aboutsummaryrefslogtreecommitdiff
path: root/build/cxx/link.cxx
blob: a00b92e37587c2f4047cb5e8487dc8b6dd21b97d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
// file      : build/cxx/link.cxx -*- C++ -*-
// copyright : Copyright (c) 2014-2015 Code Synthesis Ltd
// license   : MIT; see accompanying LICENSE file

#include <build/cxx/link>

#include <vector>
#include <string>
#include <cstddef>  // size_t
#include <cstdlib>  // exit()
#include <utility>  // move()

#include <butl/process>
#include <butl/utility>  // reverse_iterate
#include <butl/fdstream>
#include <butl/optional>
#include <butl/path-map>
#include <butl/filesystem>

#include <build/types>
#include <build/scope>
#include <build/variable>
#include <build/algorithm>
#include <build/diagnostics>
#include <build/context>

#include <build/bin/target>
#include <build/cxx/target>

#include <build/cxx/utility>

using namespace std;
using namespace butl;

namespace build
{
  namespace cxx
  {
    using namespace bin;

    enum class type {e, a, so};
    enum class order {a, so, a_so, so_a};

    static inline type
    link_type (target& t)
    {
      return t.is_a<exe> () ? type::e : (t.is_a<liba> () ? type::a : type::so);
    }

    static order
    link_order (target& t)
    {
      const char* var;

      switch (link_type (t))
      {
      case type::e:  var = "bin.exe.lib";   break;
      case type::a:  var = "bin.liba.lib";  break;
      case type::so: var = "bin.libso.lib"; break;
      }

      const auto& v (as<strings> (*t[var]));
      return v[0] == "shared"
        ? v.size () > 1 && v[1] == "static" ? order::so_a : order::so
        : v.size () > 1 && v[1] == "shared" ? order::a_so : order::a;
    }

    link::search_paths link::
    extract_library_paths (scope& bs)
    {
      search_paths r;
      scope& rs (*bs.root_scope ());

      // Extract user-supplied search paths (i.e., -L).
      //
      if (auto l = bs["cxx.loptions"])
      {
        const auto& v (as<strings> (*l));

        for (auto i (v.begin ()), e (v.end ()); i != e; ++i)
        {
          // -L can either be in the "-Lfoo" or "-L foo" form.
          //
          dir_path d;
          if (*i == "-L")
          {
            if (++i == e)
              break; // Let the compiler complain.

            d = dir_path (*i);
          }
          else if (i->compare (0, 2, "-L") == 0)
            d = dir_path (*i, 2, string::npos);
          else
            continue;

          // Ignore relative paths. Or maybe we should warn?
          //
          if (!d.relative ())
            r.push_back (move (d));
        }
      }

      // Extract system search paths.
      //
      cstrings args;
      string std_storage;

      args.push_back (as<string> (*rs["config.cxx"]).c_str ());
      append_options (args, bs, "cxx.coptions");
      append_std (args, bs, std_storage);
      append_options (args, bs, "cxx.loptions");
      args.push_back ("-print-search-dirs");
      args.push_back (nullptr);

      if (verb >= 3)
        print_process (args);

      string l;
      try
      {
        process pr (args.data (), 0, -1); // Open pipe to stdout.
        ifdstream is (pr.in_ofd);

        while (!is.eof ())
        {
          string s;
          getline (is, s);

          if (is.fail () && !is.eof ())
            fail << "error reading C++ compiler -print-search-dirs output";

          if (s.compare (0, 12, "libraries: =") == 0)
          {
            l.assign (s, 12, string::npos);
            break;
          }
        }

        is.close (); // Don't block.

        if (!pr.wait ())
          throw failed ();
      }
      catch (const process_error& e)
      {
        error << "unable to execute " << args[0] << ": " << e.what ();

        if (e.child ())
          exit (1);

        throw failed ();
      }

      if (l.empty ())
        fail << "unable to extract C++ compiler system library paths";

      // Now the fun part: figuring out which delimiter is used.
      // Normally it is ':' but on Windows it is ';' (or can be;
      // who knows for sure). Also note that these paths are
      // absolute (or should be). So here is what we are going
      // to do: first look for ';'. If found, then that's the
      // delimiter. If not found, then there are two cases:
      // it is either a single Windows path or the delimiter
      // is ':'. To distinguish these two cases we check if
      // the path starts with a Windows drive.
      //
      char d (';');
      string::size_type e (l.find (d));

      if (e == string::npos &&
          (l.size () < 2 || l[0] == '/' || l[1] != ':'))
      {
        d = ':';
        e = l.find (d);
      }

      // Now chop it up. We already have the position of the
      // first delimiter (if any).
      //
      for (string::size_type b (0);; e = l.find (d, (b = e + 1)))
      {
        r.emplace_back (l, b, (e != string::npos ? e - b : e));
        r.back ().normalize ();

        if (e == string::npos)
          break;
      }

      return r;
    }

    target* link::
    search_library (search_paths_cache& spc, prerequisite& p)
    {
      tracer trace ("cxx::link::search_library");

      // First check the cache.
      //
      if (p.target != nullptr)
        return p.target;

      bool l (p.is_a<lib> ());
      const string* ext (l ? nullptr : p.ext); // Only for liba/libso.

      // Then figure out what we need to search for.
      //

      // liba
      //
      path an;
      const string* ae;

      if (l || p.is_a<liba> ())
      {
        an = path ("lib" + p.name);

        // Note that p.scope should be the same as the target's for
        // which we are looking for this library. The idea here is
        // that we have to use the same "extension configuration" as
        // the target's.
        //
        ae = ext == nullptr
          ? &liba::static_type.extension (p.key ().tk, p.scope)
          : ext;

        if (!ae->empty ())
        {
          an += '.';
          an += *ae;
        }
      }

      // libso
      //
      path sn;
      const string* se;

      if (l || p.is_a<libso> ())
      {
        sn = path ("lib" + p.name);
        se = ext == nullptr
          ? &libso::static_type.extension (p.key ().tk, p.scope)
          : ext;

        if (!se->empty ())
        {
          sn += '.';
          sn += *se;
        }
      }

      // Now search.
      //
      if (!spc)
        spc = extract_library_paths (p.scope);

      liba* a (nullptr);
      libso* s (nullptr);

      path f; // Reuse the buffer.
      const dir_path* pd;
      for (const dir_path& d: *spc)
      {
        timestamp mt;

        // liba
        //
        if (!an.empty ())
        {
          f = d;
          f /= an;

          if ((mt = file_mtime (f)) != timestamp_nonexistent)
          {
            // Enter the target. Note that because the search paths are
            // normalized, the result is automatically normalized as well.
            //
            a = &targets.insert<liba> (d, p.name, ae, trace);

            if (a->path ().empty ())
              a->path (move (f));

            a->mtime (mt);
          }
        }

        // libso
        //
        if (!sn.empty ())
        {
          f = d;
          f /= sn;

          if ((mt = file_mtime (f)) != timestamp_nonexistent)
          {
            s = &targets.insert<libso> (d, p.name, se, trace);

            if (s->path ().empty ())
              s->path (move (f));

            s->mtime (mt);
          }
        }

        if (a != nullptr || s != nullptr)
        {
          pd = &d;
          break;
        }
      }

      if (a == nullptr && s == nullptr)
        return nullptr;

      if (l)
      {
        // Enter the target group.
        //
        lib& l (targets.insert<lib> (*pd, p.name, p.ext, trace));

        // It should automatically link-up to the members we have found.
        //
        assert (l.a == a);
        assert (l.so == s);

        // Set the bin.lib variable to indicate what's available.
        //
        const char* bl (a != nullptr
                        ? (s != nullptr ? "both" : "static")
                        : "shared");
        l.assign ("bin.lib") = bl;

        p.target = &l;
      }
      else
        p.target = p.is_a<liba> () ? static_cast<target*> (a) : s;

      return p.target;
    }

    match_result link::
    match (action a, target& t, const string& hint) const
    {
      tracer trace ("cxx::link::match");

      // @@ TODO:
      //
      // - if path already assigned, verify extension?
      //
      // @@ Q:
      //
      // - if there is no .o, are we going to check if the one derived
      //   from target exist or can be built? A: No.
      //   What if there is a library. Probably ok if .a, not if .so.
      //   (i.e., a utility library).
      //

      type lt (link_type (t));

      // Scan prerequisites and see if we can work with what we've got.
      //
      bool seen_cxx (false), seen_c (false), seen_obj (false),
        seen_lib (false);

      for (prerequisite_member p: group_prerequisite_members (a, t))
      {
        if (p.is_a<cxx> ())
        {
          seen_cxx = seen_cxx || true;
        }
        else if (p.is_a<c> ())
        {
          seen_c = seen_c || true;
        }
        else if (p.is_a<obja> ())
        {
          if (lt == type::so)
            fail << "shared library " << t << " prerequisite " << p
                 << " is static object";

          seen_obj = seen_obj || true;
        }
        else if (p.is_a<objso> () ||
                 p.is_a<obj> ())
        {
          seen_obj = seen_obj || true;
        }
        else if (p.is_a<liba> ()  ||
                 p.is_a<libso> () ||
                 p.is_a<lib> ())
        {
          seen_lib = seen_lib || true;
        }
      }

      // We will only chain a C source if there is also a C++ source or we
      // were explicitly told to.
      //
      if (seen_c && !seen_cxx && hint < "cxx")
      {
        level4 ([&]{trace << "c prerequisite(s) without c++ or hint";});
        return nullptr;
      }

      // If we have any prerequisite libraries (which also means that
      // we match), search/import and pre-match them to implement the
      // "library meta-information protocol". Don't do this if we are
      // called from the install rule just to check if we would match.
      //
      if (seen_lib && lt != type::e && a.operation () != install_id)
      {
        if (t.group != nullptr)
          t.group->prerequisite_targets.clear (); // lib{}'s

        search_paths_cache lib_paths; // Extract lazily.

        for (prerequisite_member p: group_prerequisite_members (a, t))
        {
          if (p.is_a<lib> () || p.is_a<liba> () || p.is_a<libso> ())
          {
            target* pt (nullptr);

            // Handle imported libraries.
            //
            if (p.proj () != nullptr)
              pt = search_library (lib_paths, p.prerequisite);

            if (pt == nullptr)
            {
              pt = &p.search ();
              match_only (a, *pt);
            }

            // If the prerequisite came from the lib{} group, then also
            // add it to lib's prerequisite_targets.
            //
            if (!p.prerequisite.belongs (t))
              t.group->prerequisite_targets.push_back (pt);

            t.prerequisite_targets.push_back (pt);
          }
        }
      }

      return seen_cxx || seen_c || seen_obj || seen_lib ? &t : nullptr;
    }

    recipe link::
    apply (action a, target& xt, const match_result&) const
    {
      tracer trace ("cxx::link::apply");

      path_target& t (static_cast<path_target&> (xt));

      type lt (link_type (t));
      bool so (lt == type::so);
      optional<order> lo; // Link-order.

      // Derive file name from target name.
      //
      if (t.path ().empty ())
      {
        switch (lt)
        {
        case type::e:  t.derive_path (""         ); break;
        case type::a:  t.derive_path ("a",  "lib"); break;
        case type::so: t.derive_path ("so", "lib"); break;
        }
      }

      t.prerequisite_targets.clear (); // See lib pre-match in match() above.

      // Inject dependency on the output directory.
      //
      inject_parent_fsdir (a, t);

      // We may need the project roots for rule chaining (see below).
      // We will resolve them lazily only if needed.
      //
      scope* root (nullptr);
      const dir_path* out_root (nullptr);
      const dir_path* src_root (nullptr);

      search_paths_cache lib_paths; // Extract lazily.

      // Process prerequisites: do rule chaining for C and C++ source
      // files as well as search and match.
      //
      // When cleaning, ignore prerequisites that are not in the same
      // or a subdirectory of our strong amalgamation.
      //
      const dir_path* amlg (
        a.operation () != clean_id
        ? nullptr
        : &t.strong_scope ().out_path ());

      for (prerequisite_member p: group_prerequisite_members (a, t))
      {
        bool group (!p.prerequisite.belongs (t)); // Group's prerequisite.
        target* pt (nullptr);

        if (!p.is_a<c> () && !p.is_a<cxx> ())
        {
          // Handle imported libraries.
          //
          if (p.proj () != nullptr)
            pt = search_library (lib_paths, p.prerequisite);

          // The rest is the same basic logic as in search_and_match().
          //
          if (pt == nullptr)
            pt = &p.search ();

          if (a.operation () == clean_id && !pt->dir.sub (*amlg))
            continue; // Skip.

          // If this is the obj{} or lib{} target group, then pick the
          // appropriate member and make sure it is searched and matched.
          //
          if (obj* o = pt->is_a<obj> ())
          {
            pt = so ? static_cast<target*> (o->so) : o->a;

            if (pt == nullptr)
              pt = &search (so ? objso::static_type : obja::static_type,
                            p.key ());
          }
          else if (lib* l = pt->is_a<lib> ())
          {
            // Determine the library type to link.
            //
            bool lso (true);
            const string& at (as<string> (*(*l)["bin.lib"]));

            if (!lo)
              lo = link_order (t);

            switch (*lo)
            {
            case order::a:
            case order::a_so:
              lso = false; // Fall through.
            case order::so:
            case order::so_a:
              {
                if (lso ? at == "static" : at == "shared")
                {
                  if (*lo == order::a_so || *lo == order::so_a)
                    lso = !lso;
                  else
                    fail << (lso ? "shared" : "static") << " build of " << *l
                         << " is not available";
                }
              }
            }

            pt = lso ? static_cast<target*> (l->so) : l->a;

            if (pt == nullptr)
              pt = &search (lso ? libso::static_type : liba::static_type,
                            p.key ());
          }

          build::match (a, *pt);
          t.prerequisite_targets.push_back (pt);
          continue;
        }

        if (root == nullptr)
        {
          // Which scope shall we use to resolve the root? Unlikely,
          // but possible, the prerequisite is from a different project
          // altogether. So we are going to use the target's project.
          //
          root = &t.root_scope ();
          out_root = &root->out_path ();
          src_root = &root->src_path ();
        }

        const prerequisite_key& cp (p.key ()); // c(xx){} prerequisite key.
        const target_type& o_type (
          group
          ? obj::static_type
          : (so ? objso::static_type : obja::static_type));

        // Come up with the obj*{} target. The c(xx){} prerequisite
        // directory can be relative (to the scope) or absolute. If it is
        // relative, then use it as is. If it is absolute, then translate
        // it to the corresponding directory under out_root. While the
        // c(xx){} directory is most likely under src_root, it is also
        // possible it is under out_root (e.g., generated source).
        //
        dir_path d;
        {
          const dir_path& cpd (*cp.tk.dir);

          if (cpd.relative () || cpd.sub (*out_root))
            d = cpd;
          else
          {
            if (!cpd.sub (*src_root))
              fail << "out of project prerequisite " << cp <<
                info << "specify corresponding " << o_type.name << "{} "
                   << "target explicitly";

            d = *out_root / cpd.leaf (*src_root);
          }
        }

        target& ot (search (o_type, d, *cp.tk.name, nullptr, cp.scope));

        // If we are cleaning, check that this target is in the same or
        // a subdirectory of our strong amalgamation.
        //
        if (a.operation () == clean_id && !ot.dir.sub (*amlg))
        {
          // If we shouldn't clean obj{}, then it is fair to assume
          // we shouldn't clean cxx{} either (generated source will
          // be in the same directory as obj{} and if not, well, go
          // find yourself another build system ;-)).
          //
          continue; // Skip.
        }

        // If we have created the obj{} target group, pick one of its
        // members; the rest would be primarily concerned with it.
        //
        if (group)
        {
          obj& o (static_cast<obj&> (ot));
          pt = so ? static_cast<target*> (o.so) : o.a;

          if (pt == nullptr)
            pt = &search (so ? objso::static_type : obja::static_type,
                          o.dir, o.name, o.ext, nullptr);
        }
        else
          pt = &ot;

        // If this obj*{} target already exists, then it needs to be
        // "compatible" with what we are doing here.
        //
        // This gets a bit tricky. We need to make sure the source files
        // are the same which we can only do by comparing the targets to
        // which they resolve. But we cannot search the ot's prerequisites
        // -- only the rule that matches can. Note, however, that if all
        // this works out, then our next step is to match the obj*{}
        // target. If things don't work out, then we fail, in which case
        // searching and matching speculatively doesn't really hurt.
        //
        bool found (false);
        for (prerequisite_member p1:
               reverse_group_prerequisite_members (a, *pt))
        {
          // Ignore some known target types (fsdir, headers, libraries).
          //
          if (p1.is_a<fsdir> () ||
              p1.is_a<h> ()     ||
              (p.is_a<cxx> () && (p1.is_a<hxx> () ||
                                  p1.is_a<ixx> () ||
                                  p1.is_a<txx> ())) ||
              p1.is_a<lib> ()  ||
              p1.is_a<liba> () ||
              p1.is_a<libso> ())
          {
            continue;
          }

          if (!p1.is_a<cxx> ())
            fail << "synthesized target for prerequisite " << cp
                 << " would be incompatible with existing target " << *pt <<
              info << "unexpected existing prerequisite type " << p1 <<
              info << "specify corresponding obj{} target explicitly";

          if (!found)
          {
            build::match (a, *pt); // Now p1 should be resolved.

            // Searching our own prerequisite is ok.
            //
            if (&p.search () != &p1.search ())
              fail << "synthesized target for prerequisite " << cp << " would "
                   << "be incompatible with existing target " << *pt <<
                info << "existing prerequisite " << p1 << " does not match "
                   << cp <<
                info << "specify corresponding " << o_type.name << "{} target "
                   << "explicitly";

            found = true;
            // Check the rest of the prerequisites.
          }
        }

        if (!found)
        {
          // Note: add the source to the group, not the member.
          //
          ot.prerequisites.emplace_back (p.as_prerequisite (trace));

          // Add our lib*{} prerequisites to the object file (see
          // cxx.export.poptions above for details). Note: no need
          // to go into group members.
          //
          // Initially, we were only adding imported libraries, but
          // there is a problem with this approach: the non-imported
          // library might depend on the imported one(s) which we will
          // never "see" unless we start with this library.
          //
          for (prerequisite& p: group_prerequisites (t))
          {
            if (p.is_a<lib> () || p.is_a<liba> () || p.is_a<libso> ())
              ot.prerequisites.emplace_back (p);
          }

          build::match (a, *pt);
        }

        t.prerequisite_targets.push_back (pt);
      }

      switch (a)
      {
      case perform_update_id: return &perform_update;
      case perform_clean_id: return &perform_clean;
      default: return noop_recipe; // Configure update.
      }
    }

    target_state link::
    perform_update (action a, target& xt)
    {
      path_target& t (static_cast<path_target&> (xt));

      type lt (link_type (t));
      bool so (lt == type::so);

      if (!execute_prerequisites (a, t, t.mtime ()))
        return target_state::unchanged;

      // Translate paths to relative (to working directory) ones. This
      // results in easier to read diagnostics.
      //
      path relt (relative (t.path ()));

      scope& rs (t.root_scope ());
      cstrings args;

      // Storage.
      //
      string std;
      string soname;
      strings sargs;

      if (lt == type::a)
      {
        //@@ ranlib
        //
        args.push_back ("ar");
        args.push_back ("-rc");
        args.push_back (relt.string ().c_str ());
      }
      else
      {
        args.push_back (as<string> (*rs["config.cxx"]).c_str ());
        append_options (args, t, "cxx.coptions");
        append_std (args, t, std);

        if (so)
          args.push_back ("-shared");

        args.push_back ("-o");
        args.push_back (relt.string ().c_str ());

        // Set soname.
        //
        if (so)
        {
          soname = "-Wl,-soname," + relt.leaf ().string ();
          args.push_back (soname.c_str ());
        }

        // Add rpaths. First the ones specified by the user so that they
        // take precedence.
        //
        if (auto l = t["bin.rpath"])
          for (const string& p: as<strings> (*l))
            sargs.push_back ("-Wl,-rpath," + p);

        // Then the paths of the shared libraries we are linking to.
        //
        for (target* pt: t.prerequisite_targets)
        {
          if (libso* ls = pt->is_a<libso> ())
            sargs.push_back (
              "-Wl,-rpath," + ls->path ().directory ().string ());
        }
      }

      size_t oend (sargs.size ()); // Note the end of options.

      for (target* pt: t.prerequisite_targets)
      {
        path_target* ppt;

        if ((ppt = pt->is_a<obja> ())  ||
            (ppt = pt->is_a<objso> ()) ||
            (ppt = pt->is_a<liba> ())  ||
            (ppt = pt->is_a<libso> ()))
        {
          sargs.push_back (relative (ppt->path ()).string ()); // string()&&
        }
      }

      // Finish assembling args from sargs.
      //
      for (size_t i (0); i != sargs.size (); ++i)
      {
        if (lt != type::a && i == oend)
          append_options (args, t, "cxx.loptions");

        args.push_back (sargs[i].c_str ());
      }

      if (lt != type::a)
        append_options (args, t, "cxx.libs");

      args.push_back (nullptr);

      if (verb >= 2)
        print_process (args);
      else if (verb)
        text << "ld " << t;

      try
      {
        process pr (args.data ());

        if (!pr.wait ())
          throw failed ();

        // Should we go to the filesystem and get the new mtime? We
        // know the file has been modified, so instead just use the
        // current clock time. It has the advantage of having the
        // subseconds precision.
        //
        t.mtime (system_clock::now ());
        return target_state::changed;
      }
      catch (const process_error& e)
      {
        error << "unable to execute " << args[0] << ": " << e.what ();

        // In a multi-threaded program that fork()'ed but did not exec(),
        // it is unwise to try to do any kind of cleanup (like unwinding
        // the stack and running destructors).
        //
        if (e.child ())
          exit (1);

        throw failed ();
      }
    }

    link link::instance;
  }
}