ }
+ if (unlikely(*buf2 == 0))
+ {
+ while (buf2 < stop2 && *buf2 == 0)
+ buf2++;
+ start2=buf2;
+ intg2= (int) (stop2-buf2);
+ }
+ if (intg2 > intg1)
+ carry=1;
+ else if (intg2 == intg1)
+ {
+ dec1 *end1= stop1 + (frac1 - 1);
+ dec1 *end2= stop2 + (frac2 - 1);
+ while (unlikely((buf1 <= end1) && (*end1 == 0)))
+ end1--;
+ while (unlikely((buf2 <= end2) && (*end2 == 0)))
+ end2--;
+ frac1= (int) (end1 - stop1) + 1;
+ frac2= (int) (end2 - stop2) + 1;
+ while (buf1 <=end1 && buf2 <= end2 && *buf1 == *buf2)
+ buf1++, buf2++;
+ if (buf1 <= end1)
+ {
+ if (buf2 <= end2)
+ carry= *buf2 > *buf1;
+ else
+ carry= 0;
+ }
+ else
+ {
+ if (buf2 <= end2)
+ carry=1;
+ else /* short-circuit everything: from1 == from2 */
+ {
+ if (to == 0) /* decimal_cmp() */
+ return 0;
+ decimal_make_zero(to);
+ return E_DEC_OK;
+ }
+ }
+ }
+
+ if (to == 0) /* decimal_cmp() */
+ return carry == from1->sign ? 1 : -1;
+
+ sanity(to);
+
+ to->sign=from1->sign;
+
+ /* ensure that always from1 > from2 (and intg1 >= intg2) */
+ if (carry)
+ {
+ swap_variables(const decimal_t *, from1, from2);
+ swap_variables(dec1 *,start1, start2);
+ swap_variables(int,intg1,intg2);
+ swap_variables(int,frac1,frac2);
+ to->sign= 1 - to->sign;
+ }
+
+ FIX_INTG_FRAC_ERROR(to->len, intg1, frac0, error);
+ buf0=to->buf+intg1+frac0;
+
+ to->frac= MY_MAX(from1->frac, from2->frac);
+ to->intg=intg1*DIG_PER_DEC1;
+ if (unlikely(error))
+ {
+ set_if_smaller(to->frac, frac0*DIG_PER_DEC1);
+ set_if_smaller(frac1, frac0);
+ set_if_smaller(frac2, frac0);
+ set_if_smaller(intg2, intg1);
+ }
+ carry=0;
+
+ /* part 1 - max(frac) ... min (frac) */
+ if (frac1 > frac2)
+ {
+ buf1=start1+intg1+frac1;
+ stop1=start1+intg1+frac2;
+ buf2=start2+intg2+frac2;
+ while (frac0-- > frac1)
+ *--buf0=0;
+ while (buf1 > stop1)
+ *--buf0=*--buf1;
+ }
+ else
+ {
+ buf1=start1+intg1+frac1;
+ buf2=start2+intg2+frac2;
+ stop2=start2+intg2+frac1;
+ while (frac0-- > frac2)
+ *--buf0=0;
+ while (buf2 > stop2)
+ {
+ SUB(*--buf0, 0, *--buf2, carry);
+ }
+ }
+
+ /* part 2 - min(frac) ... intg2 */
+ while (buf2 > start2)
+ {
+ SUB(*--buf0, *--buf1, *--buf2, carry);
+ }
+
+ /* part 3 - intg2 ... intg1 */
+ while (carry && buf1 > start1)
+ {
+ SUB(*--buf0, *--buf1, 0, carry);
+ }
+
+ while (buf1 > start1)
+ *--buf0=*--buf1;
+
+ while (buf0 > to->buf)
+ *--buf0=0;
+
+ return error;
+}
+
+int decimal_intg(const decimal_t *from)
+{
+ int res;
+ remove_leading_zeroes(from, &res);
+ return res;
+}
+
+int decimal_add(const decimal_t *from1, const decimal_t *from2, decimal_t *to)
+{
+ if (likely(from1->sign == from2->sign))
+ return do_add(from1, from2, to);
+ return do_sub(from1, from2, to);
+}
+
+int decimal_sub(const decimal_t *from1, const decimal_t *from2, decimal_t *to)
+{
+ if (likely(from1->sign == from2->sign))
+ return do_sub(from1, from2, to);
+ return do_add(from1, from2, to);
+}
+
+int decimal_cmp(const decimal_t *from1, const decimal_t *from2)
+{
+ if (likely(from1->sign == from2->sign))
+ return do_sub(from1, from2, 0);
+
+ // Reject negative zero, cfr. internal_str2dec()
+ DBUG_ASSERT(!(decimal_is_zero(from1) && from1->sign));
+ DBUG_ASSERT(!(decimal_is_zero(from2) && from2->sign));
+
+ return from1->sign > from2->sign ? -1 : 1;
+}
+
+int decimal_is_zero(const decimal_t *from)
+{
+ dec1 *buf1=from->buf,
+ *end=buf1+ROUND_UP(from->intg)+ROUND_UP(from->frac);
+ while (buf1 < end)
+ if (*buf1++)
+ return 0;
+ return 1;
+}
+
+/*
+ multiply two decimals
+
+ SYNOPSIS
+ decimal_mul()
+ from1, from2 - factors
+ to - product
+
+ RETURN VALUE
+ E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW;
+
+ NOTES
+ in this implementation, with sizeof(dec1)=4 we have DIG_PER_DEC1=9,
+ and 63-digit number will take only 7 dec1 words (basically a 7-digit
+ "base 999999999" number). Thus there's no need in fast multiplication
+ algorithms, 7-digit numbers can be multiplied with a naive O(n*n)
+ method.
+
+ XXX if this library is to be used with huge numbers of thousands of
+ digits, fast multiplication must be implemented.
+*/
+int decimal_mul(const decimal_t *from1, const decimal_t *from2, decimal_t *to)
+{
+ int intg1=ROUND_UP(from1->intg), intg2=ROUND_UP(from2->intg),
+ frac1=ROUND_UP(from1->frac), frac2=ROUND_UP(from2->frac),
+ intg0=ROUND_UP(from1->intg+from2->intg),
+ frac0=frac1+frac2, error, iii, jjj, d_to_move;
+ dec1 *buf1=from1->buf+intg1, *buf2=from2->buf+intg2, *buf0,
+ *start2, *stop2, *stop1, *start0, carry;
+
+ sanity(to);
+
+ iii= intg0; /* save 'ideal' values */
+ jjj= frac0;
+ FIX_INTG_FRAC_ERROR(to->len, intg0, frac0, error); /* bound size */
+ to->sign= from1->sign != from2->sign;
+ to->frac= from1->frac + from2->frac; /* store size in digits */
+ set_if_smaller(to->frac, NOT_FIXED_DEC);
+ to->intg=intg0*DIG_PER_DEC1;
+
+ if (unlikely(error))
+ {
+ set_if_smaller(to->frac, frac0*DIG_PER_DEC1);
+ set_if_smaller(to->intg, intg0*DIG_PER_DEC1);
+ if (unlikely(iii > intg0)) /* bounded integer-part */
+ {
+ iii-=intg0;
+ jjj= iii >> 1;
+ intg1-= jjj;
+ intg2-=iii-jjj;
+ frac1=frac2=0; /* frac0 is already 0 here */
+ }
+ else /* bounded fract part */
+ {
+ jjj-=frac0;
+ iii=jjj >> 1;
+ if (frac1 <= frac2)
+ {
+ frac1-= iii;
+ frac2-=jjj-iii;
+ }
+ else
+ {
+ frac2-= iii;
+ frac1-=jjj-iii;
+ }
+ }
+ }
+ start0=to->buf+intg0+frac0-1;
+ start2=buf2+frac2-1;
+ stop1=buf1-intg1;
+ stop2=buf2-intg2;
+
+ memset(to->buf, 0, (intg0+frac0)*sizeof(dec1));
+
+ for (buf1+=frac1-1; buf1 >= stop1; buf1--, start0--)
+ {
+ carry=0;
+ for (buf0=start0, buf2=start2; buf2 >= stop2; buf2--, buf0--)
+ {
+ dec1 hi, lo;
+ dec2 p= ((dec2)*buf1) * ((dec2)*buf2);
+ hi=(dec1)(p/DIG_BASE);
+ lo=(dec1)(p-((dec2)hi)*DIG_BASE);
+ ADD2(*buf0, *buf0, lo, carry);
+ carry+=hi;
+ }
+ if (carry)
+ {
+ if (buf0 < to->buf)
+ return E_DEC_OVERFLOW;
+ ADD2(*buf0, *buf0, 0, carry);
+ }
+ for (buf0--; carry; buf0--)
+ {
+ if (buf0 < to->buf)
+ return E_DEC_OVERFLOW;
+ ADD(*buf0, *buf0, 0, carry);
+ }
+ }
+
+ /* Now we have to check for -0.000 case */
+ if (to->sign)
+ {
+ dec1 *buf= to->buf;
+ dec1 *end= to->buf + intg0 + frac0;
+ DBUG_ASSERT(buf != end);
+ for (;;)
+ {
+ if (*buf)
+ break;
+ if (++buf == end)
+ {
+ /* We got decimal zero */
+ decimal_make_zero(to);
+ break;
+ }
+ }
+ }
+ buf1= to->buf;
+ d_to_move= intg0 + ROUND_UP(to->frac);
+ while (!*buf1 && (to->intg > DIG_PER_DEC1))
+ {
+ buf1++;
+ to->intg-= DIG_PER_DEC1;
+ d_to_move--;
+ }
+ if (to->buf < buf1)
+ {
+ dec1 *cur_d= to->buf;
+ for (; d_to_move--; cur_d++, buf1++)
+ *cur_d= *buf1;
+ }
+ return error;
+}
+
+/*
+ naive division algorithm (Knuth's Algorithm D in 4.3.1) -
+ it's ok for short numbers
+ also we're using alloca() to allocate a temporary buffer
+
+ XXX if this library is to be used with huge numbers of thousands of
+ digits, fast division must be implemented and alloca should be
+ changed to malloc (or at least fallback to malloc if alloca() fails)
+ but then, decimal_mul() should be rewritten too :(
+*/
+static int do_div_mod(const decimal_t *from1, const decimal_t *from2,
+ decimal_t *to, decimal_t *mod, int scale_incr)
+{
+
+ /*
+ frac* - number of digits in fractional part of the number
+ prec* - precision of the number
+ intg* - number of digits in the integer part
+ buf* - buffer having the actual number
+ All variables ending with 0 - like frac0, intg0 etc are
+ for the final result. Similarly frac1, intg1 etc are for
+ the first number and frac2, intg2 etc are for the second number
+ */
+ int frac1=ROUND_UP(from1->frac)*DIG_PER_DEC1, prec1=from1->intg+frac1,
+ frac2=ROUND_UP(from2->frac)*DIG_PER_DEC1, prec2=from2->intg+frac2,
+ error= 0, i, intg0, frac0, len1, len2,
+ dintg, /* Holds the estimate of number of integer digits in final result */
+ div_mod=(!mod) /*true if this is division */;
+ dec1 *buf0, *buf1=from1->buf, *buf2=from2->buf, *start1, *stop1,
+ *start2, *stop2, *stop0 ,norm2, carry, dcarry, *tmp1;
+ dec2 norm_factor, x, guess, y;
+
+ if (mod)
+ to=mod;
+
+ sanity(to);
+
+ /*
+ removing all the leading zeroes in the second number. Leading zeroes are
+ added later to the result.
+ */
+ i= ((prec2 - 1) % DIG_PER_DEC1) + 1;
+ while (prec2 > 0 && *buf2 == 0)
+ {
+ prec2-= i;
+ i= DIG_PER_DEC1;
+ buf2++;
+ }
+ if (prec2 <= 0) /* short-circuit everything: from2 == 0 */
+ return E_DEC_DIV_ZERO;
+
+ /*
+ Remove the remanining zeroes . For ex: for 0.000000000001
+ the above while loop removes 9 zeroes and the result will have 0.0001
+ these remaining zeroes are removed here
+ */
+ prec2-= count_leading_zeroes((prec2 - 1) % DIG_PER_DEC1, *buf2);
+ DBUG_ASSERT(prec2 > 0);
+
+ /*
+ Do the same for the first number. Remove the leading zeroes.
+ Check if the number is actually 0. Then remove the remaining zeroes.
+ */
+
+ i=((prec1-1) % DIG_PER_DEC1)+1;
+ while (prec1 > 0 && *buf1 == 0)
+ {
+ prec1-=i;
+ i=DIG_PER_DEC1;
+ buf1++;
+ }
+ if (prec1 <= 0)
+ { /* short-circuit everything: from1 == 0 */
+ decimal_make_zero(to);
+ return E_DEC_OK;
+ }
+ prec1-= count_leading_zeroes((prec1-1) % DIG_PER_DEC1, *buf1);
+ DBUG_ASSERT(prec1 > 0);
+
+ /* let's fix scale_incr, taking into account frac1,frac2 increase */
+ if ((scale_incr-= frac1 - from1->frac + frac2 - from2->frac) < 0)
+ scale_incr=0;
+
+ /* Calculate the integer digits in final result */
+ dintg=(prec1-frac1)-(prec2-frac2)+(*buf1 >= *buf2);
+ if (dintg < 0)
+ {
+ dintg/=DIG_PER_DEC1;
+ intg0=0;
+ }
+ else
+ intg0=ROUND_UP(dintg);
+ if (mod)
+ {
+ /* we're calculating N1 % N2.
+ The result will have
+ frac=max(frac1, frac2), as for subtraction
+ intg=intg2
+ */
+ to->sign=from1->sign;
+ to->frac= MY_MAX(from1->frac, from2->frac);
+ frac0=0;
+ }
+ else
+ {
+ /*
+ we're calculating N1/N2. N1 is in the buf1, has prec1 digits
+ N2 is in the buf2, has prec2 digits. Scales are frac1 and
+ frac2 accordingly.
+ Thus, the result will have
+ frac = ROUND_UP(frac1+frac2+scale_incr)
+ and
+ intg = (prec1-frac1) - (prec2-frac2) + 1
+ prec = intg+frac
+ */
+ frac0=ROUND_UP(frac1+frac2+scale_incr);
+ FIX_INTG_FRAC_ERROR(to->len, intg0, frac0, error);
+ to->sign=from1->sign != from2->sign;
+ to->intg=intg0*DIG_PER_DEC1;
+ to->frac=frac0*DIG_PER_DEC1;
+ }
+ buf0=to->buf;
+ stop0=buf0+intg0+frac0;
+ if (likely(div_mod))
+ while (dintg++ < 0 && buf0 < &to->buf[to->len])
+ {
+ *buf0++=0;
+ }
+
+ len1=(i=ROUND_UP(prec1))+ROUND_UP(2*frac2+scale_incr+1) + 1;
+ set_if_bigger(len1, 3);
+ if (!(tmp1=(dec1 *)my_alloca(len1*sizeof(dec1))))
+ return E_DEC_OOM;
+ memcpy(tmp1, buf1, i*sizeof(dec1));
+ memset(tmp1+i, 0, (len1-i)*sizeof(dec1));
+
+ start1=tmp1;
+ stop1=start1+len1;
+ start2=buf2;
+ stop2=buf2+ROUND_UP(prec2)-1;
+
+ /* removing end zeroes */
+ while (*stop2 == 0 && stop2 >= start2)
+ stop2--;
+ len2= (int) (stop2++ - start2);
+
+ /*
+ calculating norm2 (normalized *start2) - we need *start2 to be large
+ (at least > DIG_BASE/2), but unlike Knuth's Alg. D we don't want to
+ normalize input numbers (as we don't make a copy of the divisor).
+ Thus we normalize first dec1 of buf2 only, and we'll normalize *start1
+ on the fly for the purpose of guesstimation only.
+ It's also faster, as we're saving on normalization of buf2
+ */
+ norm_factor=DIG_BASE/(*start2+1);
+ norm2=(dec1)(norm_factor*start2[0]);
+ if (likely(len2>0))
+ norm2+=(dec1)(norm_factor*start2[1]/DIG_BASE);
+
+ if (*start1 < *start2)
+ dcarry=*start1++;
+ else
+ dcarry=0;
+
+ /* main loop */
+ for (; buf0 < stop0; buf0++)
+ {
+ /* short-circuit, if possible */
+ if (unlikely(dcarry == 0 && *start1 < *start2))
+ guess=0;
+ else
+ {
+ /* D3: make a guess */
+ x=start1[0]+((dec2)dcarry)*DIG_BASE;
+ y=start1[1];
+ guess=(norm_factor*x+norm_factor*y/DIG_BASE)/norm2;
+ if (unlikely(guess >= DIG_BASE))
+ guess=DIG_BASE-1;
+ if (likely(len2>0))
+ {
+ /* hmm, this is a suspicious trick - I removed normalization here */
+ if (start2[1]*guess > (x-guess*start2[0])*DIG_BASE+y)
+ guess--;
+ if (unlikely(start2[1]*guess > (x-guess*start2[0])*DIG_BASE+y))
+ guess--;
+ DBUG_ASSERT(start2[1]*guess <= (x-guess*start2[0])*DIG_BASE+y);
+ }
+
+ /* D4: multiply and subtract */
+ buf2=stop2;
+ buf1=start1+len2;
+ DBUG_ASSERT(buf1 < stop1);
+ for (carry=0; buf2 > start2; buf1--)
+ {
+ dec1 hi, lo;
+ x=guess * (*--buf2);
+ hi=(dec1)(x/DIG_BASE);
+ lo=(dec1)(x-((dec2)hi)*DIG_BASE);
+ SUB2(*buf1, *buf1, lo, carry);
+ carry+=hi;
+ }
+ carry= dcarry < carry;
+
+ /* D5: check the remainder */
+ if (unlikely(carry))
+ {
+ /* D6: correct the guess */
+ guess--;
+ buf2=stop2;
+ buf1=start1+len2;
+ for (carry=0; buf2 > start2; buf1--)
+ {
+ ADD(*buf1, *buf1, *--buf2, carry);
+ }
+ }
+ }
+ if (likely(div_mod))
+ {
+ DBUG_ASSERT(buf0 < to->buf + to->len);
+ *buf0=(dec1)guess;
+ }
+ dcarry= *start1;
+ start1++;
+ }
+ if (mod)
+ {
+ /*
+ now the result is in tmp1, it has
+ intg=prec1-frac1 if there were no leading zeroes.
+ If leading zeroes were present, they have been removed
+ earlier. We need to now add them back to the result.
+ frac=max(frac1, frac2)=to->frac
+ */
+ if (dcarry)
+ *--start1=dcarry;
+ buf0=to->buf;
+ /* Calculate the final result's integer digits */
+ dintg= (prec1 - frac1) - ((start1 - tmp1) * DIG_PER_DEC1);
+ if (dintg < 0)
+ {
+ /* If leading zeroes in the fractional part were earlier stripped */
+ intg0= dintg / DIG_PER_DEC1;
+ }
+ else
+ intg0= ROUND_UP(dintg);
+ frac0=ROUND_UP(to->frac);
+ error=E_DEC_OK;
+ if (unlikely(frac0==0 && intg0==0))
+ {
+ decimal_make_zero(to);
+ goto done;
+ }
+ if (intg0<=0)
+ {
+ /* Add back the leading zeroes that were earlier stripped */
+ if (unlikely(-intg0 >= to->len))
+ {
+ decimal_make_zero(to);
+ error=E_DEC_TRUNCATED;
+ goto done;
+ }
+ stop1= start1 + frac0 + intg0;
+ frac0+=intg0;
+ to->intg=0;
+ while (intg0++ < 0)
+ *buf0++=0;
+ }
+ else
+ {
+ if (unlikely(intg0 > to->len))
+ {
+ frac0=0;
+ intg0=to->len;
+ error=E_DEC_OVERFLOW;
+ goto done;
+ }
+ DBUG_ASSERT(intg0 <= ROUND_UP(from2->intg));
+ stop1=start1+frac0+intg0;
+ to->intg= MY_MIN(intg0 * DIG_PER_DEC1, from2->intg);
+ }
+ if (unlikely(intg0+frac0 > to->len))
+ {
+ stop1-=frac0+intg0-to->len;
+ frac0=to->len-intg0;
+ to->frac=frac0*DIG_PER_DEC1;
+ error=E_DEC_TRUNCATED;
+ }
+ DBUG_ASSERT(buf0 + (stop1 - start1) <= to->buf + to->len);
+ while (start1 < stop1)
+ *buf0++=*start1++;
+ }
+done:
+ tmp1= remove_leading_zeroes(to, &to->intg);
+ if(to->buf != tmp1)
+ memmove(to->buf, tmp1,
+ (ROUND_UP(to->intg) + ROUND_UP(to->frac)) * sizeof(dec1));
+ return error;
+}
+
+/*
+ division of two decimals
+
+ SYNOPSIS
+ decimal_div()
+ from1 - dividend
+ from2 - divisor
+ to - quotient
+
+ RETURN VALUE
+ E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW/E_DEC_DIV_ZERO;
+
+ NOTES
+ see do_div_mod()
+*/
+
+int
+decimal_div(const decimal_t *from1, const decimal_t *from2, decimal_t *to,
+ int scale_incr)
+{
+ return do_div_mod(from1, from2, to, 0, scale_incr);
+}
+
+/*
+ modulus
+
+ SYNOPSIS
+ decimal_mod()
+ from1 - dividend
+ from2 - divisor
+ to - modulus
+
+ RETURN VALUE
+ E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW/E_DEC_DIV_ZERO;
+
+ NOTES
+ see do_div_mod()
+
+ DESCRIPTION
+ the modulus R in R = M mod N
+
+ is defined as
+
+ 0 <= |R| < |M|
+ sign R == sign M
+ R = M - k*N, where k is integer
+
+ thus, there's no requirement for M or N to be integers
+*/
+
+int decimal_mod(const decimal_t *from1, const decimal_t *from2, decimal_t *to)
+{
+ return do_div_mod(from1, from2, 0, to, 0);
+}
+
+#ifdef MAIN
+/*
+ The main() program has been converted into a unit test.
+ */
+#endif