1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
|
// file : libbuild2/bin/rule.cxx -*- C++ -*-
// license : MIT; see accompanying LICENSE file
#include <libbuild2/bin/rule.hxx>
#include <libbuild2/scope.hxx>
#include <libbuild2/target.hxx>
#include <libbuild2/algorithm.hxx>
#include <libbuild2/diagnostics.hxx>
#include <libbuild2/bin/target.hxx>
#include <libbuild2/bin/utility.hxx>
using namespace std;
namespace build2
{
namespace bin
{
// Search for an existing (declared real) member and match it if found.
//
static void
dist_match (action a, target& t, const target_type& tt)
{
if (const target* m = search_existing (t.ctx, tt, t.dir, t.out, t.name))
{
// Only a real target declaration can have prerequisites (which is
// the reason we are doing this).
//
if (m->decl == target_decl::real)
match_sync (a, *m);
}
}
// obj_rule
//
bool obj_rule::
match (action a, target& t) const
{
if (a.meta_operation () == dist_id)
return true;
const char* n (t.dynamic_type->name); // Ignore derived type.
fail << diag_doing (a, t) << " target group" <<
info << "explicitly select " << n << "e{}, " << n << "a{}, or "
<< n << "s{} member" << endf;
}
recipe obj_rule::
apply (action a, target& t) const
{
// We only get here for dist.
//
const target_type* ett (nullptr);
const target_type* att (nullptr);
const target_type* stt (nullptr);
if (t.is_a<obj> ())
{
ett = &obje::static_type;
att = &obja::static_type;
stt = &objs::static_type;
}
else if (t.is_a<bmi> ())
{
ett = &bmie::static_type;
att = &bmia::static_type;
stt = &bmis::static_type;
}
else if (t.is_a<hbmi> ())
{
ett = &hbmie::static_type;
att = &hbmia::static_type;
stt = &hbmis::static_type;
}
else
assert (false);
dist_match (a, t, *ett);
dist_match (a, t, *att);
dist_match (a, t, *stt);
// Delegate to the default dist rule to match prerequisites.
//
return dist::rule::apply (a, t);
}
// libul_rule
//
bool libul_rule::
match (action, target&) const
{
return true;
}
recipe libul_rule::
apply (action a, target& t) const
{
if (a.meta_operation () == dist_id)
{
dist_match (a, t, libua::static_type);
dist_match (a, t, libus::static_type);
// Delegate to the default dist rule to match prerequisites.
//
return dist::rule::apply (a, t);
}
// Pick one of the members. First looking for the one already matched.
//
const target* m (nullptr);
const libus* ls (nullptr);
{
ls = search_existing<libus> (t.ctx, t.dir, t.out, t.name);
if (ls != nullptr && ls->matched (a))
m = ls;
}
const libua* la (nullptr);
if (m == nullptr)
{
la = search_existing<libua> (t.ctx, t.dir, t.out, t.name);
if (la != nullptr && la->matched (a))
m = la;
}
if (m == nullptr)
{
const scope& bs (t.base_scope ());
lmembers lm (link_members (*bs.root_scope ()));
if (lm.s && lm.a)
{
// Use the bin.exe.lib order as a heuristics to pick the library
// (i.e., the most likely utility library to be built is the one
// most likely to be linked).
//
lorder lo (link_order (bs, otype::e));
(lo == lorder::s_a || lo == lorder::s ? lm.a : lm.s) = false;
}
if (lm.s)
m = ls != nullptr ? ls : &search<libus> (t, t.dir, t.out, t.name);
else
m = la != nullptr ? la : &search<libua> (t, t.dir, t.out, t.name);
}
// Save the member we picked in case others (e.g., $x.lib_poptions())
// need this information.
//
t.prerequisite_targets[a].push_back (m);
if (match_sync (a, *m, unmatch::safe).first)
return noop_recipe;
return [] (action a, const target& t)
{
const target* m (t.prerequisite_targets[a].back ());
// For update always return unchanged so we are consistent whether we
// managed to unmatch or now. Note that for clean we may get postponed
// so let's return the actual target state.
//
target_state r (execute_sync (a, *m));
return a == perform_update_id ? target_state::unchanged : r;
};
}
// lib_rule
//
// The whole logic is pretty much as if we had our two group members as
// our prerequisites.
//
// Note also that unlike the obj and libul rules above, we don't need to
// delegate to the default dist rule since any group prerequisites will be
// matched by one of the members (the key difference here is that unlike
// those rules, we insert and match members unconditionally).
//
bool lib_rule::
match (action a, target& xt) const
{
lib& t (xt.as<lib> ());
lmembers bm (a.meta_operation () != dist_id
? link_members (t.root_scope ())
: lmembers {true, true});
t.a = bm.a ? &search<liba> (t, t.dir, t.out, t.name) : nullptr;
t.s = bm.s ? &search<libs> (t, t.dir, t.out, t.name) : nullptr;
return true;
}
recipe lib_rule::
apply (action a, target& xt) const
{
lib& t (xt.as<lib> ());
//@@ outer: also prerequisites (if outer) or not?
const target* m[] = {t.a, t.s};
match_members (a, t, m);
return &perform;
}
target_state lib_rule::
perform (action a, const target& xt)
{
const lib& t (xt.as<lib> ());
const target* m[] = {t.a, t.s};
return execute_members (a, t, m);
}
}
}
|