1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
|
// file : build/target -*- C++ -*-
// copyright : Copyright (c) 2014-2015 Code Synthesis Ltd
// license : MIT; see accompanying LICENSE file
#ifndef BUILD_TARGET
#define BUILD_TARGET
#include <map>
#include <string>
#include <vector>
#include <memory> // unique_ptr
#include <cstddef> // size_t
#include <functional> // function, reference_wrapper
#include <ostream>
#include <cassert>
#include <utility> // move()
#include <iterator>
#include <butl/utility> // compare_c_string
#include <butl/multi-index> // map_iterator_adapter
#include <build/types>
#include <build/variable>
#include <build/operation>
#include <build/target-key>
#include <build/prerequisite>
#include <build/utility> // extension_pool
namespace build
{
class scope;
class target;
// Target state.
//
enum class target_state {unknown, postponed, unchanged, changed, failed};
// Recipe.
//
// The returned target state should be changed, unchanged, or
// postponed. If there is an error, then the recipe should throw
// rather than returning failed.
//
// The recipe execution protocol is as follows: before executing
// the recipe, the caller sets the target's state to failed. If
// the recipe returns normally and the target's state is still
// failed, then the caller sets it to the returned value. This
// means that the recipe can set the target's state manually to
// some other value. For example, setting it to unknown will
// result in the recipe to be executed again if this target is a
// prerequisite of another target. Note that in this case the
// returned by the recipe value is still used (by the caller) as
// the resulting target state for this execution of the recipe.
// Returning postponed from the last call to the recipe means
// that the action could not be executed at this time (see fsdir
// clean for an example).
//
using recipe_function = target_state (action, target&);
using recipe = std::function<recipe_function>;
// Commonly-used recipes. The default recipe executes the action
// on all the prerequisites in a loop, skipping ignored. Specially,
// for actions with the "first" execution mode, it calls
// execute_prerequisites() while for those with the "last" mode --
// reverse_execute_prerequisites(); see <operation>, <algorithm>
// for details.
//
extern const recipe empty_recipe;
extern const recipe noop_recipe;
extern const recipe default_recipe;
target_state
noop_action (action, target&); // Defined in <algorithm>
// Prerequisite references as used in the target::prerequisites list
// below.
//
struct prerequisite_ref: std::reference_wrapper<prerequisite>
{
typedef std::reference_wrapper<prerequisite> base;
using base::base;
// Return true if this reference belongs to the target's prerequisite
// list. Note that this test only works if you use references to
// the container elements and the container hasn't been resized
// since such a reference was obtained. Normally this function is
// used when iterating over a combined prerequisites range (see
// group_prerequisites below).
//
bool
belongs (const target&) const;
};
// Target.
//
class target
{
public:
virtual
~target () = default;
target (const target&) = delete;
target& operator= (const target&) = delete;
target (dir_path d, std::string n, const std::string* e)
: dir (std::move (d)), name (std::move (n)), ext (e) {}
const dir_path dir; // Absolute and normalized.
const std::string name;
const std::string* ext; // Extension, NULL means unspecified,
// empty means no extension.
target* group {nullptr}; // Target group to which this target belongs,
// if any. Note that we assume that the group
// and all its members are in the same scope
// (see, for example, variable lookup).
// We also currently assume that there are
// no multi-level groups.
public:
// Most qualified scope that contains this target.
//
scope&
base_scope () const;
// Root scope of a project that contains this target. Note that
// a target can be out of any (known) project root in which case
// NULL is returned.
//
scope*
root_scope () const;
// Prerequisites.
//
public:
typedef std::vector<prerequisite_ref> prerequisites_type;
prerequisites_type prerequisites;
// Targets to which prerequisites resolve for this recipe. Note
// that unlike prerequisite::target, these can be resolved to
// group members. NULL means the target should be skipped (or
// the rule may simply not add such a target to the list).
//
// Note also that it is possible the target can vary from
// action to action, just like recipes. We don't need to keep
// track of the action here since the targets will be updated
// if the recipe is updated, normally as part of rule::apply().
//
typedef std::vector<target*> prerequisite_targets_type;
prerequisite_targets_type prerequisite_targets;
// Check if there are any prerequisites, taking into account
// group prerequisites.
//
bool
has_prerequisites () const
{
return !prerequisites.empty () ||
(group != nullptr && !group->prerequisites.empty ());
}
// Target-specific variables.
//
public:
variable_map vars;
// Lookup, including in groups to which this target belongs and
// then in outer scopes. If you only want to lookup in this target,
// do it on the the variables map directly.
//
value_proxy
operator[] (const variable&) const;
value_proxy
operator[] (const std::string& name) const
{
return operator[] (variable_pool.find (name));
}
// Return a value_proxy suitable for assignment. See class scope
// for details.
//
value_proxy
assign (const variable& var)
{
return vars.assign (var);
}
value_proxy
assign (const std::string& name)
{
return assign (variable_pool.find (name));
}
// Return a value_proxy suitable for appending. See class scope
// for details.
//
value_proxy
append (const variable&);
value_proxy
append (const std::string& name)
{
return append (variable_pool.find (name));
}
public:
target_state state;
// Number of direct targets that depend on this target in the current
// action. It is incremented during the match phase and then decremented
// during execution, before running the recipe. As a result, the recipe
// can detect the last chance (i.e., last dependent) to execute the
// command (see also the first/last execution modes in <operation>).
//
// Note that setting a new recipe (which happens when we match the rule
// and which in turn is triggered by the first dependent) clears this
// counter. However, if the previous action was the same as the current,
// then the existing recipe is reused. In this case, however, the counter
// should have been decremented to 0 naturally, as part of the previous
// action execution.
//
std::size_t dependents;
public:
typedef build::recipe recipe_type;
const recipe_type&
recipe (action_id a) const {return action_ == a ? recipe_ : empty_recipe;}
void
recipe (action_id a, recipe_type r)
{
assert (action_ != a || !recipe_);
action_ = a;
recipe_ = std::move (r);
// Also reset the target state. If this is a noop recipe, then
// mark the target unchanged so that we don't waste time executing
// the recipe.
//
recipe_function** f (recipe_.target<recipe_function*> ());
state = (f == nullptr || *f != &noop_action)
? target_state::unknown
: target_state::unchanged;
dependents = 0;
}
// Target type info.
//
public:
template <typename T>
T*
is_a () {return dynamic_cast<T*> (this);}
template <typename T>
const T*
is_a () const {return dynamic_cast<const T*> (this);}
virtual const target_type& type () const = 0;
static const target_type static_type;
private:
action_id action_ {0}; // Action id of this recipe.
recipe_type recipe_;
};
std::ostream&
operator<< (std::ostream&, const target&);
// A "range" that presents the prerequisites of a group and one of
// its members as one continuous sequence, or, in other words, as
// if they were in a single container. The group's prerequisites
// come first followed by the member's. If you need to see them
// in the other direction, iterate in reverse, for example:
//
// for (prerequisite_ref& pr: group_prerequisites (t))
//
// for (prerequisite_ref& pr: reverse_iterate (group_prerequisites (t))
//
// Note that in this case the individual elements of each list will
// also be traversed in reverse, but that's what you usually want,
// anyway.
//
class group_prerequisites
{
public:
typedef target::prerequisites_type prerequisites_type;
explicit
group_prerequisites (target& t): t_ (t) {}
struct iterator
{
typedef prerequisites_type::iterator base_iterator;
typedef base_iterator::value_type value_type;
typedef base_iterator::pointer pointer;
typedef base_iterator::reference reference;
typedef base_iterator::difference_type difference_type;
typedef std::bidirectional_iterator_tag iterator_category;
iterator () {}
iterator (target* t, prerequisites_type* c, base_iterator i)
: t_ (t), c_ (c), i_ (i) {}
iterator&
operator++ ()
{
if (++i_ == c_->end () && c_ != &t_->prerequisites)
{
c_ = &t_->prerequisites;
i_ = c_->begin ();
}
return *this;
}
iterator
operator++ (int) {iterator r (*this); return ++r;}
iterator&
operator-- ()
{
if (i_ == c_->begin () && c_ == &t_->prerequisites)
{
c_ = &t_->group->prerequisites;
i_ = c_->end ();
}
--i_;
return *this;
}
iterator
operator-- (int) {iterator r (*this); return --r;}
reference operator* () const {return *i_;}
pointer operator-> () const {return i_.operator -> ();}
friend bool
operator== (const iterator& x, const iterator& y)
{
return x.t_ == y.t_ && x.c_ == y.c_ && x.i_ == y.i_;
}
friend bool
operator!= (const iterator& x, const iterator& y) {return !(x == y);}
private:
target* t_ {nullptr};
prerequisites_type* c_ {nullptr};
prerequisites_type::iterator i_;
};
typedef std::reverse_iterator<iterator> reverse_iterator;
iterator
begin () const
{
auto& c ((t_.group != nullptr && !t_.group->prerequisites.empty ()
? *t_.group : t_).prerequisites);
return iterator (&t_, &c, c.begin ());
}
iterator
end () const
{
auto& c (t_.prerequisites);
return iterator (&t_, &c, c.end ());
}
reverse_iterator
rbegin () const {return reverse_iterator (end ());}
reverse_iterator
rend () const {return reverse_iterator (begin ());}
std::size_t
size () const
{
return t_.prerequisites.size () +
(t_.group != nullptr ? t_.group->prerequisites.size () : 0);
}
private:
target& t_;
};
//
//
struct target_set
{
typedef std::map<target_key, std::unique_ptr<target>> map;
typedef butl::map_iterator_adapter<map::const_iterator> iterator;
iterator
find (const target_key& k, tracer& trace) const;
iterator
find (const target_type& type,
const dir_path& dir,
const std::string& name,
const std::string* ext,
tracer& trace) const
{
const std::string* e (ext);
return find (target_key {&type, &dir, &name, &e}, trace);
}
// As above but ignore the extension and return the target or
// nullptr instead of the iterator.
//
template <typename T>
T*
find (const dir_path& dir, const std::string& name) const
{
const std::string* e (nullptr);
auto i (map_.find (target_key {&T::static_type, &dir, &name, &e}));
return i != map_.end () ? static_cast<T*> (i->second.get ()) : nullptr;
}
iterator begin () const {return map_.begin ();}
iterator end () const {return map_.end ();}
std::pair<target&, bool>
insert (const target_type&,
dir_path dir,
std::string name,
const std::string* ext,
tracer&);
void
clear () {map_.clear ();}
private:
map map_;
};
extern target_set targets;
using target_type_map_base = std::map<
const char*,
std::reference_wrapper<const target_type>,
butl::compare_c_string>;
class target_type_map: public target_type_map_base
{
public:
void
insert (const target_type& tt) {emplace (tt.name, tt);}
using target_type_map_base::find;
// Given a name, figure out its type, taking into account extensions,
// special names (e.g., '.' and '..'), or anything else that might be
// relevant. Also process the name (in place) by extracting the
// extension, adjusting dir/value, etc (note that the dir is not
// necessarily normalized). Return NULL if not found.
//
const target_type*
find (name&, const std::string*& ext) const;
};
extern target_type_map target_types;
// Modification time-based target.
//
class mtime_target: public target
{
public:
using target::target;
timestamp
mtime () const
{
if (mtime_ == timestamp_unknown)
mtime_ = load_mtime ();
return mtime_;
}
void
mtime (timestamp mt) {mtime_ = mt;}
protected:
virtual timestamp
load_mtime () const = 0;
public:
static const target_type static_type;
private:
mutable timestamp mtime_ {timestamp_unknown};
};
// Filesystem path-based target.
//
class path_target: public mtime_target
{
public:
using mtime_target::mtime_target;
typedef build::path path_type;
const path_type&
path () const {return path_;}
void
path (path_type p) {assert (path_.empty ()); path_ = std::move (p);}
// Return a path derived from target's dir, name, and, if specified,
// ext. If ext is not specified, then use default_ext. If name_prefix
// if not NULL, add it before the name part and after the directory.
// Similarly, if name_suffix if not NULL, add it after the name part
// and before the extension.
//
path_type
derived_path (const char* default_ext = nullptr,
const char* name_prefix = nullptr,
const char* name_suffix = nullptr);
public:
static const target_type static_type;
private:
path_type path_;
};
// File target.
//
class file: public path_target
{
public:
using path_target::path_target;
protected:
virtual timestamp
load_mtime () const;
public:
virtual const target_type& type () const {return static_type;}
static const target_type static_type;
};
// Directory alias/action target. Note that it is not mtime-based.
// Rather it is meant to represent a group of targets. For actual
// filesystem directory (creation), see fsdir.
//
class dir: public target
{
public:
using target::target;
public:
virtual const target_type& type () const {return static_type;}
static const target_type static_type;
};
// While a filesystem directory is mtime-based, the semantics is
// not very useful in our case. In particular, if another target
// depends on fsdir{}, then all that's desired is the creation of
// the directory if it doesn't already exist. In particular, we
// don't want to update the target just because some unrelated
// entry was created in that directory.
//
class fsdir: public target
{
public:
using target::target;
public:
virtual const target_type& type () const {return static_type;}
static const target_type static_type;
};
// Common implementation of the target factory and search functions.
//
template <typename T>
target*
target_factory (dir_path d, std::string n, const std::string* e)
{
return new T (std::move (d), std::move (n), e);
}
// The default behavior, that is, look for an existing target in the
// prerequisite's directory scope.
//
target*
search_target (const prerequisite_key&);
// First lookfor an existing target as above. If not found, then look
// for an existing file in the target-type-specific list of paths.
//
target*
search_file (const prerequisite_key&);
}
#include <build/target.ixx>
#endif // BUILD_TARGET
|