1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
|
// file : build/bin/rule.cxx -*- C++ -*-
// copyright : Copyright (c) 2014-2015 Code Synthesis Ltd
// license : MIT; see accompanying LICENSE file
#include <build/bin/rule>
#include <build/scope>
#include <build/target>
#include <build/algorithm>
#include <build/diagnostics>
#include <build/bin/target>
using namespace std;
namespace build
{
namespace bin
{
// obj
//
match_result obj_rule::
match (action a, target& t, const std::string&) const
{
fail << diag_doing (a, t) << " target group" <<
info << "explicitly select either obja{} or objso{} member";
return nullptr;
}
recipe obj_rule::
apply (action, target&, const match_result&) const {return empty_recipe;}
// lib
//
// The whole logic is pretty much as if we had our two group
// members as our prerequisites.
//
match_result lib_rule::
match (action, target& t, const std::string&) const
{
return t;
}
recipe lib_rule::
apply (action a, target& xt, const match_result&) const
{
lib& t (static_cast<lib&> (xt));
// Get the library type to build. If not set for a target, this
// should be configured at the project scope by init_lib().
//
const string& type (t["bin.lib"].as<const string&> ());
bool ar (type == "static" || type == "both");
bool so (type == "shared" || type == "both");
if (!ar && !so)
fail << "unknown library type: " << type <<
info << "'static', 'shared', or 'both' expected";
if (ar)
{
if (t.a == nullptr)
t.a = &search<liba> (t.dir, t.name, t.ext, nullptr);
build::match (a, *t.a);
}
if (so)
{
if (t.so == nullptr)
t.so = &search<libso> (t.dir, t.name, t.ext, nullptr);
build::match (a, *t.so);
}
// Search and match prerequisite libraries and add them to the
// prerequisite targets. While we never execute this list
// ourselves (see perform() below), this is necessary to make
// the exported options machinery work for the library chains.
// See cxx.export.*-related code in cxx/rule.cxx for details.
//
for (prerequisite& p: group_prerequisites (t))
{
if (p.is_a<lib> () || p.is_a<liba> () || p.is_a<libso> ())
{
target& pt (search (p));
build::match (a, pt);
t.prerequisite_targets.push_back (&pt);
}
}
return &perform;
}
target_state lib_rule::
perform (action a, target& xt)
{
lib& t (static_cast<lib&> (xt));
//@@ Not cool we have to do this again. Looks like we need
// some kind of a cache vs resolved pointer, like in
// prerequisite vs prerequisite_target.
//
//
const string& type (t["bin.lib"].as<const string&> ());
bool ar (type == "static" || type == "both");
bool so (type == "shared" || type == "both");
target* m1 (ar ? t.a : nullptr);
target* m2 (so ? t.so : nullptr);
if (current_mode == execution_mode::last)
swap (m1, m2);
target_state ts (target_state::unchanged);
if (m1 != nullptr && execute (a, *m1) == target_state::changed)
ts = target_state::changed;
if (m2 != nullptr && execute (a, *m2) == target_state::changed)
ts = target_state::changed;
return ts;
}
}
}
|