1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
|
// file : libbuild2/module.cxx -*- C++ -*-
// license : MIT; see accompanying LICENSE file
#include <libbuild2/module.hxx>
#if !defined(BUILD2_BOOTSTRAP) && !defined(LIBBUILD2_STATIC_BUILD)
# ifndef _WIN32
# include <dlfcn.h>
# else
# include <libbutl/win32-utility.hxx>
# endif
#endif
#include <libbuild2/file.hxx> // import_*()
#include <libbuild2/scope.hxx>
#include <libbuild2/target.hxx>
#include <libbuild2/variable.hxx>
#include <libbuild2/operation.hxx>
#include <libbuild2/diagnostics.hxx>
// Core modules bundled with libbuild2.
//
#include <libbuild2/dist/init.hxx>
#include <libbuild2/test/init.hxx>
#include <libbuild2/config/init.hxx>
#include <libbuild2/install/init.hxx>
using namespace std;
using namespace butl;
namespace build2
{
mutex module_libraries_lock::mutex_;
module_libraries_map module_libraries;
void
load_builtin_module (module_load_function* lf)
{
for (const module_functions* i (lf ()); i->name != nullptr; ++i)
module_libraries.emplace (i->name, module_library {*i, dir_path ()});
}
// Sorted array of bundled modules (excluding core modules bundled with
// libbuild2; see below).
//
static const char* bundled_modules[] = {
"bash",
"bin",
"c",
"cc",
"cli",
"cxx",
"in",
"version"
};
static inline bool
bundled_module (const string& mod)
{
return binary_search (
bundled_modules,
bundled_modules + sizeof (bundled_modules) / sizeof (*bundled_modules),
mod);
}
// Note: also used by ad hoc recipes thus not static.
//
void
create_module_context (context& ctx, const location& loc)
{
assert (ctx.module_context == nullptr);
assert (*ctx.module_context_storage == nullptr);
// Since we are using the same scheduler, it makes sense to reuse the
// same global mutexes. Also disable nested module context for good
// measure.
//
// The reserve values were picked experimentally by building libbuild2 and
// adding a reasonable margin for future growth.
//
ctx.module_context_storage->reset (
new context (*ctx.sched,
*ctx.mutexes,
*ctx.fcache,
nullopt, /* match_only */
false, /* no_external_modules */
false, /* dry_run */
ctx.no_diag_buffer,
ctx.keep_going,
ctx.global_var_overrides, /* cmd_vars */
context::reserves {
2500, /* targets */
900 /* variables */
},
nullopt)); /* module_context */
// We use the same context for building any nested modules that might be
// required while building modules.
//
context& mctx (*(ctx.module_context = ctx.module_context_storage->get ()));
mctx.module_context = &mctx;
// Setup the context to perform update. In a sense we have a long-running
// perform meta-operation batch (indefinite, in fact, since we never call
// the meta-operation's *_post() callbacks) in which we periodically
// execute update operations.
//
// Note that we perform each build in a separate update operation. Failed
// that, if the same target is update twice (which may happen with ad hoc
// recipes) we will see the old state.
//
if (mo_perform.meta_operation_pre != nullptr)
mo_perform.meta_operation_pre (mctx, {} /* parameters */, loc);
mctx.current_meta_operation (mo_perform);
if (mo_perform.operation_pre != nullptr)
mo_perform.operation_pre (mctx, {} /* parameters */, update_id);
}
// Note: also used by ad hoc recipes thus not static.
//
const target&
update_in_module_context (context& ctx, const scope& rs, names tgt,
const location& loc, const path& bf)
{
// New update operation.
//
assert (op_update.operation_pre == nullptr &&
op_update.operation_post == nullptr);
ctx.module_context->current_operation (op_update);
// Un-tune the scheduler.
//
// Note that we can only do this if we are running serially because
// otherwise we cannot guarantee the scheduler is idle (we could have
// waiting threads from the outer context). This is fine for now since the
// only two tuning level we use are serial and full concurrency. (Turns
// out currently we don't really need this: we will always be called
// during load or match phases and we always do parallel match; but let's
// keep it in case things change. Actually, we may need it, if the
// scheduler was started up in a tuned state, like in bpkg).
//
auto sched_tune (ctx.sched->serial ()
? scheduler::tune_guard (*ctx.sched, 0)
: scheduler::tune_guard ());
// Remap verbosity level 0 to 1 unless we were requested to be silent.
// Failed that, we may have long periods of seemingly nothing happening
// while we quietly update the module, which may look like things have
// hung up.
//
// @@ CTX: modifying global verbosity level won't work if we have multiple
// top-level contexts running in parallel.
//
auto verbg = make_guard (
[z = !silent && verb == 0 ? (verb = 1, true) : false] ()
{
if (z)
verb = 0;
});
// Note that for now we suppress progress since it would clash with the
// progress of what we are already doing (maybe in the future we can do
// save/restore but then we would need some sort of diagnostics that we
// have switched to another task).
//
action a (perform_update_id);
action_targets tgs;
mo_perform.search ({}, /* parameters */
rs, /* root scope */
rs, /* base scope */
bf, /* buildfile */
rs.find_target_key (tgt, loc),
loc,
tgs);
mo_perform.match ({}, /* parameters */
a,
tgs,
1, /* diag (failures only) */
false /* progress */);
mo_perform.execute ({}, /* parameters */
a,
tgs,
1, /* diag (failures only) */
false /* progress */);
assert (tgs.size () == 1);
return tgs[0].as<target> ();
}
// Note: also used by ad hoc recipes thus not static.
//
#if !defined(BUILD2_BOOTSTRAP) && !defined(LIBBUILD2_STATIC_BUILD)
pair<void* /* handle */, void* /* symbol */>
load_module_library (const path& lib, const string& sym, string& err)
{
// Note that we don't unload our modules since it's not clear what would
// the benefit be.
//
void* h (nullptr);
void* s (nullptr);
#ifndef _WIN32
// Use RTLD_NOW instead of RTLD_LAZY to both speed things up (we are going
// to use this module now) and to detect any symbol mismatches.
//
if ((h = dlopen (lib.string ().c_str (), RTLD_NOW | RTLD_GLOBAL)))
{
s = dlsym (h, sym.c_str ());
if (s == nullptr)
err = dlerror ();
}
else
err = dlerror ();
#else
if (HMODULE m = LoadLibrary (lib.string ().c_str ()))
{
h = static_cast<void*> (m);
s = function_cast<void*> (GetProcAddress (m, sym.c_str ()));
if (s == nullptr)
err = win32::last_error_msg ();
}
else
err = win32::last_error_msg ();
#endif
return make_pair (h, s);
}
#else
pair<void*, void*>
load_module_library (const path&, const string&, string&)
{
return pair<void*, void*> (nullptr, nullptr);
}
#endif
// Return the module functions as well as the module project directory or
// empty if not imported from project. Return {nullptr, nullopt} if not
// found.
//
// The dry-run mode only calls import_search() and always returns NULL for
// module functions (see below for background).
//
static pair<module_load_function*, optional<dir_path>>
import_module (
#if defined(BUILD2_BOOTSTRAP) || defined(LIBBUILD2_STATIC_BUILD)
bool,
scope&,
#else
bool dry_run,
scope& bs,
#endif
const string& mod,
const location& loc,
#if defined(BUILD2_BOOTSTRAP) || defined(LIBBUILD2_STATIC_BUILD)
bool,
#else
bool boot,
#endif
bool opt)
{
tracer trace ("import_module");
pair<module_load_function*, optional<dir_path>> r (nullptr, nullopt);
// Take care of core modules that are bundled with libbuild2 in case they
// are not pre-loaded by the driver.
//
if (mod == "config") r.first = &config::build2_config_load;
else if (mod == "dist") r.first = &dist::build2_dist_load;
else if (mod == "install") r.first = &install::build2_install_load;
else if (mod == "test") r.first = &test::build2_test_load;
if (r.first != nullptr)
{
r.second = dir_path ();
return r;
}
// No dynamic loading of build system modules during bootstrap or if
// statically-linked..
//
#if defined(BUILD2_BOOTSTRAP) || defined(LIBBUILD2_STATIC_BUILD)
if (!opt)
{
fail (loc) << "unknown build system module " << mod <<
#ifdef BUILD2_BOOTSTRAP
info << "running bootstrap build system";
#else
info << "running statically-linked build system";
#endif
}
#else
context& ctx (bs.ctx);
bool bundled (bundled_module (mod));
// Note that importing external modules during bootstrap is problematic
// since we haven't loaded config.build nor entered non-global variable
// overrides. We used to just not support external modules that require
// bootstrapping but that proved to restrictive. So now we allow such
// modules and the following mechanisms can be used to make things work
// in various situations:
//
// 1. Module is installed.
//
// This covers both user-installed modules as well as the module's
// *-tests in our CI setup (where we install the module next to the
// build system).
//
// 2. Module is specified with global !config.import.<module> override.
//
// This covers development (where the override can be specified in the
// default options file) and could cover imports from the bpkg-managed
// host configuration if we use global overrides to connect things
// (which feels correct; we shouldn't have multiple host configurations
// in any given build).
//
// One case that is not straightforward is using the module in testscript-
// generated tests (e.g., in module's *-tests). This will work in CI
// (installed module) and in development provided !config.import.* is
// specified in the default options file (and we haven't suppressed it).
//
// In fact, this is not specific to modules that require bootstrapping; we
// have the same config.import.* propagation problem from, say, *-tests's
// config.build. To make other cases work (config.import.* specified in
// places other than the default options file) we would have to propagate
// things explicitly. So for now the thinking is that one shouldn't write
// such tests except in controlled cases (e.g., module's *-tests).
//
// And another case is the bdep-sync hook which also doesn't have the
// global overrides propagated to it.
//
// And it turns out the story does not end here: without an external
// module we cannot do info or dist. So to support this we now allow
// skipping of loading of external modules (for dist this is only part of
// the solution with the other part being the bootstrap mode). While no
// doubt a hack, it feels like this is the time to cut of this complexity
// escalation. Essentially, we are saying external module that require
// bootstrap must be prepared to be skipped if the project is only being
// bootstrapped. Note also that the fact that a module boot was skipped
// can be detected by checking the module's *.booted variable. In case of
// a skip it will be false, as opposed to true if the module was booted
// and undefined if the module was not mentioned.
//
if (boot && !bundled && ctx.no_external_modules)
return r; // NULL
// See if we can import a target for this module.
//
path lib;
// If this is a top-level module update, then we use the nested context.
// If, however, this is a nested module update (i.e., a module required
// while updating a module), then we reuse the same module context.
//
// If you are wondering why don't we always use the top-level context, the
// reason is that it might be running a different meta/operation (say,
// configure or clean); with the nested context we always know it is
// perform update.
//
// And the reason for not simply creating a nested context for each nested
// module update is due to the no-overlap requirement of contexts: while
// we can naturally expect the top-level project(s) and the modules they
// require to be in separate configurations that don't shared anything,
// the same does not hold for build system modules. In fact, it would be
// natural to have a single build configuration for all of them and they
// could plausibly share some common libraries.
//
bool nested (ctx.module_context == &ctx);
// If this is one of the bundled modules, the project name is build2,
// otherwise -- libbuild2-<mod>.
//
project_name proj;
try
{
proj = project_name (bundled ? "build2" : "libbuild2-" + mod);
}
catch (const invalid_argument& e)
{
fail (loc) << "invalid build system module '" << mod << "': " << e;
}
// The target we are looking for is <prj>%libs{build2-<mod>}.
//
// We only search in subprojects if this is a nested module update
// (remember, if it's top-level, then it must be in an isolated
// configuration).
//
pair<name, optional<dir_path>> ir (
import_search (bs,
name (proj, dir_path (), "libs", "build2-" + mod),
opt,
nullopt /* metadata */,
nested /* subprojects */,
loc));
if (ir.first.empty ())
{
assert (opt);
return r; // NULL
}
if (ir.second)
{
// What if a module is specified with config.import.<mod>.<lib>.libs?
// Note that this could still be a project-qualified target.
//
// Note: we now return an empty directory to mean something else.
//
if (ir.second->empty ())
fail (loc) << "direct module target importation not yet supported";
// We found the module as a target in a project. Now we need to update
// the target (which will also give us the shared library path).
//
l5 ([&]{trace << "found " << ir.first << " in " << *ir.second;});
}
if (dry_run)
{
r.second = ir.second ? move (*ir.second) : dir_path ();
return r;
}
if (ir.second)
{
r.second = *ir.second;
// Create the build context if necessary.
//
if (ctx.module_context == nullptr)
{
if (!ctx.module_context_storage)
fail (loc) << "unable to update build system module " << mod <<
info << "building of build system modules is disabled";
create_module_context (ctx, loc);
}
// Inherit module_libraries lock from the outer context.
//
ctx.module_context->modules_lock = ctx.modules_lock;
// Clear current project's environment and "switch" to the module
// context, including entering a scheduler sub-phase.
//
auto_thread_env penv (nullptr);
context& ctx (*bs.ctx.module_context);
scheduler::phase_guard pg (*ctx.sched);
// Load the imported project in the module context.
//
pair<names, const scope&> lr (
import_load (ctx, move (ir), false /* metadata */, loc));
l5 ([&]{trace << "loaded " << lr.first;});
// What happens next depends on whether this is a top-level or nested
// module update.
//
if (nested)
{
// This could be initial or exclusive load.
//
// @@ TODO: see the ad hoc recipe case as a reference.
//
fail (loc) << "nested build system module updates not yet supported";
}
else
{
const target* l;
{
// Cutoff the existing diagnostics stack and push our own entry.
//
diag_frame::stack_guard diag_cutoff (nullptr);
auto df = make_diag_frame (
[&loc, &mod] (const diag_record& dr)
{
dr << info (loc) << "while loading build system module " << mod;
});
l = &update_in_module_context (
ctx, lr.second, move (lr.first),
loc, path ());
}
if (!l->is_a ("libs"))
fail (loc) << "wrong export from build system module " << mod;
lib = l->as<file> ().path ();
l5 ([&]{trace << "updated " << lib;});
}
ctx.modules_lock = nullptr; // For good measure.
}
else
{
r.second = dir_path ();
// No module project found. Form the shared library name (incorporating
// build system core version) and try using system-default search
// (installed, rpath, etc).
// @@ This is unfortunate: it would have been nice to do something
// similar to what we've done for exe{}. While libs{} is in the bin
// module, we could bring it in (we've done it for exe{}). The
// problems are: it is intertwined with its group (lib{}) and we
// don't have any mechanisms to deal with prefixes, only extensions.
//
const char* pfx;
const char* sfx;
#if defined(__MINGW32__)
pfx = "libbuild2-"; sfx = ".dll";
#elif defined(_WIN32)
pfx = "build2-"; sfx = ".dll";
#elif defined(__APPLE__)
pfx = "libbuild2-"; sfx = ".dylib";
#else
pfx = "libbuild2-"; sfx = ".so";
#endif
lib = path (pfx + mod + '-' + build_version_interface + sfx);
l5 ([&]{trace << "system-default search for " << lib;});
}
// The build2_<mod>_load() symbol name.
//
string sym (sanitize_identifier ("build2_" + mod + "_load"));
string err;
pair<void*, void*> hs (load_module_library (lib, sym, err));
if (hs.first != nullptr)
{
// I don't think we should ignore this even if the module is optional.
//
if (hs.second == nullptr)
fail (loc) << "unable to lookup " << sym << " in build system module "
<< mod << " (" << lib << "): " << err;
r.first = function_cast<module_load_function*> (hs.second);
}
else if (!opt)
{
// Add import suggestion similar to import phase 2.
//
fail (loc) << "unable to load build system module " << mod << " ("
<< lib << "): " << err <<
info << "use config.import." << proj.variable () << " command "
<< "line variable to specify its project out_root";
}
else
{
r.second = nullopt;
l5 ([&]{trace << "unable to load " << lib << ": " << err;});
}
#endif // BUILD2_BOOTSTRAP || LIBBUILD2_STATIC_BUILD
return r;
}
static const module_functions*
find_module (scope& bs,
const string& smod,
const location& loc,
bool boot,
bool opt)
{
tracer trace ("find_module");
// If this is a submodule, get the main module name.
//
string mmod (smod, 0, smod.find ('.'));
// We have a somewhat strange two-level caching in imported_modules
// and module_libraries in order to achieve the following:
//
// 1. Correctly handle cases where a module can be imported from one
// project but not the other.
//
// 2. Make sure that for each project that imports the module we actually
// call import_search() in order to mark any config.import.* as used.
//
// 3. Make sure that all the projects import the same module.
//
scope& rs (*bs.root_scope ());
const string* mod;
const module_functions* fun;
// First check the project's imported_modules in case this (main) module
// is known to be not found.
//
auto j (rs.root_extra->imported_modules.find (mmod));
auto je (rs.root_extra->imported_modules.end ());
if (j != je && !j->found)
{
mod = &mmod;
fun = nullptr;
}
else
{
// Note that we hold the lock for the entire time it takes to build a
// module.
//
module_libraries_lock lock (bs.ctx);
// Optional modules and submodules sure make this logic convoluted. So
// we divide it into two parts: (1) find or insert an entry (for
// submodule or, failed that, for the main module) and (2) analyze the
// entry and issue diagnostics.
//
auto i (module_libraries.find (smod));
auto ie (module_libraries.end ());
bool imported (false);
if (i == ie)
{
if (mmod != smod)
i = module_libraries.find (mmod);
if (i == ie)
{
pair<module_load_function*, optional<dir_path>> ir (
import_module (false /* dry_run */, bs, mmod, loc, boot, opt));
if (module_load_function* f = ir.first)
{
// Enter all the entries noticing which one is our submodule. If
// none are, then we notice the main module.
//
for (const module_functions* j (f ()); j->name != nullptr; ++j)
{
const string& n (j->name);
l5 ([&]{trace << "registering " << n;});
bool main (n == mmod);
auto p (module_libraries.emplace (
n,
module_library {
*j,
main ? move (*ir.second) : dir_path ()}));
if (!p.second)
fail (loc) << "build system submodule name " << n << " of main "
<< "module " << mmod << " is already in use";
// Note: this assumes the main module is last.
//
if (n == smod || (main && i == ie))
i = p.first;
}
// We should at least have the main module.
//
if (i == ie)
fail (loc) << "invalid function list in build system module "
<< mmod;
}
imported = true;
}
}
// Now the iterator points to a submodule or to the main module, or to
// end if neither is found.
//
assert (j == je || i != ie); // Cache state consistecy sanity check.
if (i != ie)
{
// Note: these should remain stable after we release the lock.
//
mod = &i->first;
fun = &i->second.functions.get ();
// If this project hasn't imported this main module and we found the
// entry in the cache, then we have to perform the import_search()
// part of import_module() in order to cover items (2) and (3) above.
//
// There is one nuance: omit this for bundled modules since it's
// possible to first import them ad hoc and then, if we call
// import_search() again, to find them differently (e.g., as a
// subproject).
//
if (j == je && !imported && !bundled_module (mmod))
{
pair<module_load_function*, optional<dir_path>> ir (
import_module (true /* dry_run */, bs, mmod, loc, boot, opt));
if (ir.second)
{
if (i->first != mmod)
{
i = module_libraries.find (mmod);
assert (i != ie); // Has to be there.
}
const dir_path& cd (*ir.second);
const dir_path& pd (i->second.import_path);
if (cd != pd)
{
fail (loc) << "inconsistent build system module " << mmod
<< " importation" <<
info << rs << " imports it as "
<< (cd.empty () ? "ad hoc" : cd.representation ().c_str ()) <<
info << "previously imported as "
<< (pd.empty () ? "ad hoc" : pd.representation ().c_str ());
}
}
else
{
// This module is not found from this project.
//
mod = &mmod;
fun = nullptr;
}
}
}
else
{
mod = &mmod;
fun = nullptr;
}
}
// Cache the result in imported_modules if necessary.
//
if (j == je)
rs.root_extra->imported_modules.push_back (
module_import {mmod, fun != nullptr});
// Reduce skipped external module to optional.
//
if (boot && fun == nullptr)
opt = true;
// Handle optional.
//
if (fun == nullptr)
{
if (!opt)
fail (loc) << "unable to load build system module " << *mod;
}
else if (*mod != smod)
{
if (!opt)
fail (loc) << "build system module " << *mod << " has no "
<< "submodule " << smod;
else
{
// Note that if the main module exists but has no such submodule, we
// return NULL rather than fail (think of an older version of a module
// that doesn't implement some extra functionality).
//
fun = nullptr;
}
}
return fun;
}
void
boot_module (scope& rs, const string& mod, const location& loc)
{
// First see if this modules has already been booted for this project.
//
module_state_map& lm (rs.root_extra->loaded_modules);
auto i (lm.find (mod));
if (i != lm.end ())
{
// The only valid situation here is if the module has already been
// bootstrapped.
//
assert (i->boot_init);
return;
}
// Otherwise search for this module.
//
// Note that find_module() may return NULL in case of a skipped external
// module.
//
const module_functions* mf (
find_module (rs, mod, loc, true /* boot */, false /* optional */));
if (mf != nullptr)
{
if (mf->boot == nullptr)
fail (loc) << "build system module " << mod << " should not be loaded "
<< "during bootstrap";
lm.push_back (
module_state {loc, mod, nullptr, mf->init, nullptr, nullopt});
i = lm.end () - 1;
module_boot_extra e {nullptr, nullptr, module_boot_init::before};
// Note: boot() can load additional modules invalidating the iterator.
//
size_t j (i - lm.begin ());
mf->boot (rs, loc, e);
i = lm.begin () + j;
if (e.module != nullptr)
i->module = move (e.module);
i->boot_post = e.post;
i->boot_init = e.init;
}
rs.assign (rs.var_pool (true).insert (mod + ".booted")) = (mf != nullptr);
}
void
boot_post_module (scope& rs, module_state& s)
{
module_boot_post_extra e {s.module, *s.boot_init};
// Note: boot_post() should be loading any additional modules.
//
s.boot_post (rs, s.loc, e);
if (e.module != s.module)
{
assert (s.module == nullptr);
s.module = move (e.module);
}
s.boot_init = e.init;
}
module_state*
init_module (scope& rs,
scope& bs,
const string& mod,
const location& loc,
bool opt,
const variable_map& hints)
{
// First see if this modules has already been inited for this project.
//
module_state_map& lm (rs.root_extra->loaded_modules);
auto i (lm.find (mod));
bool f (i == lm.end ());
if (f)
{
// Otherwise search for this module.
//
if (const module_functions* mf = find_module (
bs, mod, loc, false /* boot */, opt))
{
if (mf->boot != nullptr)
fail (loc) << "build system module " << mod << " should be loaded "
<< "during bootstrap";
lm.push_back (
module_state {loc, mod, nullptr, mf->init, nullptr, nullopt});
i = lm.end () - 1;
}
}
else
{
module_state& s (*i);
if (s.boot_init)
{
s.boot_init = nullopt;
f = true; // This is a first call to init.
}
}
// Note: pattern-typed in context ctor as project visibility variables of
// type bool.
//
// We call the variable 'loaded' rather than 'inited' because it is
// buildfile-visible (where we use the term "load a module"; see the note
// on terminology above)
//
auto& vp (rs.var_pool (true));
value& lv (bs.assign (vp.insert (mod + ".loaded")));
value& cv (bs.assign (vp.insert (mod + ".configured")));
bool l; // Loaded (initialized).
bool c; // Configured.
// Suppress duplicate init() calls for the same module in the same scope.
//
if (!lv.null)
{
assert (!cv.null);
l = cast<bool> (lv);
c = cast<bool> (cv);
if (!opt)
{
if (!l)
fail (loc) << "unable to load build system module " << mod;
// We don't have original diagnostics. We could call init() again so
// that it can issue it. But that means optional modules must be
// prepared to be called again if configuring failed. Let's keep it
// simple for now.
//
if (!c)
fail (loc) << "build system module " << mod << " failed to "
<< "configure";
}
}
else
{
l = i != lm.end ();
if ((c = l))
{
module_init_extra e {i->module, hints};
// Note: init() can load additional modules invalidating the iterator.
//
size_t j (i - lm.begin ());
c = i->init (rs, bs, loc, f, opt, e);
i = lm.begin () + j;
if (e.module != i->module)
{
assert (i->module == nullptr);
i->module = move (e.module);
}
}
lv = l;
cv = c;
}
return l && c ? &*i : nullptr;
}
// @@ TODO: This is a bit of a fuzzy mess:
//
// - The .loaded variable check: it's not clear if init_module()
// already has this semantics?
//
// - Why do we use variable instead of the module map entry? Probably
// because of optional. Also entry present if only booted. Need to be
// careful here. Also root vs base!
//
// Note that it would have been nice to keep these inline but we need the
// definition of scope for the variable lookup.
//
optional<shared_ptr<module>>
load_module (scope& rs,
scope& bs,
const string& name,
const location& loc,
bool opt,
const variable_map& hints)
{
if (cast_false<bool> (bs[name + ".loaded"]))
{
if (cast_false<bool> (bs[name + ".configured"]))
return rs.root_extra->loaded_modules.find (name)->module;
}
else
{
if (module_state* ms = init_module (rs, bs, name, loc, opt, hints))
return ms->module;
}
return nullopt;
}
shared_ptr<module>
load_module (scope& rs,
scope& bs,
const string& name,
const location& loc,
const variable_map& hints)
{
//@@ TODO: shouldn't we also check for configured? What if the previous
// attempt to load it was optional?
return cast_false<bool> (bs[name + ".loaded"])
? rs.root_extra->loaded_modules.find (name)->module
: init_module (rs, bs, name, loc, false /* optional */, hints)->module;
}
}
|