aboutsummaryrefslogtreecommitdiff
path: root/build/cxx/rule.cxx
blob: 956463803911c808122636bf46243ad8f7558994 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
// file      : build/cxx/rule.cxx -*- C++ -*-
// copyright : Copyright (c) 2014-2015 Code Synthesis Ltd
// license   : MIT; see accompanying LICENSE file

#include <build/cxx/rule>

#include <string>
#include <vector>
#include <cstddef>  // size_t
#include <cstdlib>  // exit
#include <utility>  // move()

#include <butl/process>
#include <butl/utility>  // reverse_iterate
#include <butl/fdstream>
#include <butl/optional>

#include <build/scope>
#include <build/variable>
#include <build/algorithm>
#include <build/diagnostics>
#include <build/context>

#include <build/bin/target>
#include <build/cxx/target>

using namespace std;
using namespace butl;

namespace build
{
  namespace cxx
  {
    using namespace bin;

    // T is either target or scope.
    //
    template <typename T>
    static void
    append_options (vector<const char*>& args, T& s, const char* var)
    {
      if (auto val = s[var])
      {
        for (const name& n: val.template as<const list_value&> ())
        {
          if (!n.type.empty () || !n.dir.empty ())
            fail << "expected option instead of " << n <<
              info << "in variable " << var;

          args.push_back (n.value.c_str ());
        }
      }
    }

    static void
    append_std (vector<const char*>& args, target& t, string& opt)
    {
      if (auto val = t["cxx.std"])
      {
        const string& v (val.as<const string&> ());

        // Translate 11 to 0x and 14 to 1y for compatibility with
        // older versions of the compiler.
        //
        opt = "-std=c++";

        if (v == "11")
          opt += "0x";
        else if (v == "14")
          opt += "1y";
        else
          opt += v;

        args.push_back (opt.c_str ());
      }
    }

    // Append library options from one of the cxx.export.* variables
    // recursively, prerequisite libraries first.
    //
    static void
    append_lib_options (vector<const char*>& args, target& l, const char* var)
    {
      for (target* t: l.prerequisite_targets)
      {
        if (t != nullptr &&
            (t->is_a<lib> () || t->is_a<liba> () || t->is_a<libso> ()))
          append_lib_options (args, *t, var);
      }

      append_options (args, l, var);
    }

    // compile
    //
    void* compile::
    match (action a, target& t, const string&) const
    {
      tracer trace ("cxx::compile::match");

      // @@ TODO:
      //
      // - check prerequisites: single source file
      // - check prerequisites: the rest are headers (other ignorable?)
      // - if path already assigned, verify extension?
      //

      // See if we have a C++ source file. Iterate in reverse so that
      // a source file specified for an obj member overrides the one
      // specified for the group.
      //
      for (prerequisite& p: reverse_iterate (group_prerequisites (t)))
      {
        if (p.type.id == typeid (cxx))
          return &p;
      }

      level3 ([&]{trace << "no c++ source file for target " << t;});
      return nullptr;
    }

    recipe compile::
    apply (action a, target& xt, void* v) const
    {
      path_target& t (static_cast<path_target&> (xt));

      // Derive file name from target name.
      //
      if (t.path ().empty ())
      {
        if (t.is_a <obja> ())
          t.path (t.derived_path ("o"));
        else
          t.path (t.derived_path ("o", nullptr, "-so"));
      }

      // Inject dependency on the output directory.
      //
      inject_parent_fsdir (a, t);

      // Search and match all the existing prerequisites. The injection
      // code (below) takes care of the ones it is adding.
      //
      // When cleaning, ignore prerequisites that are not in the same
      // or a subdirectory of ours.
      //
      for (prerequisite& p: group_prerequisites (t))
      {
        target& pt (search (p));

        if (a.operation () == clean_id && !pt.dir.sub (t.dir))
          continue;

        build::match (a, pt);

        // A dependency on a library is there so that we can get its
        // cxx.export.poptions. In particular, making sure it is
        // executed before us will only restrict parallelism. But we
        // do need to match it in order to get its prerequisite_targets
        // populated; see append_lib_options() above.
        //
        if (pt.is_a<lib> () || pt.is_a<liba> () || pt.is_a<libso> ())
          continue;

        t.prerequisite_targets.push_back (&pt);
      }

      // Inject additional prerequisites. For now we only do it for
      // update and default.
      //
      if (a.operation () == update_id || a.operation () == default_id)
      {
        // The cached prerequisite target (sp.target) should be the
        // same as what is in t.prerequisite_targets since we used
        // standard search_and_match() above.
        //
        prerequisite& sp (*static_cast<prerequisite*> (v));
        cxx& st (dynamic_cast<cxx&> (*sp.target));

        if (st.mtime () != timestamp_nonexistent)
          inject_prerequisites (a, t, st, sp.scope);
      }

      switch (a)
      {
      case perform_update_id: return &perform_update;
      case perform_clean_id: return &perform_clean;
      default: return default_recipe; // Forward to prerequisites.
      }
    }

    // Return the next make prerequisite starting from the specified
    // position and update position to point to the start of the
    // following prerequisite or l.size() if there are none left.
    //
    static string
    next (const string& l, size_t& p)
    {
      size_t n (l.size ());

      // Skip leading spaces.
      //
      for (; p != n && l[p] == ' '; p++) ;

      // Lines containing multiple prerequisites are 80 characters max.
      //
      string r;
      r.reserve (n);

      // Scan the next prerequisite while watching out for escape sequences.
      //
      for (; p != n && l[p] != ' '; p++)
      {
        char c (l[p]);

        if (c == '\\')
          c = l[++p];

        r += c;
      }

      // Skip trailing spaces.
      //
      for (; p != n && l[p] == ' '; p++) ;

      // Skip final '\'.
      //
      if (p == n - 1 && l[p] == '\\')
        p++;

      return r;
    }

    void compile::
    inject_prerequisites (action a, target& t, const cxx& s, scope& ds) const
    {
      tracer trace ("cxx::compile::inject_prerequisites");

      scope& rs (*t.root_scope ()); // Shouldn't have matched if nullptr.
      const string& cxx (rs["config.cxx"].as<const string&> ());

      vector<const char*> args {cxx.c_str ()};

      // Add cxx.export.poptions from prerequisite libraries.
      //
      for (prerequisite& p: group_prerequisites (t))
      {
        target& pt (*p.target); // Already searched and matched.

        if (pt.is_a<lib> () || pt.is_a<liba> () || pt.is_a<libso> ())
          append_lib_options (args, pt, "cxx.export.poptions");
      }

      append_options (args, t, "cxx.poptions");

      // @@ Some C++ options (e.g., -std, -m) affect the preprocessor.
      // Or maybe they are not C++ options? Common options?
      //
      append_options (args, t, "cxx.coptions");

      string std; // Storage.
      append_std (args, t, std);

      if (t.is_a<objso> ())
        args.push_back ("-fPIC");

      args.push_back ("-MM"); // @@ Change to -M
      args.push_back ("-MG"); // Treat missing headers as generated.
      args.push_back ("-MQ"); // Quoted target name.
      args.push_back ("*");   // Old versions can't handle empty target name.

      // We are using absolute source file path in order to get
      // absolute paths in the result. Any relative paths in the
      // result are non-existent generated headers.
      //
      // @@ We will also have to use absolute -I paths to guarantee
      // that.
      //
      args.push_back (s.path ().string ().c_str ());

      args.push_back (nullptr);

      if (verb >= 2)
        print_process (args);

      level5 ([&]{trace << "target: " << t;});

      try
      {
        process pr (args.data (), false, false, true);
        ifdstream is (pr.in_ofd);

        for (bool first (true); !is.eof (); )
        {
          string l;
          getline (is, l);

          if (is.fail () && !is.eof ())
            fail << "io error while parsing g++ -M output";

          size_t pos (0);

          if (first)
          {
            // Empty output should mean the wait() call below will return
            // false.
            //
            if (l.empty ())
              break;

            assert (l[0] == '*' && l[1] == ':' && l[2] == ' ');
            next (l, (pos = 3)); // Skip the source file.

            first = false;
          }

          while (pos != l.size ())
          {
            path f (next (l, pos));
            f.normalize ();

            if (!f.absolute ())
            {
              level5 ([&]{trace << "skipping generated/non-existent " << f;});
              continue;
            }

            level5 ([&]{trace << "injecting " << f;});

            // Split the name into its directory part, the name part, and
            // extension. Here we can assume the name part is a valid
            // filesystem name.
            //
            // Note that if the file has no extension, we record an empty
            // extension rather than NULL (which would signify that the
            // default extension needs to be added).
            //
            dir_path d (f.directory ());
            string n (f.leaf ().base ().string ());
            const char* es (f.extension ());
            const string* e (&extension_pool.find (es != nullptr ? es : ""));

            // Find or insert prerequisite.
            //
            // If there is no extension (e.g., standard C++ headers),
            // then assume it is a header. Otherwise, let the standard
            // mechanism derive the type from the extension. @@ TODO.
            //
            prerequisite& p (
              ds.prerequisites.insert (
                hxx::static_type, move (d), move (n), e, ds, trace).first);

            // Add to our prerequisites list.
            //
            t.prerequisites.emplace_back (p);

            // Resolve to target.
            //
            path_target& pt (dynamic_cast<path_target&> (search (p)));

            // Assign path.
            //
            if (pt.path ().empty ())
              pt.path (move (f));

            // Match to a rule.
            //
            build::match (a, pt);

            // Add to our resolved target list.
            //
            t.prerequisite_targets.push_back (&pt);
          }
        }

        // We assume the child process issued some diagnostics.
        //
        if (!pr.wait ())
          throw failed ();
      }
      catch (const process_error& e)
      {
        error << "unable to execute " << args[0] << ": " << e.what ();

        // In a multi-threaded program that fork()'ed but did not exec(),
        // it is unwise to try to do any kind of cleanup (like unwinding
        // the stack and running destructors).
        //
        if (e.child ())
          exit (1);

        throw failed ();
      }
    }

    target_state compile::
    perform_update (action a, target& xt)
    {
      path_target& t (static_cast<path_target&> (xt));
      cxx* s (execute_prerequisites<cxx> (a, t, t.mtime ()));

      if (s == nullptr)
        return target_state::unchanged;

      // Translate paths to relative (to working directory) ones. This
      // results in easier to read diagnostics.
      //
      path relo (relative (t.path ()));
      path rels (relative (s->path ()));

      scope& rs (*t.root_scope ()); // Shouldn't have matched if nullptr.
      const string& cxx (rs["config.cxx"].as<const string&> ());

      vector<const char*> args {cxx.c_str ()};

      // Add cxx.export.poptions from prerequisite libraries.
      //
      for (prerequisite& p: group_prerequisites (t))
      {
        target& pt (*p.target); // Already searched and matched.

        if (pt.is_a<lib> () || pt.is_a<liba> () || pt.is_a<libso> ())
          append_lib_options (args, pt, "cxx.export.poptions");
      }

      append_options (args, t, "cxx.poptions");
      append_options (args, t, "cxx.coptions");

      string std; // Storage.
      append_std (args, t, std);

      if (t.is_a<objso> ())
        args.push_back ("-fPIC");

      args.push_back ("-o");
      args.push_back (relo.string ().c_str ());

      args.push_back ("-c");
      args.push_back (rels.string ().c_str ());

      args.push_back (nullptr);

      if (verb)
        print_process (args);
      else
        text << "c++ " << *s;

      try
      {
        process pr (args.data ());

        if (!pr.wait ())
          throw failed ();

        // Should we go to the filesystem and get the new mtime? We
        // know the file has been modified, so instead just use the
        // current clock time. It has the advantage of having the
        // subseconds precision.
        //
        t.mtime (system_clock::now ());
        return target_state::changed;
      }
      catch (const process_error& e)
      {
        error << "unable to execute " << args[0] << ": " << e.what ();

        // In a multi-threaded program that fork()'ed but did not exec(),
        // it is unwise to try to do any kind of cleanup (like unwinding
        // the stack and running destructors).
        //
        if (e.child ())
          exit (1);

        throw failed ();
      }
    }

    // link
    //
    inline link::type link::
    link_type (target& t)
    {
      return t.is_a<exe> () ? type::e : (t.is_a<liba> () ? type::a : type::so);
    }

    link::order link::
    link_order (target& t)
    {
      const char* var;

      switch (link_type (t))
      {
      case type::e:  var = "bin.exe.lib";   break;
      case type::a:  var = "bin.liba.lib";  break;
      case type::so: var = "bin.libso.lib"; break;
      }

      const list_value& lv (t[var].as<const list_value&> ());
      return lv[0].value == "shared"
        ? lv.size () > 1 && lv[1].value == "static" ? order::so_a : order::so
        : lv.size () > 1 && lv[1].value == "shared" ? order::a_so : order::a;
    }

    void* link::
    match (action a, target& t, const string& hint) const
    {
      tracer trace ("cxx::link::match");

      // @@ TODO:
      //
      // - check prerequisites: object files, libraries
      // - if path already assigned, verify extension?
      //
      // @@ Q:
      //
      // - if there is no .o, are we going to check if the one derived
      //   from target exist or can be built? A: No.
      //   What if there is a library. Probably ok if .a, not if .so.
      //   (i.e., a utility library).
      //

      bool so (t.is_a<libso> ());

      // Scan prerequisites and see if we can work with what we've got.
      //
      bool seen_cxx (false), seen_c (false), seen_obj (false),
        seen_lib (false);

      for (prerequisite& p: group_prerequisites (t))
      {
        if (p.type.id == typeid (cxx)) // @@ Should use is_a (add to p.type).
        {
          seen_cxx = seen_cxx || true;
        }
        else if (p.type.id == typeid (c))
        {
          seen_c = seen_c || true;
        }
        else if (p.type.id == typeid (obja))
        {
          if (so)
            fail << "shared library " << t << " prerequisite " << p
                 << " is static object";

          seen_obj = seen_obj || true;
        }
        else if (p.type.id == typeid (objso) || p.type.id == typeid (obj))
        {
          seen_obj = seen_obj || true;
        }
        else if (p.type.id == typeid (liba)  ||
                 p.type.id == typeid (libso) ||
                 p.type.id == typeid (lib))
        {
          seen_lib = seen_lib || true;
        }
        else if (p.type.id != typeid (fsdir))
        {
          level3 ([&]{trace << "unexpected prerequisite type " << p.type;});
          return nullptr;
        }
      }

      // We will only chain a C source if there is also a C++ source or we
      // were explicitly told to.
      //
      if (seen_c && !seen_cxx && hint < "cxx")
      {
        level3 ([&]{trace << "c prerequisite(s) without c++ or hint";});
        return nullptr;
      }

      return seen_cxx || seen_c || seen_obj || seen_lib ? &t : nullptr;
    }

    recipe link::
    apply (action a, target& xt, void*) const
    {
      tracer trace ("cxx::link::apply");

      path_target& t (static_cast<path_target&> (xt));

      type lt (link_type (t));
      bool so (lt == type::so);
      optional<order> lo; // Link-order.

      // Derive file name from target name.
      //
      if (t.path ().empty ())
      {
        switch (lt)
        {
        case type::e:  t.path (t.derived_path (           )); break;
        case type::a:  t.path (t.derived_path ("a",  "lib")); break;
        case type::so: t.path (t.derived_path ("so", "lib")); break;
        }
      }

      // Inject dependency on the output directory.
      //
      inject_parent_fsdir (a, t);

      // We may need the project roots for rule chaining (see below).
      // We will resolve them lazily only if needed.
      //
      scope* root (nullptr);
      const dir_path* out_root (nullptr);
      const dir_path* src_root (nullptr);

      // Process prerequisites: do rule chaining for C and C++ source
      // files as well as search and match.
      //
      for (prerequisite_ref& pr: group_prerequisites (t))
      {
        bool group (!pr.belongs (t)); // Target group's prerequisite.

        prerequisite& p (pr);
        target* pt (nullptr);

        if (!p.is_a<c> () && !p.is_a<cxx> ())
        {
          // The same basic logic as in search_and_match().
          //
          pt = &search (p);

          if (a.operation () == clean_id && !pt->dir.sub (t.dir))
            continue; // Skip.

          // If this is the obj{} or lib{} target group, then pick the
          // appropriate member and make sure it is searched and matched.
          //
          if (obj* o = pt->is_a<obj> ())
          {
            pt = so ? static_cast<target*> (o->so) : o->a;

            if (pt == nullptr)
              pt = &search (so ? objso::static_type : obja::static_type,
                            p.dir, p.name, p.ext, &p.scope);
          }
          else if (lib* l = pt->is_a<lib> ())
          {
            // Determine the library type to link.
            //
            bool lso (true);
            const string& at ((*l)["bin.lib"].as<const string&> ());

            if (!lo)
              lo = link_order (t);

            switch (*lo)
            {
            case order::a:
            case order::a_so:
              lso = false; // Fall through.
            case order::so:
            case order::so_a:
              {
                if (lso ? at == "static" : at == "shared")
                {
                  if (*lo == order::a_so || *lo == order::so_a)
                    lso = !lso;
                  else
                    fail << (lso ? "shared" : "static") << " build of " << *l
                         << " is not available";
                }
              }
            }

            pt = lso ? static_cast<target*> (l->so) : l->a;

            if (pt == nullptr)
              pt = &search (lso ? libso::static_type : liba::static_type,
                            p.dir, p.name, p.ext, &p.scope);
          }

          build::match (a, *pt);
          t.prerequisite_targets.push_back (pt);
          continue;
        }

        if (root == nullptr)
        {
          // Which scope shall we use to resolve the root? Unlikely,
          // but possible, the prerequisite is from a different project
          // altogether. So we are going to use the target's project.
          //
          root = t.root_scope ();
          assert (root != nullptr); // Otherwise shouldn't have matched.
          out_root = &root->path ();
          src_root = &root->src_path ();
        }

        prerequisite& cp (p); // c(xx){} prerequisite.
        const target_type& o_type (
          group
          ? obj::static_type
          : (so ? objso::static_type : obja::static_type));

        // Come up with the obj*{} target. The c(xx){} prerequisite
        // directory can be relative (to the scope) or absolute. If it is
        // relative, then use it as is. If it is absolute, then translate
        // it to the corresponding directory under out_root. While the
        // c(xx){} directory is most likely under src_root, it is also
        // possible it is under out_root (e.g., generated source).
        //
        dir_path d;
        if (cp.dir.relative () || cp.dir.sub (*out_root))
          d = cp.dir;
        else
        {
          if (!cp.dir.sub (*src_root))
            fail << "out of project prerequisite " << cp <<
              info << "specify corresponding " << o_type.name << "{} "
                 << "target explicitly";

          d = *out_root / cp.dir.leaf (*src_root);
        }

        target& ot (search (o_type, d, cp.name, nullptr, &cp.scope));

        // If we are cleaning, check that this target is in the same or
        // a subdirectory of ours.
        //
        if (a.operation () == clean_id && !ot.dir.sub (t.dir))
        {
          // If we shouldn't clean obj{}, then it is fair to assume
          // we shouldn't clean cxx{} either (generated source will
          // be in the same directory as obj{} and if not, well, go
          // find yourself another build system ;-)).
          //
          continue; // Skip.
        }

        // If we have created the obj{} target group, pick one of its
        // members; the rest would be primarily concerned with it.
        //
        if (group)
        {
          obj& o (static_cast<obj&> (ot));
          pt = so ? static_cast<target*> (o.so) : o.a;

          if (pt == nullptr)
            pt = &search (so ? objso::static_type : obja::static_type,
                          o.dir, o.name, o.ext, nullptr);
        }
        else
          pt = &ot;

        // If this obj*{} target already exists, then it needs to be
        // "compatible" with what we are doing here.
        //
        // This gets a bit tricky. We need to make sure the source files
        // are the same which we can only do by comparing the targets to
        // which they resolve. But we cannot search the ot's prerequisites
        // -- only the rule that matches can. Note, however, that if all
        // this works out, then our next step is to match the obj*{}
        // target. If things don't work out, then we fail, in which case
        // searching and matching speculatively doesn't really hurt.
        //
        prerequisite* cp1 (nullptr);
        for (prerequisite& p: reverse_iterate (group_prerequisites (*pt)))
        {
          // Ignore some known target types (fsdir, headers, libraries).
          //
          if (p.is_a<fsdir> () ||
              p.is_a<h> ()     ||
              (cp.is_a<cxx> () && (p.is_a<hxx> () ||
                                   p.is_a<ixx> () ||
                                   p.is_a<txx> ())) ||
              p.is_a<lib> ()  ||
              p.is_a<liba> () ||
              p.is_a<libso> ())
            continue;

          if (p.is_a<cxx> ())
          {
            cp1 = &p;
            continue; // Check the rest of the prerequisites.
          }

          fail << "synthesized target for prerequisite " << cp
               << " would be incompatible with existing target " << *pt <<
            info << "unknown existing prerequisite type " << p <<
            info << "specify corresponding obj{} target explicitly";
        }

        if (cp1 != nullptr)
        {
          build::match (a, *pt); // Now cp1 should be resolved.
          search (cp);           // Our own prerequisite, so this is ok.

          if (cp.target != cp1->target)
            fail << "synthesized target for prerequisite " << cp
                 << " would be incompatible with existing target " << *pt <<
              info << "existing prerequisite " << *cp1 << " does not "
                 << "match " << cp <<
              info << "specify corresponding " << o_type.name << "{} "
                 << "target explicitly";
        }
        else
        {
          // Note: add the source to the group, not the member.
          //
          ot.prerequisites.emplace_back (cp);

          // Add our lib*{} prerequisites to the object file (see
          // cxx.export.poptions above for details).
          //
          // Initially, we were only adding imported libraries, but
          // there is a problem with this approach: the non-imported
          // library might depend on the imported one(s) which we will
          // never "see" unless we start with this library.
          //
          for (prerequisite& p: group_prerequisites (t))
          {
            if (p.is_a<lib> () || p.is_a<liba> () || p.is_a<libso> ())
              ot.prerequisites.emplace_back (p);
          }

          build::match (a, *pt);
        }

        t.prerequisite_targets.push_back (pt);
      }

      switch (a)
      {
      case perform_update_id: return &perform_update;
      case perform_clean_id: return &perform_clean;
      default: return default_recipe; // Forward to prerequisites.
      }
    }

    target_state link::
    perform_update (action a, target& xt)
    {
      path_target& t (static_cast<path_target&> (xt));

      type lt (link_type (t));
      bool so (lt == type::so);

      if (!execute_prerequisites (a, t, t.mtime ()))
        return target_state::unchanged;

      // Translate paths to relative (to working directory) ones. This
      // results in easier to read diagnostics.
      //
      path relt (relative (t.path ()));

      scope& rs (*t.root_scope ()); // Shouldn't have matched if nullptr.
      vector<const char*> args;
      string storage1;

      if (lt == type::a)
      {
        //@@ ranlib
        //
        args.push_back ("ar");
        args.push_back ("-rc");
        args.push_back (relt.string ().c_str ());
      }
      else
      {
        args.push_back (rs["config.cxx"].as<const string&> ().c_str ());

        append_options (args, t, "cxx.coptions");

        append_std (args, t, storage1);

        if (so)
          args.push_back ("-shared");

        args.push_back ("-o");
        args.push_back (relt.string ().c_str ());

        append_options (args, t, "cxx.loptions");
      }

      // Reserve enough space so that we don't reallocate. Reallocating
      // means pointers to elements may no longer be valid.
      //
      vector<path> relo;
      relo.reserve (t.prerequisite_targets.size ());

      for (target* pt: t.prerequisite_targets)
      {
        path_target* ppt;

        if ((ppt = pt->is_a<obja> ()))
          ;
        else if ((ppt = pt->is_a<objso> ()))
          ;
        else if ((ppt = pt->is_a<liba> ()))
          ;
        else if ((ppt = pt->is_a<libso> ()))
        {
          // Use absolute path for the shared libraries since that's
          // the path the runtime loader will use to try to find it.
          // This is probably temporary until we get into the whole
          // -soname/-rpath mess.
          //
          args.push_back (ppt->path ().string ().c_str ());
          continue;
        }
        else
          continue;

        relo.push_back (relative (ppt->path ()));
        args.push_back (relo.back ().string ().c_str ());
      }

      if (lt != type::a)
        append_options (args, t, "cxx.libs");

      args.push_back (nullptr);

      if (verb)
        print_process (args);
      else
        text << "ld " << t;

      try
      {
        process pr (args.data ());

        if (!pr.wait ())
          throw failed ();

        // Should we go to the filesystem and get the new mtime? We
        // know the file has been modified, so instead just use the
        // current clock time. It has the advantage of having the
        // subseconds precision.
        //
        t.mtime (system_clock::now ());
        return target_state::changed;
      }
      catch (const process_error& e)
      {
        error << "unable to execute " << args[0] << ": " << e.what ();

        // In a multi-threaded program that fork()'ed but did not exec(),
        // it is unwise to try to do any kind of cleanup (like unwinding
        // the stack and running destructors).
        //
        if (e.child ())
          exit (1);

        throw failed ();
      }
    }
  }
}