aboutsummaryrefslogtreecommitdiff
path: root/build/scope.cxx
blob: 53e3a53d6af6bd1b911581aba93cc5b1f4277c35 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
// file      : build/scope.cxx -*- C++ -*-
// copyright : Copyright (c) 2014-2015 Code Synthesis Ltd
// license   : MIT; see accompanying LICENSE file

#include <build/scope>

#include <build/target>

using namespace std;

namespace build
{
  // scope
  //
  lookup<const value> scope::
  operator[] (const variable& var) const
  {
    const value* r (nullptr);
    const scope* s (this);

    for (; s != nullptr; s = s->parent_scope ())
    {
      if ((r = s->vars.find (var)) != nullptr)
        break;
    }

    return lookup<const value> (r, &s->vars);
  }

  value& scope::
  append (const variable& var)
  {
    auto l (operator[] (var));

    if (l && l.belongs (*this)) // Existing variable in this scope.
      return const_cast<value&> (*l);

    value& r (assign (var));

    if (l)
      r = *l; // Copy value from the outer scope.

    return r;
  }

  const target_type* scope::
  find_target_type (const char* tt, const scope** rs) const
  {
    // Search scopes outwards, stopping at the project root.
    //
    for (const scope* s (this);
         s != nullptr;
         s = s->root () ? global_scope : s->parent_scope ())
    {
      if (s->target_types.empty ())
        continue;

      auto i (s->target_types.find (tt));

      if (i != s->target_types.end ())
      {
        if (rs != nullptr)
          *rs = s;

        return &i->second.get ();
      }
    }

    return nullptr;
  }

  const target_type* scope::
  find_target_type (name& n, const string*& ext) const
  {
    ext = nullptr;

    string& v (n.value);

    // First determine the target type.
    //
    const char* tt;
    if (n.untyped ())
    {
      // Empty name or '.' and '..' signify a directory.
      //
      if (v.empty () || v == "." || v == "..")
        tt = "dir";
      else
        //@@ TODO: derive type from extension.
        //
        tt = "file";
    }
    else
      tt = n.type.c_str ();

    const target_type* r (find_target_type (tt));

    if (r == nullptr)
      return r;

    // Directories require special name processing. If we find that more
    // targets deviate, then we should make this target-type-specific.
    //
    if (r->is_a<dir> () || r->is_a<fsdir> ())
    {
      // The canonical representation of a directory name is with empty
      // value.
      //
      if (!v.empty ())
      {
        n.dir /= dir_path (v); // Move name value to dir.
        v.clear ();
      }
    }
    else
    {
      // Split the path into its directory part (if any) the name part,
      // and the extension (if any). We cannot assume the name part is
      // a valid filesystem name so we will have to do the splitting
      // manually.
      //
      path::size_type i (path::traits::rfind_separator (v));

      if (i != string::npos)
      {
        n.dir /= dir_path (v, i != 0 ? i : 1); // Special case: "/".
        v = string (v, i + 1, string::npos);
      }

      // Extract the extension.
      //
      string::size_type j (path::traits::find_extension (v));

      if (j != string::npos)
      {
        ext = &extension_pool.find (v.c_str () + j + 1);
        v.resize (j);
      }
    }

    return r;
  }

  // scope_map
  //
  scope_map scopes;
  scope* global_scope;

  auto scope_map::
  insert (const dir_path& k, scope* ns, bool parent, bool root) -> iterator
  {
    auto er (map_.emplace (k, nullptr));
    scope*& ps (er.first->second);

    if (er.second)
      ps = ns == nullptr ? new scope : ns;
    else if (ns != nullptr && ps != ns)
    {
      assert (ps->out_path_ == nullptr || ps->src_path_ == nullptr);

      if (!ps->empty ())
        fail << "attempt to replace non-empty scope " << k;

      // Un-parent ourselves. We will becomes a new parent below,
      // if requested by the caller.
      //
      auto r (map_.find_prefix (k)); // The first entry is ourselves.
      for (++r.first; r.first != r.second; ++r.first)
      {
        scope& c (*r.first->second);

        if (c.parent_ == ps) // No intermediate parent.
          c.parent_ = ps->parent_;
      }

      delete ps;
      ps = ns;
      er.second = true;
    }

    scope& s (*ps);

    if (parent)
    {
      if (er.second)
      {
        scope* p (nullptr);

        // Update scopes of which we are a new parent/root (unless this
        // is the global scope). Also find our parent while at it.
        //
        if (map_.size () > 1)
        {
          // The first entry is ourselves.
          //
          auto r (map_.find_prefix (k));
          for (++r.first; r.first != r.second; ++r.first)
          {
            scope& c (*r.first->second);

            // The child-parent relationship is based on the out hierarchy,
            // thus the extra check.
            //
            if (c.out_path_ != nullptr && !c.out_path_->sub (k))
              continue;

            // The first scope of which we are a parent is the least
            // (shortest) one which means there is no other scope
            // between it and our parent.
            //
            if (p == nullptr)
              p = c.parent_;

            if (root && c.root_ == p->root_) // No intermediate root.
              c.root_ = &s;

            if (p == c.parent_) // No intermediate parent.
              c.parent_ = &s;
          }

          // We couldn't get the parent from one of its old children
          // so we have to find it ourselves.
          //
          if (p == nullptr)
            p = &find (k.directory ());
        }

        s.parent_ = p;
        s.root_ = root ? &s : (p != nullptr ? p->root_ : nullptr);
      }
      else if (root && !s.root ())
      {
        // Upgrade to root scope.
        //
        auto r (map_.find_prefix (k));
        for (++r.first; r.first != r.second; ++r.first)
        {
          scope& c (*r.first->second);

          if (c.root_ == s.root_) // No intermediate root.
            c.root_ = &s;
        }

        s.root_ = &s;
      }
    }
    else
      assert (s.parent_ != nullptr);

    return er.first;
  }

  // Find the most qualified scope that encompasses this path.
  //
  scope& scope_map::
  find (const dir_path& k) const
  {
    // Normally we would have a scope for the full path so try
    // that before making any copies.
    //
    auto i (map_.find (k)), e (map_.end ());

    if (i != e)
      return *i->second;

    for (dir_path d (k.directory ());; d = d.directory ())
    {
      auto i (map_.find (d));

      if (i != e)
        return *i->second;

      assert (!d.empty ()); // We should have the global scope.
    }
  }

  void scope_map::
  clear ()
  {
    for (auto& p: map_)
    {
      scope* s (p.second);

      if (s->out_path_ == &p.first)
        s->out_path_ = nullptr;

      if (s->src_path_ == &p.first)
        s->src_path_ = nullptr;

      if (s->out_path_ == nullptr && s->src_path_ == nullptr)
        delete s;
    }

    map_.clear ();
  }
}