1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
|
// file : libbuild2/context.hxx -*- C++ -*-
// license : MIT; see accompanying LICENSE file
#ifndef LIBBUILD2_CONTEXT_HXX
#define LIBBUILD2_CONTEXT_HXX
#include <libbuild2/types.hxx>
#include <libbuild2/forward.hxx>
#include <libbuild2/utility.hxx>
// NOTE: this file is included by pretty much every other build state header
// (scope, target, variable, etc) so including any of them here is most
// likely a non-starter.
//
#include <libbuild2/action.hxx>
#include <libbuild2/operation.hxx>
#include <libbuild2/scheduler.hxx>
#include <libbuild2/export.hxx>
namespace build2
{
class loaded_modules_lock;
class LIBBUILD2_SYMEXPORT run_phase_mutex
{
public:
// Acquire a phase lock potentially blocking (unless already in the
// desired phase) until switching to the desired phase is possible.
//
bool
lock (run_phase);
// Release the phase lock potentially allowing (unless there are other
// locks on this phase) switching to a different phase.
//
void
unlock (run_phase);
// Switch from one phase to another. Semantically, just unlock() followed
// by lock() but more efficient.
//
bool
relock (run_phase unlock, run_phase lock);
private:
friend class context;
run_phase_mutex (context& c)
: ctx_ (c), fail_ (false), lc_ (0), mc_ (0), ec_ (0) {}
private:
friend struct phase_lock;
friend struct phase_unlock;
friend struct phase_switch;
// We have a counter for each phase which represents the number of threads
// in or waiting for this phase.
//
// We use condition variables to wait for a phase switch. The load phase
// is exclusive so we have a separate mutex to serialize it (think of it
// as a second level locking).
//
// When the mutex is unlocked (all three counters become zero, the phase
// is always changed to load (this is also the initial state).
//
context& ctx_;
mutex m_;
bool fail_;
size_t lc_;
size_t mc_;
size_t ec_;
condition_variable lv_;
condition_variable mv_;
condition_variable ev_;
mutex lm_;
};
// Context-wide mutexes and mutex shards.
//
class global_mutexes
{
public:
// Variable cache mutex shard (see variable.hxx for details).
//
size_t variable_cache_size;
unique_ptr<shared_mutex[]> variable_cache;
explicit
global_mutexes (size_t vc)
: variable_cache_size (vc),
variable_cache (new shared_mutex[variable_cache_size]) {}
};
// A build context encapsulates the state of a build. It is possible to have
// multiple build contexts provided they are non-overlapping, that is, they
// don't try to build the same projects (note that this is currently not
// enforced).
//
// One context can be preempted to execute another context (we do this, for
// example, to update build system modules). When switching to such a nested
// context you may want to cutoff the diagnostics stack (and maybe insert
// your own entry), for example:
//
// diag_frame::stack_guard diag_cutoff (nullptr);
//
// As well as suppress progress which would otherwise clash (maybe in the
// future we can do save/restore but then we would need some indication that
// we have switched to another task).
//
// Note that sharing the same scheduler between multiple top-level contexts
// can currently be problematic due to operation-specific scheduler tuning.
//
// The loaded_modules state (module.hxx) is shared among all the contexts
// (there is no way to have multiple shared library loading "contexts") and
// is protected by loaded_modules_lock. A nested context should normally
// inherit this lock value from its outer context.
//
// Note also that any given thread should not participate in multiple
// schedulers at the same time (see scheduler::join/leave() for details).
//
// @@ CTX TODO:
//
// - Move verbosity level to context (see issue in import_module()).
//
// - Scheduler tunning and multiple top-level contexts.
//
// - Detect overlapping contexts (could be expensive).
//
class LIBBUILD2_SYMEXPORT context
{
struct data;
unique_ptr<data> data_;
public:
scheduler& sched;
global_mutexes& mutexes;
// Match only flag (see --match-only but also dist).
//
bool match_only;
// Dry run flag (see --dry-run|-n).
//
// This flag is set (based on dry_run_option) only for the final execute
// phase (as opposed to those that interrupt match) by the perform meta
// operation's execute() callback.
//
// Note that for this mode to function properly we have to use fake
// mtimes. Specifically, a rule that pretends to update a target must set
// its mtime to system_clock::now() and everyone else must use this cached
// value. In other words, there should be no mtime re-query from the
// filesystem. The same is required for "logical clean" (i.e., dry-run
// 'clean update' in order to see all the command lines).
//
// At first, it may seem like we should also "dry-run" changes to depdb.
// But that would be both problematic (some rules update it in apply()
// during the match phase) and wasteful (why discard information). Also,
// depdb may serve as an input to some commands (for example, to provide
// C++ module mapping) which means that without updating it the commands
// we print might not be runnable (think of the compilation database).
//
// One thing we need to be careful about if we are updating depdb is to
// not render the target up-to-date. But in this case the depdb file will
// be older than the target which in our model is treated as an
// interrupted update (see depdb for details).
//
// Note also that sometimes it makes sense to do a bit more than
// absolutely necessary or to discard information in order to keep the
// rule logic sane. And some rules may choose to ignore this flag
// altogether. In this case, however, the rule should be careful not to
// rely on functions (notably from filesystem) that respect this flag in
// order not to end up with a job half done.
//
bool dry_run = false;
bool dry_run_option;
// Keep going flag.
//
// Note that setting it to false is not of much help unless we are running
// serially: in parallel we queue most of the things up before we see any
// failures.
//
bool keep_going;
// In order to perform each operation the build system goes through the
// following phases:
//
// load - load the buildfiles
// match - search prerequisites and match rules
// execute - execute the matched rule
//
// The build system starts with a "serial load" phase and then continues
// with parallel match and execute. Match, however, can be interrupted
// both with load and execute.
//
// Match can be interrupted with "exclusive load" in order to load
// additional buildfiles. Similarly, it can be interrupted with (parallel)
// execute in order to build targetd required to complete the match (for
// example, generated source code or source code generators themselves).
//
// Such interruptions are performed by phase change that is protected by
// phase_mutex (which is also used to synchronize the state changes
// between phases).
//
// Serial load can perform arbitrary changes to the build state. Exclusive
// load, however, can only perform "island appends". That is, it can
// create new "nodes" (variables, scopes, etc) but not (semantically)
// change already existing nodes or invalidate any references to such (the
// idea here is that one should be able to load additional buildfiles as
// long as they don't interfere with the existing build state). The
// "islands" are identified by the load_generation number (0 for the
// initial/serial load). It is incremented in case of a phase switch and
// can be stored in various "nodes" to verify modifications are only done
// "within the islands".
//
run_phase phase = run_phase::load;
size_t load_generation = 0;
// A "tri-mutex" that keeps all the threads in one of the three phases.
// When a thread wants to switch a phase, it has to wait for all the other
// threads to do the same (or release their phase locks). The load phase
// is exclusive.
//
// The interleaving match and execute is interesting: during match we read
// the "external state" (e.g., filesystem entries, modifications times,
// etc) and capture it in the "internal state" (our dependency graph).
// During execute we are modifying the external state with controlled
// modifications of the internal state to reflect the changes (e.g.,
// update mtimes). If you think about it, it's pretty clear that we cannot
// safely perform both of these actions simultaneously. A good example
// would be running a code generator and header dependency extraction
// simultaneously: the extraction process may pick up headers as they are
// being generated. As a result, we either have everyone treat the
// external state as read-only or write-only.
//
// There is also one more complication: if we are returning from a load
// phase that has failed, then the build state could be seriously messed
// up (things like scopes not being setup completely, etc). And once we
// release the lock, other threads that are waiting will start relying on
// this messed up state. So a load phase can mark the phase_mutex as
// failed in which case all currently blocked and future lock()/relock()
// calls return false. Note that in this case we still switch to the
// desired phase. See the phase_{lock,switch,unlock} implementations for
// details.
//
run_phase_mutex phase_mutex;
// Current action (meta/operation).
//
// The names unlike info are available during boot but may not yet be
// lifted. The name is always for an outer operation (or meta operation
// that hasn't been recognized as such yet).
//
string current_mname;
string current_oname;
const meta_operation_info* current_mif;
const operation_info* current_inner_oif;
const operation_info* current_outer_oif;
// Current operation number (1-based) in the meta-operation batch.
//
size_t current_on;
// Note: we canote use the corresponding target::offeset_* values.
//
size_t count_base () const {return 5 * (current_on - 1);}
size_t count_touched () const {return 1 + count_base ();}
size_t count_tried () const {return 2 + count_base ();}
size_t count_matched () const {return 3 + count_base ();}
size_t count_applied () const {return 4 + count_base ();}
size_t count_executed () const {return 5 + count_base ();}
size_t count_busy () const {return 6 + count_base ();}
// Execution mode.
//
execution_mode current_mode;
// Some diagnostics (for example output directory creation/removal by the
// fsdir rule) is just noise at verbosity level 1 unless it is the only
// thing that is printed. So we can only suppress it in certain situations
// (e.g., dist) where we know we have already printed something.
//
bool current_diag_noise;
// Total number of dependency relationships and targets with non-noop
// recipe in the current action.
//
// Together with target::dependents the dependency count is incremented
// during the rule search & match phase and is decremented during
// execution with the expectation of it reaching 0. Used as a sanity
// check.
//
// The target count is incremented after a non-noop recipe is matched and
// decremented after such recipe has been executed. If such a recipe has
// skipped executing the operation, then it should increment the skip
// count. These two counters are used for progress monitoring and
// diagnostics.
//
atomic_count dependency_count;
atomic_count target_count;
atomic_count skip_count;
// Build state (scopes, targets, variables, etc).
//
const scope_map& scopes;
target_set& targets;
const variable_pool& var_pool;
const variable_overrides& var_overrides; // Project and relative scope.
function_map& functions;
// Global scope.
//
const scope& global_scope;
const target_type_map& global_target_types;
variable_override_cache& global_override_cache;
const strings& global_var_overrides;
// Cached variables.
//
// Note: consider printing in info meta-operation if adding anything here.
//
const variable* var_src_root;
const variable* var_out_root;
const variable* var_src_base;
const variable* var_out_base;
const variable* var_forwarded;
const variable* var_project;
const variable* var_amalgamation;
const variable* var_subprojects;
const variable* var_version;
// project.url
//
const variable* var_project_url;
// project.summary
//
const variable* var_project_summary;
// import.*
//
const variable* var_import_build2;
const variable* var_import_target;
const variable* var_import_metadata;
// export.*
//
const variable* var_export_metadata;
// [string] target visibility
//
const variable* var_extension;
// [bool] target visibility
//
const variable* var_clean;
// Forwarded configuration backlink mode. Valid values are:
//
// false - no link.
// true - make a link using appropriate mechanism.
// symbolic - make a symbolic link.
// hard - make a hard link.
// copy - make a copy.
// overwrite - copy over but don't remove on clean (committed gen code).
//
// Note that it can be set by a matching rule as a rule-specific variable.
//
// [string] target visibility
//
const variable* var_backlink;
// Prerequisite inclusion/exclusion. Valid values are:
//
// false - exclude.
// true - include.
// adhoc - include but treat as an ad hoc input.
//
// If a rule uses prerequisites as inputs (as opposed to just matching
// them with the "pass-through" semantics), then the adhoc value signals
// that a prerequisite is an ad hoc input. A rule should match and execute
// such a prerequisite (whether its target type is recognized as suitable
// input or not) and assume that the rest will be handled by the user
// (e.g., it will be passed via a command line argument or some such).
// Note that this mechanism can be used to both treat unknown prerequisite
// types as inputs (for example, linker scripts) as well as prevent
// treatment of known prerequisite types as such while still matching and
// executing them (for example, plugin libraries).
//
// A rule with the "pass-through" semantics should treat the adhoc value
// the same as true.
//
// To query this value in rule implementations use the include() helpers
// from <libbuild2/prerequisites.hxx>.
//
// [string] prereq visibility
//
const variable* var_include;
// The build.* namespace.
//
// .meta_operation
//
const variable* var_build_meta_operation;
// Known meta-operation and operation tables.
//
build2::meta_operation_table meta_operation_table;
build2::operation_table operation_table;
// The old/new src_root remapping for subprojects.
//
dir_path old_src_root;
dir_path new_src_root;
// NULL if this context hasn't already locked the loaded_modules state.
//
const loaded_modules_lock* modules_lock;
// Nested context for updating build system modules.
//
// Note that such a context itself should normally have modules_context
// setup to point to itself (see import_module() for details).
//
context* module_context;
optional<unique_ptr<context>> module_context_storage;
public:
// If module_context is absent, then automatic updating of build system
// modules is disabled. If it is NULL, then the context will be created
// lazily if and when necessary. Otherwise, it should be a properly setup
// context (including, normally, a self-reference in modules_context).
//
explicit
context (scheduler&,
global_mutexes&,
bool match_only = false,
bool dry_run = false,
bool keep_going = true,
const strings& cmd_vars = {},
optional<context*> module_context = nullptr,
const loaded_modules_lock* inherited_mudules_lock = nullptr);
// Set current meta-operation and operation.
//
void
current_meta_operation (const meta_operation_info&);
void
current_operation (const operation_info& inner,
const operation_info* outer = nullptr,
bool diag_noise = true);
context (context&&) = delete;
context& operator= (context&&) = delete;
context (const context&) = delete;
context& operator= (const context&) = delete;
~context ();
};
// Grab a new phase lock releasing it on destruction. The lock can be
// "owning" or "referencing" (recursive).
//
// On the referencing semantics: If there is already an instance of
// phase_lock in this thread, then the new instance simply references it.
//
// The reason for this semantics is to support the following scheduling
// pattern (in actual code we use wait_guard to RAII it):
//
// atomic_count task_count (0);
//
// {
// phase_lock l (run_phase::match); // (1)
//
// for (...)
// {
// sched.async (task_count,
// [] (...)
// {
// phase_lock pl (run_phase::match); // (2)
// ...
// },
// ...);
// }
// }
//
// sched.wait (task_count); // (3)
//
// Here is what's going on here:
//
// 1. We first get a phase lock "for ourselves" since after the first
// iteration of the loop, things may become asynchronous (including
// attempts to switch the phase and modify the structure we are iteration
// upon).
//
// 2. The task can be queued or it can be executed synchronously inside
// async() (refer to the scheduler class for details on this semantics).
//
// If this is an async()-synchronous execution, then the task will create
// a referencing phase_lock. If, however, this is a queued execution
// (including wait()-synchronous), then the task will create a top-level
// phase_lock.
//
// Note that we only acquire the lock once the task starts executing
// (there is no reason to hold the lock while the task is sitting in the
// queue). This optimization assumes that whatever else we pass to the
// task (for example, a reference to a target) is stable (in other words,
// such a reference cannot become invalid).
//
// 3. Before calling wait(), we release our phase lock to allow switching
// the phase.
//
struct LIBBUILD2_SYMEXPORT phase_lock
{
explicit phase_lock (context&, run_phase);
~phase_lock ();
phase_lock (phase_lock&&) = delete;
phase_lock (const phase_lock&) = delete;
phase_lock& operator= (phase_lock&&) = delete;
phase_lock& operator= (const phase_lock&) = delete;
context& ctx;
phase_lock* prev; // From another context.
run_phase phase;
};
// Assuming we have a lock on the current phase, temporarily release it
// and reacquire on destruction.
//
struct LIBBUILD2_SYMEXPORT phase_unlock
{
phase_unlock (context&, bool unlock = true);
~phase_unlock () noexcept (false);
phase_lock* l;
};
// Assuming we have a lock on the current phase, temporarily switch to a
// new phase and switch back on destruction.
//
struct LIBBUILD2_SYMEXPORT phase_switch
{
explicit phase_switch (context&, run_phase);
~phase_switch () noexcept (false);
run_phase old_phase, new_phase;
};
// Wait for a task count optionally and temporarily unlocking the phase.
//
struct wait_guard
{
~wait_guard () noexcept (false);
wait_guard (); // Empty.
wait_guard (context&,
atomic_count& task_count,
bool phase = false);
wait_guard (context&,
size_t start_count,
atomic_count& task_count,
bool phase = false);
void
wait ();
// Note: move-assignable to empty only.
//
wait_guard (wait_guard&&);
wait_guard& operator= (wait_guard&&);
wait_guard (const wait_guard&) = delete;
wait_guard& operator= (const wait_guard&) = delete;
context* ctx;
size_t start_count;
atomic_count* task_count;
bool phase;
};
}
#include <libbuild2/context.ixx>
#endif // LIBBUILD2_CONTEXT_HXX
|