1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
|
// file : build/cxx/rule.cxx -*- C++ -*-
// copyright : Copyright (c) 2014-2015 Code Synthesis Ltd
// license : MIT; see accompanying LICENSE file
#include <build/cxx/rule>
#include <map>
#include <string>
#include <vector>
#include <cstddef> // size_t
#include <cstdlib> // exit
#include <utility> // move()
#include <butl/process>
#include <butl/utility> // reverse_iterate
#include <butl/fdstream>
#include <butl/optional>
#include <butl/path-map>
#include <build/scope>
#include <build/variable>
#include <build/algorithm>
#include <build/diagnostics>
#include <build/context>
#include <build/bin/target>
#include <build/cxx/target>
#include <build/config/utility>
using namespace std;
using namespace butl;
namespace build
{
namespace cxx
{
using namespace bin;
using config::append_options;
static void
append_std (vector<const char*>& args, target& t, string& opt)
{
if (auto val = t["cxx.std"])
{
const string& v (val.as<const string&> ());
// Translate 11 to 0x and 14 to 1y for compatibility with
// older versions of the compiler.
//
opt = "-std=c++";
if (v == "11")
opt += "0x";
else if (v == "14")
opt += "1y";
else
opt += v;
args.push_back (opt.c_str ());
}
}
// Append library options from one of the cxx.export.* variables
// recursively, prerequisite libraries first.
//
static void
append_lib_options (vector<const char*>& args, target& l, const char* var)
{
for (target* t: l.prerequisite_targets)
{
if (t->is_a<lib> () || t->is_a<liba> () || t->is_a<libso> ())
append_lib_options (args, *t, var);
}
append_options (args, l, var);
}
// compile
//
match_result compile::
match (action a, target& t, const string&) const
{
tracer trace ("cxx::compile::match");
// @@ TODO:
//
// - check prerequisites: single source file
// - check prerequisites: the rest are headers (other ignorable?)
// - if path already assigned, verify extension?
//
// See if we have a C++ source file. Iterate in reverse so that
// a source file specified for an obj*{} member overrides the one
// specified for the group. Also "see through" groups.
//
for (prerequisite_member p: reverse_group_prerequisite_members (a, t))
{
if (p.is_a<cxx> ())
return p;
}
level3 ([&]{trace << "no c++ source file for target " << t;});
return nullptr;
}
static void
inject_prerequisites (action, target&, cxx&, scope&);
recipe compile::
apply (action a, target& xt, const match_result& mr) const
{
path_target& t (static_cast<path_target&> (xt));
// Derive file name from target name.
//
if (t.path ().empty ())
t.derive_path ("o", nullptr, (t.is_a<objso> () ? "-so" : nullptr));
// Inject dependency on the output directory.
//
inject_parent_fsdir (a, t);
// Search and match all the existing prerequisites. The injection
// code (below) takes care of the ones it is adding.
//
// When cleaning, ignore prerequisites that are not in the same
// or a subdirectory of ours.
//
for (prerequisite_member p: group_prerequisite_members (a, t))
{
target& pt (p.search ());
if (a.operation () == clean_id && !pt.dir.sub (t.dir))
continue;
build::match (a, pt);
// A dependency on a library is there so that we can get its
// cxx.export.poptions. In particular, making sure it is
// executed before us will only restrict parallelism. But we
// do need to match it in order to get its prerequisite_targets
// populated; see append_lib_options() above.
//
if (pt.is_a<lib> () || pt.is_a<liba> () || pt.is_a<libso> ())
continue;
t.prerequisite_targets.push_back (&pt);
}
// Inject additional prerequisites. We only do it for update
// since chances are we will have to update some of our
// prerequisites in the process (auto-generated source code).
//
if (a.operation () == update_id)
{
// The cached prerequisite target should be the same as what
// is in t.prerequisite_targets since we used standard
// search() and match() above.
//
// @@ Ugly.
//
cxx& st (
dynamic_cast<cxx&> (
mr.target != nullptr ? *mr.target : *mr.prerequisite->target));
inject_prerequisites (a, t, st, mr.prerequisite->scope);
}
switch (a)
{
case perform_update_id: return &perform_update;
case perform_clean_id: return &perform_clean;
default: return default_recipe; // Forward to prerequisites.
}
}
// The strings used as the map key should be from the extension_pool.
// This way we can just compare pointers.
//
using ext_map = map<const string*, const target_type*>;
static ext_map
build_ext_map (scope& r)
{
ext_map m;
if (auto val = r["h.ext"])
m[&extension_pool.find (val.as<const string&> ())] = &h::static_type;
if (auto val = r["c.ext"])
m[&extension_pool.find (val.as<const string&> ())] = &c::static_type;
if (auto val = r["hxx.ext"])
m[&extension_pool.find (val.as<const string&> ())] = &hxx::static_type;
if (auto val = r["ixx.ext"])
m[&extension_pool.find (val.as<const string&> ())] = &ixx::static_type;
if (auto val = r["txx.ext"])
m[&extension_pool.find (val.as<const string&> ())] = &txx::static_type;
if (auto val = r["cxx.ext"])
m[&extension_pool.find (val.as<const string&> ())] = &cxx::static_type;
return m;
}
// Mapping of include prefixes (e.g., foo in <foo/bar>) for auto-
// generated headers to directories where they will be generated.
//
// We are using a prefix map of directories (dir_path_map) instead
// of just a map in order also cover sub-paths (e.g., <foo/more/bar>
// if we continue with the example). Specifically, we need to make
// sure we don't treat foobar as a sub-directory of foo.
//
// @@ The keys should be canonicalized.
//
using prefix_map = dir_path_map<dir_path>;
static void
append_prefixes (prefix_map& m, target& t, const char* var)
{
tracer trace ("cxx::append_prefixes");
const dir_path& out_base (t.dir);
const dir_path& out_root (t.root_scope ().path ());
if (auto val = t[var])
{
const list_value& l (val.template as<const list_value&> ());
// Assume the names have already been vetted by append_options().
//
for (auto i (l.begin ()), e (l.end ()); i != e; ++i)
{
// -I can either be in the -Ifoo or -I foo form.
//
dir_path d;
if (i->value == "-I")
{
if (++i == e)
break; // Let the compiler complain.
d = i->simple () ? dir_path (i->value) : i->dir;
}
else if (i->value.compare (0, 2, "-I") == 0)
d = dir_path (i->value, 2, string::npos);
else
continue;
level5 ([&]{trace << "-I '" << d << "'";});
// If we are relative or not inside our project root, then
// ignore.
//
if (d.relative () || !d.sub (out_root))
continue;
// If the target directory is a sub-directory of the include
// directory, then the prefix is the difference between the
// two. Otherwise, leave it empty.
//
// The idea here is to make this "canonical" setup work auto-
// magically:
//
// 1. We include all files with a prefix, e.g., <foo/bar>.
// 2. The library target is in the foo/ sub-directory, e.g.,
// /tmp/foo/.
// 3. The poptions variable contains -I/tmp.
//
dir_path p (out_base.sub (d) ? out_base.leaf (d) : dir_path ());
auto j (m.find (p));
if (j != m.end ())
{
if (j->second != d)
fail << "duplicate generated dependency prefix '" << p << "'" <<
info << "old mapping to " << j->second <<
info << "new mapping to " << d;
}
else
{
level5 ([&]{trace << "'" << p << "' = '" << d << "'";});
m.emplace (move (p), move (d));
}
}
}
}
// Append library prefixes based on the cxx.export.poptions variables
// recursively, prerequisite libraries first.
//
static void
append_lib_prefixes (prefix_map& m, target& l)
{
for (target* t: l.prerequisite_targets)
{
if (t == nullptr)
continue;
if (t->is_a<lib> () || t->is_a<liba> () || t->is_a<libso> ())
append_lib_prefixes (m, *t);
}
append_prefixes (m, l, "cxx.export.poptions");
}
static prefix_map
build_prefix_map (target& t)
{
prefix_map m;
// First process the include directories from prerequisite
// libraries. Note that here we don't need to see group
// members (see apply()).
//
for (prerequisite& p: group_prerequisites (t))
{
target& pt (*p.target); // Already searched and matched.
if (pt.is_a<lib> () || pt.is_a<liba> () || pt.is_a<libso> ())
append_lib_prefixes (m, pt);
}
// Then process our own.
//
append_prefixes (m, t, "cxx.poptions");
return m;
}
// Return the next make prerequisite starting from the specified
// position and update position to point to the start of the
// following prerequisite or l.size() if there are none left.
//
static string
next (const string& l, size_t& p)
{
size_t n (l.size ());
// Skip leading spaces.
//
for (; p != n && l[p] == ' '; p++) ;
// Lines containing multiple prerequisites are 80 characters max.
//
string r;
r.reserve (n);
// Scan the next prerequisite while watching out for escape sequences.
//
for (; p != n && l[p] != ' '; p++)
{
char c (l[p]);
if (c == '\\')
c = l[++p];
r += c;
}
// Skip trailing spaces.
//
for (; p != n && l[p] == ' '; p++) ;
// Skip final '\'.
//
if (p == n - 1 && l[p] == '\\')
p++;
return r;
}
static void
inject_prerequisites (action a, target& t, cxx& s, scope& ds)
{
tracer trace ("cxx::compile::inject_prerequisites");
scope& rs (t.root_scope ());
const string& cxx (rs["config.cxx"].as<const string&> ());
vector<const char*> args {cxx.c_str ()};
// Add cxx.export.poptions from prerequisite libraries. Note
// that here we don't need to see group members (see apply()).
//
for (prerequisite& p: group_prerequisites (t))
{
target& pt (*p.target); // Already searched and matched.
if (pt.is_a<lib> () || pt.is_a<liba> () || pt.is_a<libso> ())
append_lib_options (args, pt, "cxx.export.poptions");
}
append_options (args, t, "cxx.poptions");
// @@ Some C++ options (e.g., -std, -m) affect the preprocessor.
// Or maybe they are not C++ options? Common options?
//
append_options (args, t, "cxx.coptions");
string std; // Storage.
append_std (args, t, std);
if (t.is_a<objso> ())
args.push_back ("-fPIC");
args.push_back ("-M"); // Note: -MM -MG skips missing <>-included.
args.push_back ("-MG"); // Treat missing headers as generated.
args.push_back ("-MQ"); // Quoted target name.
args.push_back ("*"); // Old versions can't handle empty target name.
// We are using absolute source file path in order to get absolute
// paths in the result. Any relative paths in the result are non-
// existent, potentially auto-generated headers.
//
// @@ We will also have to use absolute -I paths to guarantee
// that. Or just detect relative paths and error out?
//
args.push_back (s.path ().string ().c_str ());
args.push_back (nullptr);
level5 ([&]{trace << "target: " << t;});
// Build the prefix map lazily only if we have non-existent files.
// Also reuse it over restarts since it doesn't change.
//
prefix_map pm;
// If any prerequisites that we have extracted changed, then we
// have to redo the whole thing. The reason for this is auto-
// generated headers: the updated header may now include a yet-
// non-existent header. Unless we discover this and generate it
// (which, BTW, will trigger another restart since that header,
// in turn, can also include auto-generated headers), we will
// end up with an error during compilation proper.
//
// One complication with this restart logic is that we will see
// a "prefix" of prerequisites that we have already processed
// (i.e., they are already in our prerequisite_targets list) and
// we don't want to keep redoing this over and over again. One
// thing to note, however, is that the prefix that we have seen
// on the previous run must appear exactly the same in the
// subsequent run. The reason for this is that none of the files
// that it can possibly be based on have changed and thus it
// should be exactly the same. To put it another way, the
// presence or absence of a file in the dependency output can
// only depend on the previous files (assuming the compiler
// outputs them as it encounters them and it is hard to think
// of a reason why would someone do otherwise). And we have
// already made sure that all those files are up to date. And
// here is the way we are going to exploit this: we are going
// to keep track of how many prerequisites we have processed so
// far and on restart skip right to the next one.
//
// Also, before we do all that, make sure the source file itself
// if up to date.
//
execute_direct (a, s);
size_t skip_count (0);
for (bool restart (true); restart; )
{
restart = false;
if (verb >= 2)
print_process (args);
try
{
process pr (args.data (), false, false, true);
ifdstream is (pr.in_ofd);
size_t skip (skip_count);
for (bool first (true), second (true); !(restart || is.eof ()); )
{
string l;
getline (is, l);
if (is.fail () && !is.eof ())
fail << "io error while parsing g++ -M output";
size_t pos (0);
if (first)
{
// Empty output should mean the wait() call below will return
// false.
//
if (l.empty ())
break;
assert (l[0] == '*' && l[1] == ':' && l[2] == ' ');
first = false;
// While normally we would have the source file on the
// first line, if too long, it will be moved to the next
// line and all we will have on this line is "*: \".
//
if (l.size () == 4 && l[3] == '\\')
continue;
else
pos = 3; // Skip "*: ".
// Fall through to the 'second' block.
}
if (second)
{
second = false;
next (l, pos); // Skip the source file.
}
// If things go wrong (and they often do in this area), give
// the user a bit extra context.
//
auto g (
make_exception_guard (
[](target& s)
{
info << "while extracting dependencies from " << s;
},
s));
while (pos != l.size ())
{
string fs (next (l, pos));
// Skip until where we left off.
//
if (skip != 0)
{
skip--;
continue;
}
path f (move (fs));
f.normalize ();
if (!f.absolute ())
{
// This is probably as often an error as an auto-generated
// file, so trace at level 3.
//
level3 ([&]{trace << "non-existent header '" << f << "'";});
// If we already did it and build_prefix_map() returned empty,
// then we would have failed below.
//
if (pm.empty ())
pm = build_prefix_map (t);
// First try the whole file. Then just the directory.
//
// @@ Has to be a separate map since the prefix can be
// the same as the file name.
//
// auto i (pm.find (f));
// Find the most qualified prefix of which we are a
// sub-path.
//
auto i (pm.end ());
if (!pm.empty ())
{
const dir_path& d (f.directory ());
i = pm.upper_bound (d);
--i; // Greatest less than.
if (!d.sub (i->first)) // We might still not be a sub.
i = pm.end ();
}
if (i == pm.end ())
fail << "unable to map presumably auto-generated header '"
<< f << "' to a project";
f = i->second / f;
}
level5 ([&]{trace << "injecting " << f;});
// Split the name into its directory part, the name part, and
// extension. Here we can assume the name part is a valid
// filesystem name.
//
// Note that if the file has no extension, we record an empty
// extension rather than NULL (which would signify that the
// default extension should be added).
//
dir_path d (f.directory ());
string n (f.leaf ().base ().string ());
const char* es (f.extension ());
const string* e (&extension_pool.find (es != nullptr ? es : ""));
// Determine the target type.
//
const target_type* tt (nullptr);
// See if this directory is part of any project out_root
// hierarchy. Note that this will miss all the headers
// that come from src_root (so they will be treated as
// generic C headers below). Generally, we don't have
// the ability to determine that some file belongs to
// src_root of some project. But that's not a problem
// for our purposes: it is only important for us to
// accurately determine target types for headers that
// could be auto-generated.
//
if (scope* r = scopes.find (d).root_scope ())
{
// Get cached (or build) a map of the extensions for the
// C/C++ files this project is using.
//
const ext_map& m (build_ext_map (*r));
auto i (m.find (e));
if (i != m.end ())
tt = i->second;
}
// If it is outside any project, or the project doesn't have
// such an extension, assume it is a plain old C header.
//
if (tt == nullptr)
tt = &h::static_type;
// Find or insert target.
//
path_target& pt (
static_cast<path_target&> (search (*tt, d, n, e, &ds)));
// Assign path.
//
if (pt.path ().empty ())
pt.path (move (f));
// Match to a rule.
//
build::match (a, pt);
// Update it.
//
// There would normally be a lot of headers for every source
// file (think all the system headers) and this can get
// expensive. At the same time, most of these headers are
// existing files that we will never be updating (again,
// system headers, for example) and the rule that will match
// them is fallback path_rule. So we are going to do a little
// fast-path optimization by detecting this common case.
//
recipe_function* const* recipe (
pt.recipe (a).target<recipe_function*> ());
if (recipe == nullptr || *recipe != &path_rule::perform_update)
{
// We only want to restart if our call to execute() actually
// caused an update. In particular, the target could already
// have been in target_state::changed because of a dependency
// extraction run for some other source file.
//
target_state os (pt.state);
execute_direct (a, pt);
if (pt.state != os && pt.state != target_state::unchanged)
{
level5 ([&]{trace << "updated " << pt << ", restarting";});
restart = true;
}
}
// Add to our prerequisite target list.
//
t.prerequisite_targets.push_back (&pt);
skip_count++;
}
}
// We may not have read all the output (e.g., due to a restart),
// so close the file descriptor before waiting to avoid blocking
// the other end.
//
is.close ();
// We assume the child process issued some diagnostics.
//
if (!pr.wait ())
throw failed ();
}
catch (const process_error& e)
{
error << "unable to execute " << args[0] << ": " << e.what ();
// In a multi-threaded program that fork()'ed but did not exec(),
// it is unwise to try to do any kind of cleanup (like unwinding
// the stack and running destructors).
//
if (e.child ())
exit (1);
throw failed ();
}
}
}
target_state compile::
perform_update (action a, target& xt)
{
path_target& t (static_cast<path_target&> (xt));
cxx* s (execute_prerequisites<cxx> (a, t, t.mtime ()));
if (s == nullptr)
return target_state::unchanged;
// Translate paths to relative (to working directory) ones. This
// results in easier to read diagnostics.
//
path relo (relative (t.path ()));
path rels (relative (s->path ()));
scope& rs (t.root_scope ());
const string& cxx (rs["config.cxx"].as<const string&> ());
vector<const char*> args {cxx.c_str ()};
// Add cxx.export.poptions from prerequisite libraries. Note that
// here we don't need to see group members (see apply()).
//
for (prerequisite& p: group_prerequisites (t))
{
target& pt (*p.target); // Already searched and matched.
if (pt.is_a<lib> () || pt.is_a<liba> () || pt.is_a<libso> ())
append_lib_options (args, pt, "cxx.export.poptions");
}
append_options (args, t, "cxx.poptions");
append_options (args, t, "cxx.coptions");
string std; // Storage.
append_std (args, t, std);
if (t.is_a<objso> ())
args.push_back ("-fPIC");
args.push_back ("-o");
args.push_back (relo.string ().c_str ());
args.push_back ("-c");
args.push_back (rels.string ().c_str ());
args.push_back (nullptr);
if (verb)
print_process (args);
else
text << "c++ " << *s;
try
{
process pr (args.data ());
if (!pr.wait ())
throw failed ();
// Should we go to the filesystem and get the new mtime? We
// know the file has been modified, so instead just use the
// current clock time. It has the advantage of having the
// subseconds precision.
//
t.mtime (system_clock::now ());
return target_state::changed;
}
catch (const process_error& e)
{
error << "unable to execute " << args[0] << ": " << e.what ();
// In a multi-threaded program that fork()'ed but did not exec(),
// it is unwise to try to do any kind of cleanup (like unwinding
// the stack and running destructors).
//
if (e.child ())
exit (1);
throw failed ();
}
}
// link
//
inline link::type link::
link_type (target& t)
{
return t.is_a<exe> () ? type::e : (t.is_a<liba> () ? type::a : type::so);
}
link::order link::
link_order (target& t)
{
const char* var;
switch (link_type (t))
{
case type::e: var = "bin.exe.lib"; break;
case type::a: var = "bin.liba.lib"; break;
case type::so: var = "bin.libso.lib"; break;
}
const list_value& lv (t[var].as<const list_value&> ());
return lv[0].value == "shared"
? lv.size () > 1 && lv[1].value == "static" ? order::so_a : order::so
: lv.size () > 1 && lv[1].value == "shared" ? order::a_so : order::a;
}
match_result link::
match (action a, target& t, const string& hint) const
{
tracer trace ("cxx::link::match");
// @@ TODO:
//
// - check prerequisites: object files, libraries
// - if path already assigned, verify extension?
//
// @@ Q:
//
// - if there is no .o, are we going to check if the one derived
// from target exist or can be built? A: No.
// What if there is a library. Probably ok if .a, not if .so.
// (i.e., a utility library).
//
bool so (t.is_a<libso> ());
// Scan prerequisites and see if we can work with what we've got.
//
bool seen_cxx (false), seen_c (false), seen_obj (false),
seen_lib (false);
for (prerequisite_member p: group_prerequisite_members (a, t))
{
if (p.is_a<cxx> ())
{
seen_cxx = seen_cxx || true;
}
else if (p.is_a<c> ())
{
seen_c = seen_c || true;
}
else if (p.is_a<obja> ())
{
if (so)
fail << "shared library " << t << " prerequisite " << p
<< " is static object";
seen_obj = seen_obj || true;
}
else if (p.is_a<objso> () ||
p.is_a<obj> ())
{
seen_obj = seen_obj || true;
}
else if (p.is_a<liba> () ||
p.is_a<libso> () ||
p.is_a<lib> ())
{
seen_lib = seen_lib || true;
}
else if (p.is_a<h> () ||
p.is_a<hxx> () ||
p.is_a<ixx> () ||
p.is_a<txx> () ||
p.is_a<fsdir> ())
;
else
{
level3 ([&]{trace << "unexpected prerequisite type " << p.type ();});
return nullptr;
}
}
// We will only chain a C source if there is also a C++ source or we
// were explicitly told to.
//
if (seen_c && !seen_cxx && hint < "cxx")
{
level3 ([&]{trace << "c prerequisite(s) without c++ or hint";});
return nullptr;
}
return seen_cxx || seen_c || seen_obj || seen_lib ? &t : nullptr;
}
recipe link::
apply (action a, target& xt, const match_result&) const
{
tracer trace ("cxx::link::apply");
path_target& t (static_cast<path_target&> (xt));
type lt (link_type (t));
bool so (lt == type::so);
optional<order> lo; // Link-order.
// Derive file name from target name.
//
if (t.path ().empty ())
{
switch (lt)
{
case type::e: t.derive_path ("" ); break;
case type::a: t.derive_path ("a", "lib"); break;
case type::so: t.derive_path ("so", "lib"); break;
}
}
// Inject dependency on the output directory.
//
inject_parent_fsdir (a, t);
// We may need the project roots for rule chaining (see below).
// We will resolve them lazily only if needed.
//
scope* root (nullptr);
const dir_path* out_root (nullptr);
const dir_path* src_root (nullptr);
// Process prerequisites: do rule chaining for C and C++ source
// files as well as search and match.
//
for (prerequisite_member p: group_prerequisite_members (a, t))
{
bool group (!p.prerequisite.belongs (t)); // Group's prerequisite.
target* pt (nullptr);
if (!p.is_a<c> () && !p.is_a<cxx> ())
{
// The same basic logic as in search_and_match().
//
pt = &p.search ();
if (a.operation () == clean_id && !pt->dir.sub (t.dir))
continue; // Skip.
// If this is the obj{} or lib{} target group, then pick the
// appropriate member and make sure it is searched and matched.
//
if (obj* o = pt->is_a<obj> ())
{
pt = so ? static_cast<target*> (o->so) : o->a;
if (pt == nullptr)
pt = &search (so ? objso::static_type : obja::static_type,
p.key ());
}
else if (lib* l = pt->is_a<lib> ())
{
// Determine the library type to link.
//
bool lso (true);
const string& at ((*l)["bin.lib"].as<const string&> ());
if (!lo)
lo = link_order (t);
switch (*lo)
{
case order::a:
case order::a_so:
lso = false; // Fall through.
case order::so:
case order::so_a:
{
if (lso ? at == "static" : at == "shared")
{
if (*lo == order::a_so || *lo == order::so_a)
lso = !lso;
else
fail << (lso ? "shared" : "static") << " build of " << *l
<< " is not available";
}
}
}
pt = lso ? static_cast<target*> (l->so) : l->a;
if (pt == nullptr)
pt = &search (lso ? libso::static_type : liba::static_type,
p.key ());
}
build::match (a, *pt);
t.prerequisite_targets.push_back (pt);
continue;
}
if (root == nullptr)
{
// Which scope shall we use to resolve the root? Unlikely,
// but possible, the prerequisite is from a different project
// altogether. So we are going to use the target's project.
//
root = &t.root_scope ();
out_root = &root->path ();
src_root = &root->src_path ();
}
const prerequisite_key& cp (p.key ()); // c(xx){} prerequisite key.
const target_type& o_type (
group
? obj::static_type
: (so ? objso::static_type : obja::static_type));
// Come up with the obj*{} target. The c(xx){} prerequisite
// directory can be relative (to the scope) or absolute. If it is
// relative, then use it as is. If it is absolute, then translate
// it to the corresponding directory under out_root. While the
// c(xx){} directory is most likely under src_root, it is also
// possible it is under out_root (e.g., generated source).
//
dir_path d;
{
const dir_path& cpd (*cp.tk.dir);
if (cpd.relative () || cpd.sub (*out_root))
d = cpd;
else
{
if (!cpd.sub (*src_root))
fail << "out of project prerequisite " << cp <<
info << "specify corresponding " << o_type.name << "{} "
<< "target explicitly";
d = *out_root / cpd.leaf (*src_root);
}
}
target& ot (search (o_type, d, *cp.tk.name, nullptr, cp.scope));
// If we are cleaning, check that this target is in the same or
// a subdirectory of ours.
//
if (a.operation () == clean_id && !ot.dir.sub (t.dir))
{
// If we shouldn't clean obj{}, then it is fair to assume
// we shouldn't clean cxx{} either (generated source will
// be in the same directory as obj{} and if not, well, go
// find yourself another build system ;-)).
//
continue; // Skip.
}
// If we have created the obj{} target group, pick one of its
// members; the rest would be primarily concerned with it.
//
if (group)
{
obj& o (static_cast<obj&> (ot));
pt = so ? static_cast<target*> (o.so) : o.a;
if (pt == nullptr)
pt = &search (so ? objso::static_type : obja::static_type,
o.dir, o.name, o.ext, nullptr);
}
else
pt = &ot;
// If this obj*{} target already exists, then it needs to be
// "compatible" with what we are doing here.
//
// This gets a bit tricky. We need to make sure the source files
// are the same which we can only do by comparing the targets to
// which they resolve. But we cannot search the ot's prerequisites
// -- only the rule that matches can. Note, however, that if all
// this works out, then our next step is to match the obj*{}
// target. If things don't work out, then we fail, in which case
// searching and matching speculatively doesn't really hurt.
//
bool found (false);
for (prerequisite_member p1:
reverse_group_prerequisite_members (a, *pt))
{
// Ignore some known target types (fsdir, headers, libraries).
//
if (p1.is_a<fsdir> () ||
p1.is_a<h> () ||
(p.is_a<cxx> () && (p1.is_a<hxx> () ||
p1.is_a<ixx> () ||
p1.is_a<txx> ())) ||
p1.is_a<lib> () ||
p1.is_a<liba> () ||
p1.is_a<libso> ())
{
continue;
}
if (!p1.is_a<cxx> ())
fail << "synthesized target for prerequisite " << cp
<< " would be incompatible with existing target " << *pt <<
info << "unexpected existing prerequisite type " << p1 <<
info << "specify corresponding obj{} target explicitly";
if (!found)
{
build::match (a, *pt); // Now p1 should be resolved.
// Searching our own prerequisite is ok.
//
if (&p.search () != &p1.search ())
fail << "synthesized target for prerequisite " << cp << " would "
<< "be incompatible with existing target " << *pt <<
info << "existing prerequisite " << p1 << " does not match "
<< cp <<
info << "specify corresponding " << o_type.name << "{} target "
<< "explicitly";
found = true;
// Check the rest of the prerequisites.
}
}
if (!found)
{
// Note: add the source to the group, not the member.
//
ot.prerequisites.emplace_back (p.as_prerequisite (trace));
// Add our lib*{} prerequisites to the object file (see
// cxx.export.poptions above for details). Note: no need
// to go into group members.
//
// Initially, we were only adding imported libraries, but
// there is a problem with this approach: the non-imported
// library might depend on the imported one(s) which we will
// never "see" unless we start with this library.
//
for (prerequisite& p: group_prerequisites (t))
{
if (p.is_a<lib> () || p.is_a<liba> () || p.is_a<libso> ())
ot.prerequisites.emplace_back (p);
}
build::match (a, *pt);
}
t.prerequisite_targets.push_back (pt);
}
switch (a)
{
case perform_update_id: return &perform_update;
case perform_clean_id: return &perform_clean;
default: return default_recipe; // Forward to prerequisites.
}
}
target_state link::
perform_update (action a, target& xt)
{
path_target& t (static_cast<path_target&> (xt));
type lt (link_type (t));
bool so (lt == type::so);
if (!execute_prerequisites (a, t, t.mtime ()))
return target_state::unchanged;
// Translate paths to relative (to working directory) ones. This
// results in easier to read diagnostics.
//
path relt (relative (t.path ()));
scope& rs (t.root_scope ());
vector<const char*> args;
string storage1;
if (lt == type::a)
{
//@@ ranlib
//
args.push_back ("ar");
args.push_back ("-rc");
args.push_back (relt.string ().c_str ());
}
else
{
args.push_back (rs["config.cxx"].as<const string&> ().c_str ());
append_options (args, t, "cxx.coptions");
append_std (args, t, storage1);
if (so)
args.push_back ("-shared");
args.push_back ("-o");
args.push_back (relt.string ().c_str ());
append_options (args, t, "cxx.loptions");
}
// Reserve enough space so that we don't reallocate. Reallocating
// means pointers to elements may no longer be valid.
//
vector<path> relo;
relo.reserve (t.prerequisite_targets.size ());
for (target* pt: t.prerequisite_targets)
{
path_target* ppt;
if ((ppt = pt->is_a<obja> ()))
;
else if ((ppt = pt->is_a<objso> ()))
;
else if ((ppt = pt->is_a<liba> ()))
;
else if ((ppt = pt->is_a<libso> ()))
{
// Use absolute path for the shared libraries since that's
// the path the runtime loader will use to try to find it.
// This is probably temporary until we get into the whole
// -soname/-rpath mess.
//
args.push_back (ppt->path ().string ().c_str ());
continue;
}
else
continue;
relo.push_back (relative (ppt->path ()));
args.push_back (relo.back ().string ().c_str ());
}
if (lt != type::a)
append_options (args, t, "cxx.libs");
args.push_back (nullptr);
if (verb)
print_process (args);
else
text << "ld " << t;
try
{
process pr (args.data ());
if (!pr.wait ())
throw failed ();
// Should we go to the filesystem and get the new mtime? We
// know the file has been modified, so instead just use the
// current clock time. It has the advantage of having the
// subseconds precision.
//
t.mtime (system_clock::now ());
return target_state::changed;
}
catch (const process_error& e)
{
error << "unable to execute " << args[0] << ": " << e.what ();
// In a multi-threaded program that fork()'ed but did not exec(),
// it is unwise to try to do any kind of cleanup (like unwinding
// the stack and running destructors).
//
if (e.child ())
exit (1);
throw failed ();
}
}
}
}
|