aboutsummaryrefslogtreecommitdiff
path: root/libbuild2/dump.cxx
blob: 8ee68b71aab7a9e604283cf48c7c2fd7e49f13fc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
// file      : libbuild2/dump.cxx -*- C++ -*-
// license   : MIT; see accompanying LICENSE file

#include <libbuild2/dump.hxx>

#include <libbuild2/scope.hxx>
#include <libbuild2/target.hxx>
#include <libbuild2/context.hxx>
#include <libbuild2/variable.hxx>
#include <libbuild2/diagnostics.hxx>

using namespace std;

namespace build2
{
  // If type is false, don't print the value's type (e.g., because it is the
  // same as variable's).
  //
  static void
  dump_value (ostream& os, const value& v, bool type)
  {
    // First print attributes if any.
    //
    bool a (!v || (type && v.type != nullptr));

    if (a)
      os << '[';

    const char* s ("");

    if (type && v.type != nullptr)
    {
      os << s << v.type->name;
      s = " ";
    }

    if (!v)
    {
      os << s << "null";
      s = " ";
    }

    if (a)
      os << ']';

    // Now the value if there is one.
    //
    if (v)
    {
      names storage;
      os << (a ? " " : "") << reverse (v, storage);
    }
  }

  enum class variable_kind {scope, tt_pat, target, rule, prerequisite};

  static void
  dump_variable (ostream& os,
                 const variable_map& vm,
                 const variable_map::const_iterator& vi,
                 const scope& s,
                 variable_kind k)
  {
    // Target type/pattern-specific prepends/appends are kept untyped and not
    // overriden.
    //
    if (k == variable_kind::tt_pat && vi.extra () != 0)
    {
      // @@ Might be useful to dump the cache.
      //
      const auto& p (vi.untyped ());
      const variable& var (p.first);
      const value& v (p.second);
      assert (v.type == nullptr);

      os << var << (v.extra == 1 ? " =+ " : " += ");
      dump_value (os, v, false);
    }
    else
    {
      const auto& p (*vi);
      const variable& var (p.first);
      const value& v (p.second);

      if (var.type != nullptr)
        os << '[' << var.type->name << "] ";

      os << var << " = ";

      // If this variable is overriden, print both the override and the
      // original values.
      //
      // @@ The override semantics for prerequisite-specific variables
      //    is still fuzzy/unimplemented, so ignore it for now.
      //
      if (k != variable_kind::prerequisite)
      {
        if (var.overrides != nullptr && !var.override ())
        {
          lookup org (v, var, vm);

          // The original is always from this scope/target, so depth is 1.
          //
          lookup l (
            s.lookup_override (
              var,
              make_pair (org, 1),
              k == variable_kind::target || k == variable_kind::rule,
              k == variable_kind::rule).first);

          assert (l.defined ()); // We at least have the original.

          if (org != l)
          {
            dump_value (os, *l, l->type != var.type);
            os << " # original: ";
          }
        }
      }

      dump_value (os, v, v.type != var.type);
    }
  }

  static void
  dump_variables (ostream& os,
                  string& ind,
                  const variable_map& vars,
                  const scope& s,
                  variable_kind k)
  {
    for (auto i (vars.begin ()), e (vars.end ()); i != e; ++i)
    {
      os << endl
         << ind;

      dump_variable (os, vars, i, s, k);
    }
  }

  // Dump target type/pattern-specific variables.
  //
  static void
  dump_variables (ostream& os,
                  string& ind,
                  const variable_type_map& vtm,
                  const scope& s)
  {
    for (const auto& vt: vtm)
    {
      const target_type& t (vt.first);
      const variable_pattern_map& vpm (vt.second);

      for (const auto& vp: vpm)
      {
        const string p (vp.first);
        const variable_map& vars (vp.second);

        os << endl
           << ind;

        if (t != target::static_type)
          os << t.name << '{';

        os << p;

        if (t != target::static_type)
          os << '}';

        os << ':';

        if (vars.size () == 1)
        {
          os << ' ';
          dump_variable (os, vars, vars.begin (), s, variable_kind::tt_pat);
        }
        else
        {
          os << endl
             << ind << '{';
          ind += "  ";
          dump_variables (os, ind, vars, s, variable_kind::tt_pat);
          ind.resize (ind.size () - 2);
          os << endl
             << ind << '}';
        }
      }
    }
  }

  static void
  dump_target (optional<action> a,
               ostream& os,
               string& ind,
               const target& t,
               const scope& s,
               bool rel)
  {
    // If requested, print the target and its prerequisites relative to the
    // scope. To achieve this we are going to temporarily lower the stream
    // path verbosity to level 0.
    //
    stream_verbosity osv, nsv;
    if (rel)
    {
      osv = nsv = stream_verb (os);
      nsv.path = 0;
      stream_verb (os, nsv);
    }

    if (t.group != nullptr)
      os << ind << t << " -> " << *t.group << endl;

    os << ind << t << ':';

    // First print target/rule-specific variables, if any.
    //
    {
      bool tv (!t.vars.empty ());
      bool rv (a && !t.state[*a].vars.empty ());

      if (tv || rv)
      {
        if (rel)
          stream_verb (os, osv); // We want variable values in full.

        os << endl
           << ind << '{';
        ind += "  ";

        if (tv)
          dump_variables (os, ind, t.vars, s, variable_kind::target);

        if (rv)
        {
          // To distinguish target and rule-specific variables, we put the
          // latter into a nested block.
          //
          // @@ Maybe if we also print the rule name, then we could make
          //    the block associated with that?

          if (tv)
            os << endl;

          os << endl
             << ind << '{';
          ind += "  ";
          dump_variables (os, ind, t.state[*a].vars, s, variable_kind::rule);
          ind.resize (ind.size () - 2);
          os << endl
             << ind << '}';
        }

        ind.resize (ind.size () - 2);
        os << endl
           << ind << '}';

        if (rel)
          stream_verb (os, nsv);

        os << endl
           << ind << t << ':';
      }
    }

    bool used (false); // Target header has been used to display prerequisites.

    // If the target has been matched to a rule, first print resolved
    // prerequisite targets.
    //
    // Note: running serial and task_count is 0 before any operation has
    // started.
    //
    action inner; // @@ Only for the inner part of the action currently.

    if (size_t c = t[inner].task_count.load (memory_order_relaxed))
    {
      if (c == t.ctx.count_applied () || c == t.ctx.count_executed ())
      {
        bool f (false);
        for (const target* pt: t.prerequisite_targets[inner])
        {
          if (pt == nullptr) // Skipped.
            continue;

          os << ' ' << *pt;
          f = true;
        }

        // Only omit '|' if we have no prerequisites nor targets.
        //
        if (f || !t.prerequisites ().empty ())
        {
          os << " |";
          used = true;
        }
      }
    }

    // Print prerequisites. Those that have prerequisite-specific variables
    // have to be printed as a separate dependency.
    //
    const prerequisites& ps (t.prerequisites ());
    for (auto i (ps.begin ()), e (ps.end ()); i != e; )
    {
      const prerequisite& p (*i++);
      bool ps (!p.vars.empty ()); // Has prerequisite-specific vars.

      if (ps && used) // If it has been used, get a new header.
        os << endl
           << ind << t << ':';

      // Print it as a target if one has been cached.
      //
      if (const target* t = p.target.load (memory_order_relaxed)) // Serial.
        os << ' ' << *t;
      else
        os << ' ' << p;

      if (ps)
      {
        if (rel)
          stream_verb (os, osv); // We want variable values in full.

        os << ':' << endl
           << ind << '{';
        ind += "  ";
        dump_variables (os, ind, p.vars, s, variable_kind::prerequisite);
        ind.resize (ind.size () - 2);
        os << endl
           << ind << '}';

        if (rel)
          stream_verb (os, nsv);

        if (i != e) // If we have another, get a new header.
          os << endl
             << ind << t << ':';
      }

      used = !ps;
    }

    if (rel)
      stream_verb (os, osv);
  }

  static void
  dump_scope (optional<action> a,
              ostream& os,
              string& ind,
              scope_map::const_iterator& i,
              bool rel)
  {
    const scope& p (i->second);
    const dir_path& d (i->first);
    ++i;

    // We don't want the extra notations (e.g., ~/) provided by diag_relative()
    // since we want the path to be relative to the outer scope. Print the root
    // scope path (represented by an empty one) as a platform-dependent path
    // separator.
    //
    if (d.empty ())
      os << ind << dir_path::traits_type::directory_separator;
    else
    {
      const dir_path& rd (rel ? relative (d) : d);
      os << ind << (rd.empty () ? dir_path (".") : rd);
    }

    os << endl
       << ind << '{';

    const dir_path* orb (relative_base);
    relative_base = &d;

    ind += "  ";

    bool vb (false), sb (false), tb (false); // Variable/scope/target block.

    // Target type/pattern-sepcific variables.
    //
    if (!p.target_vars.empty ())
    {
      dump_variables (os, ind, p.target_vars, p);
      vb = true;
    }

    // Scope variables.
    //
    if (!p.vars.empty ())
    {
      if (vb)
        os << endl;

      dump_variables (os, ind, p.vars, p, variable_kind::scope);
      vb = true;
    }

    // Nested scopes of which we are an immediate parent.
    //
    // Note that because we use the logical (rather than physical) parent, we
    // will be printing the logical scope hierarchy (i.e., a project with
    // disabled amalgamation will be printed directly inside the global
    // scope).
    //
    for (auto e (p.ctx.scopes.end ());
         i != e && i->second.parent_scope () == &p; )
    {
      if (vb)
      {
        os << endl;
        vb = false;
      }

      if (sb)
        os << endl; // Extra newline between scope blocks.

      os << endl;
      dump_scope (a, os, ind, i, true /* relative */);
      sb = true;
    }

    // Targets.
    //
    // Since targets can occupy multiple lines, we separate them with a
    // blank line.
    //
    for (const auto& pt: p.ctx.targets)
    {
      const target& t (*pt);

      if (&p != &t.base_scope ())
        continue;

      if (vb || sb || tb)
      {
        os << endl;
        vb = sb = false;
      }

      os << endl;
      dump_target (a, os, ind, t, p, true /* relative */);
      tb = true;
    }

    ind.resize (ind.size () - 2);
    relative_base = orb;

    os << endl
       << ind << '}';
  }

  void
  dump (const context& c, optional<action> a)
  {
    auto i (c.scopes.cbegin ());
    assert (&i->second == &c.global_scope);

    // We don't lock diag_stream here as dump() is supposed to be called from
    // the main thread prior/after to any other threads being spawned.
    //
    string ind;
    ostream& os (*diag_stream);
    dump_scope (a, os, ind, i, false /* relative */);
    os << endl;
  }

  void
  dump (const scope& s, const char* cind)
  {
    const scope_map_base& m (s.ctx.scopes); // Iterator interface.
    auto i (m.find (s.out_path ()));
    assert (i != m.end () && &i->second == &s);

    string ind (cind);
    ostream& os (*diag_stream);
    dump_scope (nullopt /* action */, os, ind, i, false /* relative */);
    os << endl;
  }

  void
  dump (const target& t, const char* cind)
  {
    string ind (cind);
    ostream& os (*diag_stream);
    dump_target (nullopt /* action */,
                 os,
                 ind,
                 t,
                 t.base_scope (),
                 false /* relative */);
    os << endl;
  }
}