aboutsummaryrefslogtreecommitdiff
path: root/build/bin/rule.cxx
blob: 1b887bf7a401fb4f60a05010b7b487f3f89b2d63 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
// file      : build/bin/rule.cxx -*- C++ -*-
// copyright : Copyright (c) 2014-2015 Code Synthesis Tools CC
// license   : MIT; see accompanying LICENSE file

#include <build/bin/rule>

#include <build/scope>
#include <build/target>
#include <build/algorithm>
#include <build/diagnostics>

#include <build/config/utility>

#include <build/bin/target>

using namespace std;

namespace build
{
  namespace bin
  {
    // obj
    //
    void* obj_rule::
    match (action a, target& t, const std::string&) const
    {
      fail << diag_doing (a, t) << " target group" <<
        info << "explicitly select either obja{} or objso{} member";
    }

    recipe obj_rule::
    apply (action, target&, void*) const {return empty_recipe;}

    // lib
    //
    // The whole logic is pretty much as if we had our two group
    // members as prerequisites.
    //
    void* lib_rule::
    match (action, target& t, const std::string&) const
    {
      return &t;
    }

    recipe lib_rule::
    apply (action a, target& xt, void*) const
    {
      lib& t (static_cast<lib&> (xt));

      // Configure.
      //
      // The logic is as follows: if this library somehow knowns what
      // it wants to be (i.e., the bin.lib is defined), then don't
      // bother configuring the project-wide value.
      //
      const string* type (nullptr);

      if (auto v = t["bin.lib"])
        type = &v.as<const string&> ();
      else
      {
        scope& root (*t.root_scope ());
        type = &config::required (root, "config.bin.lib", "shared").first;
        root.assign ("bin.lib") = *type;
      }

      bool ar (*type == "static" || *type == "both");
      bool so (*type == "shared" || *type == "both");

      if (!ar && !so)
        fail << "unknown library type: " << *type <<
          info << "'static', 'shared', or 'both' expected";

      if (ar)
      {
        if (t.a == nullptr)
          t.a = &static_cast<liba&> (search (prerequisite_key {
                &liba::static_type, &t.dir, &t.name, &t.ext, nullptr}));

        build::match (a, *t.a);
      }

      if (so)
      {
        if (t.so == nullptr)
          t.so = &static_cast<libso&> (search (prerequisite_key {
                &libso::static_type, &t.dir, &t.name, &t.ext, nullptr}));

        build::match (a, *t.so);
      }

      return &perform;
    }

    target_state lib_rule::
    perform (action a, target& xt)
    {
      lib& t (static_cast<lib&> (xt));

      //@@ Not cool we have to do this again. Looks like we need
      //   some kind of a cache vs resolved pointer, like in
      //   prerequisite vs prerequisite_target.
      //
      //
      const string& type (t["bin.lib"].as<const string&> ());
      bool ar (type == "static" || type == "both");
      bool so (type == "shared" || type == "both");

      target* m1 (ar ? t.a : nullptr);
      target* m2 (so ? t.so : nullptr);

      if (current_mode == execution_mode::last)
        swap (m1, m2);

      target_state ts (target_state::unchanged);

      if (m1 != nullptr && execute (a, *m1) == target_state::changed)
        ts = target_state::changed;

      if (m2 != nullptr && execute (a, *m2) == target_state::changed)
        ts = target_state::changed;

      return ts;
    }
  }
}