1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
|
// file : butl/small-vector -*- C++ -*-
// copyright : Copyright (c) 2014-2017 Code Synthesis Ltd
// license : MIT; see accompanying LICENSE file
#ifndef BUTL_SMALL_VECTOR
#define BUTL_SMALL_VECTOR
#include <vector>
#include <cassert>
#include <cstddef> // size_t
#include <utility> // more(), forward()
#include <type_traits> // true_type
namespace butl
{
template <typename T, std::size_t N>
struct small_vector_buffer
{
// Size keeps track of the number of elements that are constructed in
// the buffer. Size equal N + 1 means the buffer is not allocated.
//
// Note that the names are decorated in order no to conflict with
// std::vector interface.
//
alignas (alignof (T)) char data_[sizeof (T) * N];
bool free_ = true;
// Note that the buffer should be constructed before std::vector and
// destroyed after (since std::vector's destructor will be destroying
// elements potentially residing in the buffer). This means that the
// buffer should be inherited from and before std::vector.
//
small_vector_buffer () = default;
small_vector_buffer (small_vector_buffer&&) = delete;
small_vector_buffer (const small_vector_buffer&) = delete;
small_vector_buffer& operator= (small_vector_buffer&&) = delete;
small_vector_buffer& operator= (const small_vector_buffer&) = delete;
};
template <typename T, std::size_t N>
class small_vector_allocator
{
public:
using buffer_type = small_vector_buffer<T, N>;
explicit
small_vector_allocator (buffer_type* b) noexcept: buf_ (b) {}
// Allocator interface.
//
public:
using value_type = T;
T*
allocate(std::size_t n)
{
assert (n >= N); // We should never be asked for less than N.
if (n <= N)
{
buf_->free_ = false;
return reinterpret_cast<T*> (buf_->data_);
}
else
return static_cast<T*> (::operator new (sizeof (T) * n));
}
void
deallocate (void* p, std::size_t) noexcept
{
if (p == buf_->data_)
buf_->free_ = true;
else
::operator delete (p);
}
friend bool
operator== (small_vector_allocator x, small_vector_allocator y) noexcept
{
// We can use y to deallocate x's allocations if they use the same small
// buffer or neither uses its small buffer (which means all allocations,
// if any, have been from the shared heap). Of course this assumes no
// copy will be called to deallocate what has been allocated after said
// copy was made:
//
// A x;
// A y (x);
// p = x.allocate ();
// y.deallocate (p); // Ouch.
//
return (x.buf_ == y.buf_) || (x.buf_->free_ && y.buf_->free_);
}
friend bool
operator!= (small_vector_allocator x, small_vector_allocator y) noexcept
{
return !(x == y);
}
// It might get instantiated but should not be called.
//
small_vector_allocator
select_on_container_copy_construction () const noexcept
{
return small_vector_allocator (nullptr);
}
// propagate_on_container_copy_assignment = false
// propagate_on_container_move_assignment = false
// Swap is not supported (see explanation in small_vector::swap()).
//
using propagate_on_container_swap = std::true_type;
void
swap (small_vector_allocator&) = delete;
// Shouldn't be needed except to satisfy some static_assert's.
//
template <typename U>
struct rebind {using other = small_vector_allocator<U, N>;};
private:
buffer_type* buf_;
};
// Issues and limitations.
//
// - vector::reserve() may allocate more per the spec. But the three main
// C++ runtimes (libstdc++, libc++, and msvc) all seem to do the right
// thing.
//
// - What if in most cases the vector is empty? How can we avoid initial
// reserve? Provide no_reserve flag or some such? Is it really worth it?
//
// - swap() is deleted (see notes below).
//
template <typename T, std::size_t N>
class small_vector: private small_vector_buffer<T, N>,
public std::vector<T, small_vector_allocator<T, N>>
{
public:
using allocator_type = small_vector_allocator<T, N>;
using buffer_type = small_vector_buffer<T, N>;
using base_type = std::vector<T, small_vector_allocator<T, N>>;
small_vector ()
: base_type (allocator_type (this))
{
reserve ();
}
small_vector (std::initializer_list<T> v)
: base_type (allocator_type (this))
{
if (v.size () <= N)
reserve ();
static_cast<base_type&> (*this) = v;
}
template <typename I>
small_vector (I b, I e)
: base_type (allocator_type (this))
{
// While we could optimize this for random access iterators, N will
// usually be pretty small. Let's hope the compiler sees this and does
// some magic for us.
//
std::size_t n (0);
for (I i (b); i != e && n <= N; ++i) ++n;
if (n <= N)
reserve ();
this->assign (b, e);
}
explicit
small_vector (std::size_t n)
: base_type (allocator_type (this))
{
if (n <= N)
reserve ();
this->resize (n);
}
small_vector (std::size_t n, const T& x)
: base_type (allocator_type (this))
{
if (n <= N)
reserve ();
this->assign (n, x);
}
small_vector (const small_vector& v)
: buffer_type (), base_type (allocator_type (this))
{
if (v.size () <= N)
reserve ();
static_cast<base_type&> (*this) = v;
}
small_vector&
operator= (const small_vector& v)
{
// Note: propagate_on_container_copy_assignment = false
//
static_cast<base_type&> (*this) = v;
return *this;
}
small_vector (small_vector&& v)
: base_type (allocator_type (this))
{
if (v.size () <= N)
reserve ();
*this = std::move (v); // Delegate to operator=(&&).
}
small_vector&
operator= (small_vector&& v)
{
// VC's implementation of operator=(&&) (both 14 and 15) frees the
// memory and then reallocated with capacity equal to v.size(). This is
// clearly sub-optimal (the existing buffer could be reused) so we hope
// this will be fixed eventually (VSO#367146; reportedly fixed for
// VC15U1).
//
#if defined(_MSC_VER) && _MSC_VER <= 1910
if (v.size () < N)
{
clear ();
for (T& x: v)
push_back (std::move (x));
v.clear ();
}
else
#endif
// Note: propagate_on_container_move_assignment = false
//
static_cast<base_type&> (*this) = std::move (v);
return *this;
}
small_vector&
operator= (std::initializer_list<T> v)
{
static_cast<base_type&> (*this) = v;
return *this;
}
// Implementing swap() under small buffer optimization is not trivial, to
// say the least (think of swapping two such buffers of different sizes).
// One easy option would be to force both in to the heap.
//
void
swap (small_vector&) = delete;
void
reserve (std::size_t n = N)
{
base_type::reserve (n < N ? N : n);
}
void
shrink_to_fit ()
{
if (this->capacity () > N)
base_type::shrink_to_fit ();
}
};
}
#endif // BUTL_SMALL_VECTOR
|