1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
|
// file : butl/filesystem.cxx -*- C++ -*-
// copyright : Copyright (c) 2014-2017 Code Synthesis Ltd
// license : MIT; see accompanying LICENSE file
#include <butl/filesystem>
#ifndef _WIN32
# include <stdio.h> // rename()
# include <dirent.h> // struct dirent, *dir()
# include <unistd.h> // symlink(), link(), stat(), rmdir(), unlink()
# include <sys/time.h> // utimes()
# include <sys/types.h> // stat
# include <sys/stat.h> // stat(), lstat(), S_I*, mkdir(), chmod()
#else
# include <butl/win32-utility>
# include <io.h> // _find*(), _unlink(), _chmod()
# include <direct.h> // _mkdir(), _rmdir()
# include <sys/types.h> // _stat
# include <sys/stat.h> // _stat(), S_I*
# ifdef _MSC_VER // Unlikely to be fixed in newer versions.
# define S_ISREG(m) (((m) & S_IFMT) == S_IFREG)
# define S_ISDIR(m) (((m) & S_IFMT) == S_IFDIR)
# endif
# include <butl/utility> // lcase()
#endif
#include <errno.h> // errno, E*
#include <string>
#include <vector>
#include <memory> // unique_ptr
#include <utility> // pair
#include <iterator> // reverse_iterator
#include <system_error>
#include <butl/path>
#include <butl/utility> // throw_generic_error()
#include <butl/fdstream>
#include <butl/small-vector>
using namespace std;
namespace butl
{
bool
file_exists (const char* p, bool fl)
{
auto pe (path_entry (p, fl));
return pe.first && (pe.second == entry_type::regular ||
(!fl && pe.second == entry_type::symlink));
}
bool
entry_exists (const char* p, bool fl)
{
return path_entry (p, fl).first;
}
bool
dir_exists (const char* p)
{
auto pe (path_entry (p, true));
return pe.first && pe.second == entry_type::directory;
}
#ifndef _WIN32
pair<bool, entry_type>
path_entry (const char* p, bool fl)
{
struct stat s;
if ((fl ? stat (p, &s) : lstat (p, &s)) != 0)
{
if (errno == ENOENT || errno == ENOTDIR)
return make_pair (false, entry_type::unknown);
else
throw_generic_error (errno);
}
auto m (s.st_mode);
entry_type t (entry_type::unknown);
if (S_ISREG (m))
t = entry_type::regular;
else if (S_ISDIR (m))
t = entry_type::directory;
else if (S_ISLNK (m))
t = entry_type::symlink;
else if (S_ISBLK (m) || S_ISCHR (m) || S_ISFIFO (m) || S_ISSOCK (m))
t = entry_type::other;
return make_pair (true, t);
}
#else
pair<bool, entry_type>
path_entry (const char* p, bool)
{
// A path like 'C:', while being a root path in our terminology, is not as
// such for Windows, that maintains current directory for each drive, and
// so C: means the current directory on the drive C. This is not what we
// mean here, so need to append the trailing directory separator in such a
// case.
//
string d;
if (path::traits::root (p, string::traits_type::length (p)))
{
d = p;
d += path::traits::directory_separator;
p = d.c_str ();
}
DWORD attr (GetFileAttributesA (p));
if (attr == INVALID_FILE_ATTRIBUTES) // Presumably not exists.
return make_pair (false, entry_type::unknown);
entry_type t (entry_type::unknown);
// S_ISLNK/S_IFDIR are not defined for Win32 but it does have symlinks.
// We will consider symlink entry to be of the unknown type. Note that
// S_ISREG() and S_ISDIR() return as they would do for a symlink target.
//
if ((attr & FILE_ATTRIBUTE_REPARSE_POINT) == 0)
{
struct _stat s;
if (_stat (p, &s) != 0)
{
if (errno == ENOENT || errno == ENOTDIR)
return make_pair (false, entry_type::unknown);
else
throw_generic_error (errno);
}
auto m (s.st_mode);
if (S_ISREG (m))
t = entry_type::regular;
else if (S_ISDIR (m))
t = entry_type::directory;
//
//else if (S_ISLNK (m))
// t = entry_type::symlink;
}
return make_pair (true, t);
}
#endif
mkdir_status
#ifndef _WIN32
try_mkdir (const dir_path& p, mode_t m)
{
if (mkdir (p.string ().c_str (), m) != 0)
#else
try_mkdir (const dir_path& p, mode_t)
{
if (_mkdir (p.string ().c_str ()) != 0)
#endif
{
int e (errno);
// EEXIST means the path already exists but not necessarily as
// a directory.
//
if (e == EEXIST && dir_exists (p))
return mkdir_status::already_exists;
else
throw_generic_error (e);
}
return mkdir_status::success;
}
mkdir_status
try_mkdir_p (const dir_path& p, mode_t m)
{
if (!p.root ())
{
dir_path d (p.directory ());
if (!d.empty () && !dir_exists (d))
try_mkdir_p (d, m);
}
return try_mkdir (p, m);
}
rmdir_status
try_rmdir (const dir_path& p, bool ignore_error)
{
rmdir_status r (rmdir_status::success);
#ifndef _WIN32
if (rmdir (p.string ().c_str ()) != 0)
#else
if (_rmdir (p.string ().c_str ()) != 0)
#endif
{
if (errno == ENOENT)
r = rmdir_status::not_exist;
else if (errno == ENOTEMPTY || errno == EEXIST)
r = rmdir_status::not_empty;
else if (!ignore_error)
throw_generic_error (errno);
}
return r;
}
void
rmdir_r (const dir_path& p, bool dir, bool ignore_error)
{
// An nftw()-based implementation (for platforms that support it)
// might be a faster way.
//
for (const dir_entry& de: dir_iterator (p))
{
path ep (p / de.path ()); //@@ Would be good to reuse the buffer.
if (de.ltype () == entry_type::directory)
rmdir_r (path_cast<dir_path> (move (ep)), true, ignore_error);
else
try_rmfile (ep, ignore_error);
}
if (dir)
{
rmdir_status r (try_rmdir (p));
if (r != rmdir_status::success && !ignore_error)
throw_generic_error (r == rmdir_status::not_empty
? ENOTEMPTY
: ENOENT);
}
}
rmfile_status
try_rmfile (const path& p, bool ignore_error)
{
rmfile_status r (rmfile_status::success);
#ifndef _WIN32
if (unlink (p.string ().c_str ()) != 0)
#else
if (_unlink (p.string ().c_str ()) != 0)
#endif
{
// Strangely on Linux unlink() removes a dangling symlink but returns
// ENOENT.
//
if (errno == ENOENT || errno == ENOTDIR)
r = rmfile_status::not_exist;
else if (!ignore_error)
throw_generic_error (errno);
}
return r;
}
#ifndef _WIN32
void
mksymlink (const path& target, const path& link, bool)
{
if (symlink (target.string ().c_str (), link.string ().c_str ()) == -1)
throw_generic_error (errno);
}
void
mkhardlink (const path& target, const path& link, bool)
{
if (::link (target.string ().c_str (), link.string ().c_str ()) == -1)
throw_generic_error (errno);
}
#else
void
mksymlink (const path&, const path&, bool)
{
throw_generic_error (ENOSYS, "symlinks not supported");
}
void
mkhardlink (const path& target, const path& link, bool dir)
{
if (!dir)
{
if (!CreateHardLinkA (link.string ().c_str (),
target.string ().c_str (),
nullptr))
throw_system_error (GetLastError ());
}
else
throw_generic_error (ENOSYS, "directory hard links not supported");
}
#endif
// For I/O operations cpfile() can throw ios_base::failure exception that is
// not derived from system_error for old versions of g++ (as of 4.9). From
// the other hand cpfile() must throw system_error only. Let's catch
// ios_base::failure and rethrow as system_error in such a case.
//
template <bool v>
static inline typename enable_if<v>::type
cpfile (const path& from, const path& to,
cpflags fl,
permissions perm,
auto_rmfile& rm)
{
ifdstream ifs (from, fdopen_mode::binary);
fdopen_mode om (fdopen_mode::out |
fdopen_mode::truncate |
fdopen_mode::create |
fdopen_mode::binary);
if ((fl & cpflags::overwrite_content) != cpflags::overwrite_content)
om |= fdopen_mode::exclusive;
ofdstream ofs (fdopen (to, om, perm));
rm = auto_rmfile (to);
// Throws ios::failure on fdbuf read/write failures.
//
// Note that the eof check is important: if the stream is at eof (empty
// file) then this write will fail.
//
if (ifs.peek () != ifdstream::traits_type::eof ())
ofs << ifs.rdbuf ();
ifs.close (); // Throws ios::failure on failure.
ofs.close (); // Throws ios::failure on flush/close failure.
}
template <bool v>
static inline typename enable_if<!v>::type
cpfile (const path& from, const path& to,
cpflags fl,
permissions perm,
auto_rmfile& rm)
{
try
{
cpfile<true> (from, to, fl, perm, rm);
}
catch (const ios_base::failure& e)
{
// While we try to preserve the original error information, we can not
// make the description to be exactly the same, for example
//
// Is a directory
//
// becomes
//
// Is a directory: Input/output error
//
// Note that our custom operator<<(ostream, exception) doesn't strip this
// suffix. This is a temporary code after all.
//
throw_generic_error (EIO, e.what ());
}
}
void
cpfile (const path& from, const path& to, cpflags fl)
{
permissions perm (path_permissions (from));
auto_rmfile rm;
cpfile<is_base_of<system_error, ios_base::failure>::value> (
from, to, fl, perm, rm);
if ((fl & cpflags::overwrite_permissions) ==
cpflags::overwrite_permissions)
path_permissions (to, perm);
rm.cancel ();
}
// Figuring out whether we have the nanoseconds in struct stat. Some
// platforms (e.g., FreeBSD), may provide some "compatibility" #define's,
// so use the second argument to not end up with the same signatures.
//
template <typename S>
inline constexpr auto
mnsec (const S* s, bool) -> decltype(s->st_mtim.tv_nsec)
{
return s->st_mtim.tv_nsec; // POSIX (GNU/Linux, Solaris).
}
template <typename S>
inline constexpr auto
mnsec (const S* s, int) -> decltype(s->st_mtimespec.tv_nsec)
{
return s->st_mtimespec.tv_nsec; // *BSD, MacOS.
}
template <typename S>
inline constexpr auto
mnsec (const S* s, float) -> decltype(s->st_mtime_n)
{
return s->st_mtime_n; // AIX 5.2 and later.
}
// Things are not going to end up well with only seconds resolution so
// let's make it a compile error.
//
// template <typename S>
// inline constexpr int
// mnsec (...) {return 0;}
template <typename S>
inline constexpr auto
ansec (const S* s, bool) -> decltype(s->st_atim.tv_nsec)
{
return s->st_atim.tv_nsec; // POSIX (GNU/Linux, Solaris).
}
template <typename S>
inline constexpr auto
ansec (const S* s, int) -> decltype(s->st_atimespec.tv_nsec)
{
return s->st_atimespec.tv_nsec; // *BSD, MacOS.
}
template <typename S>
inline constexpr auto
ansec (const S* s, float) -> decltype(s->st_atime_n)
{
return s->st_atime_n; // AIX 5.2 and later.
}
// template <typename S>
// inline constexpr int
// ansec (...) {return 0;}
void
mventry (const path& from, const path& to, cpflags fl)
{
assert ((fl & cpflags::overwrite_permissions) ==
cpflags::overwrite_permissions);
bool ovr ((fl & cpflags::overwrite_content) == cpflags::overwrite_content);
const char* f (from.string ().c_str ());
const char* t (to.string ().c_str ());
#ifndef _WIN32
if (!ovr && path_entry (to).first)
throw_generic_error (EEXIST);
if (::rename (f, t) == 0) // POSIX implementation.
return;
// If source and destination paths are on different file systems we need to
// move the file ourselves.
//
if (errno != EXDEV)
throw_generic_error (errno);
// Note that cpfile() follows symlinks, so we need to remove destination if
// exists.
//
try_rmfile (to);
// Note that permissions are copied unconditionally to a new file.
//
cpfile (from, to, cpflags::none);
// Copy file access and modification times.
//
struct stat s;
if (stat (f, &s) != 0)
throw_generic_error (errno);
timeval times[2];
times[0].tv_sec = s.st_atime;
times[0].tv_usec = ansec<struct stat> (&s, true) / 1000;
times[1].tv_sec = s.st_mtime;
times[1].tv_usec = mnsec<struct stat> (&s, true) / 1000;
if (utimes (t, times) != 0)
throw_generic_error (errno);
// Finally, remove the source file.
//
try_rmfile (from);
#else
// While ::rename() is present on Windows, it is not POSIX but ISO C
// implementation, that doesn't fit our needs well.
//
auto te (path_entry (to));
if (!ovr && te.first)
throw_generic_error (EEXIST);
bool td (te.first && te.second == entry_type::directory);
auto fe (path_entry (from));
bool fd (fe.first && fe.second == entry_type::directory);
// If source and destination filesystem entries exist, they both must be
// either directories or not directories.
//
if (fe.first && te.first && fd != td)
throw_generic_error (ENOTDIR);
DWORD mfl (fd ? 0 : (MOVEFILE_COPY_ALLOWED | MOVEFILE_REPLACE_EXISTING));
if (MoveFileExA (f, t, mfl))
return;
// If the destination already exists, then MoveFileExA() succeeds only if
// it is a regular file or a symlink. Lets also support an empty directory
// special case to comply with POSIX. If the destination is an empty
// directory we will just remove it and retry the move operation.
//
// Note that under Wine we endup with ERROR_ACCESS_DENIED error code in
// that case, and with ERROR_ALREADY_EXISTS when run natively.
//
DWORD ec (GetLastError ());
if ((ec == ERROR_ALREADY_EXISTS || ec == ERROR_ACCESS_DENIED) && td &&
try_rmdir (path_cast<dir_path> (to)) != rmdir_status::not_empty &&
MoveFileExA (f, t, mfl))
return;
throw_system_error (ec);
#endif
}
timestamp
file_mtime (const char* p)
{
#ifndef _WIN32
struct stat s;
if (stat (p, &s) != 0)
{
if (errno == ENOENT || errno == ENOTDIR)
return timestamp_nonexistent;
else
throw_generic_error (errno);
}
if (!S_ISREG (s.st_mode))
return timestamp_nonexistent;
return system_clock::from_time_t (s.st_mtime) +
chrono::duration_cast<duration> (
chrono::nanoseconds (mnsec<struct stat> (&s, true)));
#else
WIN32_FILE_ATTRIBUTE_DATA s;
if (!GetFileAttributesExA (p, GetFileExInfoStandard, &s))
{
DWORD ec (GetLastError ());
if (ec == ERROR_FILE_NOT_FOUND ||
ec == ERROR_PATH_NOT_FOUND ||
ec == ERROR_INVALID_NAME ||
ec == ERROR_INVALID_DRIVE ||
ec == ERROR_BAD_PATHNAME ||
ec == ERROR_BAD_NETPATH)
return timestamp_nonexistent;
throw_system_error (ec);
}
if ((s.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY) != 0)
return timestamp_nonexistent;
// Time in FILETIME is in 100 nanosecond "ticks" since "Windows epoch"
// (1601-01-01T00:00:00Z). To convert it to "UNIX epoch"
// (1970-01-01T00:00:00Z) we need to subtract 11644473600 seconds.
//
const FILETIME& t (s.ftLastWriteTime);
uint64_t ns ((static_cast<uint64_t> (t.dwHighDateTime) << 32) |
t.dwLowDateTime);
ns -= 11644473600ULL * 10000000; // Now in UNIX epoch.
ns *= 100; // Now in nanoseconds.
return timestamp (
chrono::duration_cast<duration> (
chrono::nanoseconds (ns)));
#endif
}
permissions
path_permissions (const path& p)
{
#ifndef _WIN32
struct stat s;
if (stat (p.string ().c_str (), &s) != 0)
#else
struct _stat s;
if (_stat (p.string ().c_str (), &s) != 0)
#endif
throw_generic_error (errno);
// VC++ has no S_IRWXU defined. MINGW GCC <= 4.9 has no S_IRWXG, S_IRWXO
// defined.
//
// We could extrapolate user permissions to group/other permissions if
// S_IRWXG/S_IRWXO are undefined. That is, we could consider their absence
// as meaning that the platform does not distinguish between permissions
// for different kinds of users. Let's wait for a use-case first.
//
mode_t f (S_IREAD | S_IWRITE | S_IEXEC);
#ifdef S_IRWXG
f |= S_IRWXG;
#endif
#ifdef S_IRWXO
f |= S_IRWXO;
#endif
return static_cast<permissions> (s.st_mode & f);
}
void
path_permissions (const path& p, permissions f)
{
mode_t m (S_IREAD | S_IWRITE | S_IEXEC);
#ifdef S_IRWXG
m |= S_IRWXG;
#endif
#ifdef S_IRWXO
m |= S_IRWXO;
#endif
m &= static_cast<mode_t> (f);
#ifndef _WIN32
if (chmod (p.string ().c_str (), m) == -1)
#else
if (_chmod (p.string ().c_str (), m) == -1)
#endif
throw_generic_error (errno);
}
// dir_{entry,iterator}
//
#ifndef _WIN32
// dir_entry
//
dir_iterator::
~dir_iterator ()
{
if (h_ != nullptr)
closedir (h_); // Ignore any errors.
}
dir_iterator& dir_iterator::
operator= (dir_iterator&& x)
{
if (this != &x)
{
e_ = move (x.e_);
if (h_ != nullptr && closedir (h_) == -1)
throw_generic_error (errno);
h_ = x.h_;
x.h_ = nullptr;
}
return *this;
}
entry_type dir_entry::
type (bool link) const
{
path_type p (b_ / p_);
struct stat s;
if ((link
? stat (p.string ().c_str (), &s)
: lstat (p.string ().c_str (), &s)) != 0)
{
throw_generic_error (errno);
}
entry_type r;
if (S_ISREG (s.st_mode))
r = entry_type::regular;
else if (S_ISDIR (s.st_mode))
r = entry_type::directory;
else if (S_ISLNK (s.st_mode))
r = entry_type::symlink;
else
r = entry_type::other;
return r;
}
// dir_iterator
//
struct dir_deleter
{
void operator() (DIR* p) const {if (p != nullptr) closedir (p);}
};
dir_iterator::
dir_iterator (const dir_path& d)
{
unique_ptr<DIR, dir_deleter> h (opendir (d.string ().c_str ()));
h_ = h.get ();
if (h_ == nullptr)
throw_generic_error (errno);
next ();
if (h_ != nullptr)
e_.b_ = d;
h.release ();
}
template <typename D>
inline /*constexpr*/ entry_type d_type (const D* d, decltype(d->d_type)*)
{
switch (d->d_type)
{
#ifdef DT_DIR
case DT_DIR: return entry_type::directory;
#endif
#ifdef DT_REG
case DT_REG: return entry_type::regular;
#endif
#ifdef DT_LNK
case DT_LNK: return entry_type::symlink;
#endif
#ifdef DT_BLK
case DT_BLK:
#endif
#ifdef DT_CHR
case DT_CHR:
#endif
#ifdef DT_FIFO
case DT_FIFO:
#endif
#ifdef DT_SOCK
case DT_SOCK:
#endif
return entry_type::other;
default: return entry_type::unknown;
}
}
template <typename D>
inline constexpr entry_type d_type (...) {return entry_type::unknown;}
void dir_iterator::
next ()
{
for (;;)
{
errno = 0;
if (struct dirent* de = readdir (h_))
{
// We can accept some overhead for '.' and '..' (relying on short
// string optimization) in favor of a more compact code.
//
path p (de->d_name);
// Skip '.' and '..'.
//
if (p.current () || p.parent ())
continue;
e_.p_ = move (p);
e_.t_ = d_type<struct dirent> (de, nullptr);
e_.lt_ = entry_type::unknown;
}
else if (errno == 0)
{
// End of stream.
//
closedir (h_);
h_ = nullptr;
}
else
throw_generic_error (errno);
break;
}
}
#else
// dir_entry
//
dir_iterator::
~dir_iterator ()
{
if (h_ != -1)
_findclose (h_); // Ignore any errors.
}
dir_iterator& dir_iterator::
operator= (dir_iterator&& x)
{
if (this != &x)
{
e_ = move (x.e_);
if (h_ != -1 && _findclose (h_) == -1)
throw_generic_error (errno);
h_ = x.h_;
x.h_ = -1;
}
return *this;
}
entry_type dir_entry::
type (bool) const
{
// Note that we currently do not support symlinks (yes, there is symlink
// support since Vista).
//
path_type p (b_ / p_);
struct _stat s;
if (_stat (p.string ().c_str (), &s) != 0)
throw_generic_error (errno);
entry_type r;
if (S_ISREG (s.st_mode))
r = entry_type::regular;
else if (S_ISDIR (s.st_mode))
r = entry_type::directory;
else
r = entry_type::other;
return r;
}
// dir_iterator
//
struct auto_dir
{
explicit
auto_dir (intptr_t& h): h_ (&h) {}
auto_dir (const auto_dir&) = delete;
auto_dir& operator= (const auto_dir&) = delete;
~auto_dir ()
{
if (h_ != nullptr && *h_ != -1)
_findclose (*h_);
}
void release () {h_ = nullptr;}
private:
intptr_t* h_;
};
dir_iterator::
dir_iterator (const dir_path& d)
{
auto_dir h (h_);
e_.b_ = d; // Used by next() to call _findfirst().
next ();
h.release ();
}
void dir_iterator::
next ()
{
for (;;)
{
bool r;
_finddata_t fi;
if (h_ == -1)
{
// The call is made from the constructor. Any other call with h_ == -1
// is illegal.
//
// Check to distinguish non-existent vs empty directories.
//
if (!dir_exists (e_.b_))
throw_generic_error (ENOENT);
h_ = _findfirst ((e_.b_ / path ("*")).string ().c_str (), &fi);
r = h_ != -1;
}
else
r = _findnext (h_, &fi) == 0;
if (r)
{
// We can accept some overhead for '.' and '..' (relying on short
// string optimization) in favor of a more compact code.
//
path p (fi.name);
// Skip '.' and '..'.
//
if (p.current () || p.parent ())
continue;
e_.p_ = move (p);
// We do not support symlinks at the moment.
//
e_.t_ = fi.attrib & _A_SUBDIR
? entry_type::directory
: entry_type::regular;
e_.lt_ = entry_type::unknown;
}
else if (errno == ENOENT)
{
// End of stream.
//
if (h_ != -1)
{
_findclose (h_);
h_ = -1;
}
}
else
throw_generic_error (errno);
break;
}
}
#endif
// Match the name [ni, ne) to the pattern [pi, pe). Ranges can be empty.
//
static bool
match (string::const_iterator pi, string::const_iterator pe,
string::const_iterator ni, string::const_iterator ne)
{
using reverse_iterator = std::reverse_iterator<string::const_iterator>;
reverse_iterator rpi (pe);
reverse_iterator rpe (pi);
reverse_iterator rni (ne);
reverse_iterator rne (ni);
// Match the pattern suffix (follows the last *) to the name trailing
// characters.
//
char pc;
for (; rpi != rpe && (pc = *rpi) != '*' && rni != rne; ++rpi, ++rni)
{
#ifndef _WIN32
if (*rni != pc && pc != '?')
#else
if (lcase (*rni) != lcase (pc) && pc != '?')
#endif
return false;
}
// If we got to the (reversed) end of the pattern (no * is encountered)
// than we are done. The success depends on if we got to the (reversed) end
// of the name as well.
//
if (rpi == rpe)
return rni == rne;
// If we didn't reach * in the pattern then we reached the (reversed) end
// of the name. That means we have unmatched non-star characters in the
// pattern, and so match failed.
//
if (pc != '*')
{
assert (rni == rne);
return false;
}
// Match the pattern prefix (ends with the first *) to the name leading
// characters. If they mismatch we failed. Otherwise if this is an only *
// in the pattern (matches whatever is left in the name) then we succeed,
// otherwise we perform backtracking (recursively).
//
pe = rpi.base ();
ne = rni.base ();
// Compare the pattern and the name char by char until the name suffix or
// * is encountered in the pattern (whichever happens first). Fail if a
// char mismatches.
//
for (; (pc = *pi) != '*' && ni != ne; ++pi, ++ni)
{
#ifndef _WIN32
if (*ni != pc && pc != '?')
#else
if (lcase (*ni) != lcase (pc) && pc != '?')
#endif
return false;
}
// If we didn't get to * in the pattern then we got to the name suffix.
// That means that the pattern has unmatched non-star characters, and so
// match failed.
//
if (pc != '*')
{
assert (ni == ne);
return false;
}
// If * that we have reached is the last one, then it matches whatever is
// left in the name (including an empty range).
//
if (++pi == pe)
return true;
// Perform backtracking.
//
// From now on, we will call the pattern not-yet-matched part (starting
// the leftmost * and ending the rightmost one inclusively) as pattern, and
// the name not-yet-matched part as name.
//
// Here we sequentially assume that * that starts the pattern matches the
// name leading part (staring from an empty one and iterating till the full
// name). So if, at some iteration, the pattern trailing part (that follows
// the leftmost *) matches the name trailing part, then the pattern matches
// the name.
//
bool r;
for (; !(r = match (pi, pe, ni, ne)) && ni != ne; ++ni) ;
return r;
}
bool
path_match (const string& pattern, const string& name)
{
// Implementation notes:
//
// - This has a good potential of becoming hairy quickly so need to strive
// for an elegant way to implement this.
//
// - Most patterns will contains a single * wildcard with a prefix and/or
// suffix (e.g., *.txt, foo*, f*.txt). Something like this is not very
// common: *foo*.
//
// So it would be nice to have a clever implementation that first
// "anchors" itself with a literal prefix and/or suffix and only then
// continue with backtracking. In other words, reduce:
//
// *.txt vs foo.txt -> * vs foo
// foo* vs foo.txt -> * vs .txt
// f*.txt vs foo.txt -> * vs oo
//
auto pi (pattern.rbegin ());
auto pe (pattern.rend ());
auto ni (name.rbegin ());
auto ne (name.rend ());
// The name doesn't match the pattern if it is of a different type than the
// pattern is.
//
bool pd (pi != pe && path::traits::is_separator (*pi));
bool nd (ni != ne && path::traits::is_separator (*ni));
if (pd != nd)
return false;
// Skip trailing separators if present.
//
if (pd)
{
++pi;
++ni;
}
return match (pattern.begin (), pi.base (), name.begin (), ni.base ());
}
// Iterate over directory sub-entries, recursively and including itself if
// requested. Note that recursive iterating goes depth-first which make
// sense for the cleanup use cases (@@ maybe this should be controllable
// since for directory creation it won't make sense).
//
// Prior to recursively opening a directory for iterating the preopen
// callback function is called. If false is returned, then the directory is
// not traversed but still returned by the next() call.
//
// Note that iterating over non-existent directory is not en error. The
// subsequent next() call returns false for such a directory.
//
using preopen = std::function<bool (const dir_path&)>;
class recursive_dir_iterator
{
public:
recursive_dir_iterator (dir_path p,
bool recursive,
bool self,
preopen po)
: start_ (move (p)),
recursive_ (recursive),
self_ (self),
preopen_ (move (po))
{
open (dir_path (), self_);
}
// Non-copyable, non-movable type.
//
recursive_dir_iterator (const recursive_dir_iterator&) = delete;
recursive_dir_iterator& operator= (const recursive_dir_iterator&) = delete;
// Return false if no more entries left. Otherwise save the next entry path
// and return true. The path is relative against the directory being
// traversed and contains a trailing separator for sub-directories. Throw
// std::system_error in case of a failure (insufficient permissions,
// dangling symlink encountered, etc).
//
bool
next (path& p)
{
if (iters_.empty ())
return false;
auto& i (iters_.back ());
// If we got to the end of directory sub-entries, then go one level up
// and return this directory path.
//
if (i.first == dir_iterator ())
{
path d (move (i.second));
iters_.pop_back ();
// Return the path unless it is the last one (the directory we started
// to iterate from) and the self flag is not set.
//
if (iters_.empty () && !self_)
return false;
p = move (d);
return true;
}
const dir_entry& de (*i.first);
// Append separator if a directory. Note that dir_entry::type() can
// throw.
//
path pe (de.type () == entry_type::directory
? path_cast<dir_path> (i.second / de.path ())
: i.second / de.path ());
++i.first;
if (recursive_ && pe.to_directory ())
{
open (path_cast<dir_path> (move (pe)), true);
return next (p);
}
p = move (pe);
return true;
}
private:
void
open (dir_path p, bool preopen)
{
// We should consider a racing condition here. The directory can be
// removed before we create an iterator for it. In this case we just do
// nothing, so the directory is silently skipped.
//
try
{
// If preopen_() returns false, then the directory will not be
// traversed (as we leave iterator with end semantics) but still be
// returned by the next() call as a sub-entry.
//
dir_iterator i;
if (!preopen || preopen_ (p))
{
dir_path d (start_ / p);
i = dir_iterator (!d.empty () ? d : dir_path ("."));
}
iters_.emplace_back (move (i), move (p));
}
catch (const system_error& e)
{
// Ignore non-existent directory (ENOENT or ENOTDIR). Rethrow for any
// other error. We consider ENOTDIR as a variety of removal, with a
// new filesystem entry being created afterwards.
//
// Make sure that the error denotes errno portable code.
//
assert (e.code ().category () == generic_category ());
int ec (e.code ().value ());
if (ec != ENOENT && ec != ENOTDIR)
throw;
}
}
private:
dir_path start_;
bool recursive_;
bool self_;
preopen preopen_;
small_vector<pair<dir_iterator, dir_path>, 1> iters_;
};
// Search for paths matching the pattern and call the specified function for
// each matching path. Return false if the underlying func() call returns
// false. Otherwise the function conforms to the path_search() description.
//
static const string any_dir ("*/");
static bool
search (
path pattern,
dir_path pattern_dir,
const dir_path start_dir,
const function<bool (path&&, const string& pattern, bool interm)>& func)
{
// Fast-forward the leftmost pattern non-wildcard components. So, for
// example, search for foo/f* in /bar/ becomes search for f* in /bar/foo/.
//
{
auto b (pattern.begin ());
auto e (pattern.end ());
auto i (b);
for (; i != e && (*i).find_first_of ("*?") == string::npos; ++i) ;
// If the pattern has no wildcards then we reduce to checking for the
// filesystem entry existence. It matches if exists and is of the proper
// type.
//
if (i == e)
{
path p (pattern_dir / pattern);
auto pe (path_entry (start_dir / p, true));
if (pe.first &&
((pe.second == entry_type::directory) == p.to_directory ()))
return func (move (p), string (), false);
return true;
}
else if (i != b) // There are non-wildcard components, so fast-forward.
{
path p (b, i);
pattern = pattern.leaf (p);
pattern_dir /= path_cast<dir_path> (move (p));
}
}
assert (!pattern.empty ());
// The pattern leftmost component. Will use it to match the start directory
// sub-entries.
//
path pc (pattern.begin (), ++pattern.begin ());
string pcr (pc.representation ());
// Note that if the pattern has multiple components (is not a simple path),
// then the leftmost one has a trailing separator, and so will match
// sub-directories only.
//
bool simple (pattern.simple ());
// Note that we rely on "small function object" optimization here.
//
recursive_dir_iterator i (
start_dir / pattern_dir,
pcr.find ("**") != string::npos, // Recursive.
pcr.find ("***") != string::npos, // Self-inclusive.
[&pattern_dir, &func] (const dir_path& p) -> bool // Preopen.
{
return func (pattern_dir / p, any_dir, true);
});
// Canonicalize the pattern component collapsing consecutive stars (used to
// express that it is recursive) into a single one.
//
size_t j (0);
size_t n (pcr.size ());
for (size_t i (0); i < n; ++i)
{
char c (pcr[i]);
if (!(c == '*' && i > 0 && pcr[i - 1] == '*'))
pcr[j++] = c;
}
if (j != n)
pcr.resize (j);
// Note that the callback function can be called for the same directory
// twice: first time as intermediate match from iterator's preopen() call,
// and then, if the first call succeed, from the iterating loop (possibly
// as the final match).
//
path p;
while (i.next (p))
{
// Skip sub-entry if its name doesn't match the pattern leftmost
// component.
//
// Matching the directory we are iterating through (as for a pattern
// component containing ***) is a bit tricky. This directory is
// represented by the iterator as an empty path, and so we need to
// compute it (the leaf would actually be enough) for matching. This
// leaf can be aquired from the pattern_dir / start_dir path except the
// case when both directories are empty. This is the case when we search
// in the current directory (start_dir is empty) with a pattern that
// starts with *** wildcard (for example f***/bar). All we can do here is
// to fallback to path::current_directory() call. Note that this will be
// the only call per path_search() as the next time pattern_dir will not
// be empty.
//
const path& se (!p.empty ()
? p
: path_cast<path> (!pattern_dir.empty ()
? pattern_dir
: !start_dir.empty ()
? start_dir
: path::current_directory ()));
if (!path_match (pcr, se.leaf ().representation ()))
continue;
// If the callback function returns false, then we stop the entire search
// for the final match, or do not search below the path for the
// intermediate one.
//
if (!func (pattern_dir / p, pcr, !simple))
{
if (simple) // Final match.
return false;
else
continue;
}
// If the pattern is not a simple one, and it's leftmost component
// matches the sub-entry, then the sub-entry is a directory (see the note
// above), and we search in it using the trailing part of the pattern.
//
if (!simple && !search (pattern.leaf (pc),
pattern_dir / path_cast<dir_path> (move (p)),
start_dir,
func))
return false;
}
return true;
}
void
path_search (
const path& pattern,
const function<bool (path&&, const string& pattern, bool interm)>& func,
const dir_path& start)
{
search (pattern,
dir_path (),
pattern.relative () ? start : dir_path (),
func);
}
}
|