1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
|
// file : build/algorithm.cxx -*- C++ -*-
// copyright : Copyright (c) 2014-2015 Code Synthesis Ltd
// license : MIT; see accompanying LICENSE file
#include <build/algorithm>
#include <memory> // unique_ptr
#include <cstddef> // size_t
#include <utility> // move
#include <cassert>
#include <butl/utility> // reverse_iterate
#include <build/scope>
#include <build/target>
#include <build/prerequisite>
#include <build/rule>
#include <build/file> // import()
#include <build/search>
#include <build/context>
#include <build/utility>
#include <build/diagnostics>
using namespace std;
using namespace butl;
namespace build
{
target&
search (const prerequisite_key& pk)
{
// If this is a project-qualified prerequisite, then this
// is import's business.
//
if (pk.proj != nullptr)
return import (pk);
if (target* t = pk.tk.type->search (pk))
return *t;
return create_new_target (pk);
}
target&
search (name n, scope& s)
{
const string* e;
const target_type* tt (s.find_target_type (n, e));
if (tt == nullptr)
fail << "unknown target type " << n.type << " in name " << n;
n.dir.normalize ();
return search (*tt, move (n.dir), move (n.value), e, &s);
}
pair<const rule*, match_result>
match_impl (action a, target& t, bool apply)
{
pair<const rule*, match_result> r;
// By default, clear the resolved targets list before calling
// match(). The rule is free to modify this list in match()
// (provided that it matches) in order to, for example, prepare
// it for apply().
//
t.reset (a);
// If this is a nested operation, first try the outer operation.
// This allows a rule to implement a "precise match", that is,
// both inner and outer operations match.
//
for (operation_id oo (a.outer_operation ()), io (a.operation ()),
o (oo != 0 ? oo : io); o != 0; o = (oo != 0 ? io : 0))
{
// Adjust action for recipe: on the first iteration we want it
// {inner, outer} (which is the same as 'a') while on the second
// -- {inner, 0}. Note that {inner, 0} is the same or "stronger"
// (i.e., overrides; see action::operator<()) than 'a'. This
// allows "unconditional inner" to override "inner for outer"
// recipes.
//
action ra (a.meta_operation (), io, o != oo ? 0 : oo);
scope& bs (t.base_scope ());
for (auto tt (&t.type ()); tt != nullptr; tt = tt->base)
{
// Search scopes outwards, stopping at the project root.
//
for (const scope* s (&bs);
s != nullptr;
s = s->root () ? global_scope : s->parent_scope ())
{
const operation_rule_map* om (s->rules[a.meta_operation ()]);
if (om == nullptr)
continue; // No entry for this meta-operation id.
// First try the map for the actual operation. If that
// doesn't yeld anything, try the wildcard map.
//
for (size_t oi (o), oip (o); oip != 0; oip = oi, oi = 0)
{
const target_type_rule_map* ttm ((*om)[oi]);
if (ttm == nullptr)
continue; // No entry for this operation id.
if (ttm->empty ())
continue; // Empty map for this operation id.
auto i (ttm->find (tt));
if (i == ttm->end () || i->second.empty ())
continue; // No rules registered for this target type.
const auto& rules (i->second); // Hint map.
// @@ TODO
//
// Different rules can be used for different operations (update
// vs test is a good example). So, at some point, we will probably
// have to support a list of hints or even an operation-hint map
// (e.g., 'hint=cxx test=foo' if cxx supports the test operation
// but we want the foo rule instead). This is also the place where
// the '{build clean}=cxx' construct (which we currently do not
// support) can come handy.
//
// Also, ignore the hint (that is most likely ment for a different
// operation) if this is a unique match.
//
string hint;
auto rs (rules.size () == 1
? make_pair (rules.begin (), rules.end ())
: rules.find_prefix (hint));
for (auto i (rs.first); i != rs.second; ++i)
{
const string& n (i->first);
const rule& ru (i->second);
match_result m;
{
auto g (
make_exception_guard (
[ra, &t, &n]()
{
info << "while matching rule " << n << " to "
<< diag_do (ra, t);
}));
if (!(m = ru.match (ra, t, hint)))
continue;
if (!m.recipe_action.valid ())
m.recipe_action = ra; // Default, if not set.
}
// Do the ambiguity test.
//
bool ambig (false);
diag_record dr;
for (++i; i != rs.second; ++i)
{
const string& n1 (i->first);
const rule& ru1 (i->second);
{
auto g (
make_exception_guard (
[ra, &t, &n1]()
{
info << "while matching rule " << n1 << " to "
<< diag_do (ra, t);
}));
if (!ru1.match (ra, t, hint))
continue;
}
if (!ambig)
{
dr << fail << "multiple rules matching "
<< diag_doing (ra, t)
<< info << "rule " << n << " matches";
ambig = true;
}
dr << info << "rule " << n1 << " also matches";
}
if (!ambig)
{
ra = m.recipe_action; // Use custom, if set.
if (apply)
{
auto g (
make_exception_guard (
[ra, &t, &n]()
{
info << "while applying rule " << n << " to "
<< diag_do (ra, t);
}));
// @@ We could also allow the rule to change the recipe
// action in apply(). Could be useful with delegates.
//
t.recipe (ra, ru.apply (ra, t, m));
}
else
{
r.first = &ru;
r.second = move (m);
}
return r;
}
else
dr << info << "use rule hint to disambiguate this match";
}
}
}
}
}
diag_record dr;
dr << fail << "no rule to " << diag_do (a, t);
if (verb < 4)
dr << info << "re-run with --verbose 4 for more information";
return r;
}
group_view
resolve_group_members_impl (action a, target& g)
{
group_view r;
// Unless we already have a recipe, try matching the target to
// the rule.
//
if (!g.recipe (a))
{
auto rp (match_impl (a, g, false));
r = g.group_members (a);
if (r.members != nullptr)
return r;
// That didn't help, so apply the rule and go to the building
// phase.
//
const match_result& mr (rp.second);
g.recipe (mr.recipe_action, rp.first->apply (mr.recipe_action, g, mr));
}
// Note that we use execute_direct() rather than execute() here to
// sidestep the dependents count logic. In this context, this is by
// definition the first attempt to execute this rule (otherwise we
// would have already known the members list) and we really do need
// to execute it now.
//
execute_direct (a, g);
r = g.group_members (a);
return r; // Might still be unresolved.
}
void
search_and_match_prerequisites (action a, target& t, const dir_path& d)
{
const bool e (d.empty ());
for (prerequisite p: group_prerequisites (t))
{
target& pt (search (p));
if (e || pt.dir.sub (d))
{
match (a, pt);
t.prerequisite_targets.push_back (&pt);
}
}
}
void
search_and_match_prerequisite_members (action a,
target& t,
const dir_path& d)
{
const bool e (d.empty ());
for (prerequisite_member p: group_prerequisite_members (a, t))
{
target& pt (p.search ());
if (e || pt.dir.sub (d))
{
match (a, pt);
t.prerequisite_targets.push_back (&pt);
}
}
}
void
inject_parent_fsdir (action a, target& t)
{
tracer trace ("inject_parent_fsdir");
scope& s (t.base_scope ());
scope* rs (s.root_scope ());
if (rs == nullptr) // Could be outside any project.
return;
const dir_path& out_root (rs->out_path ());
// If t is a directory (name is empty), say foo/bar/, then
// t is bar and its parent directory is foo/.
//
const dir_path& d (t.name.empty () ? t.dir.directory () : t.dir);
if (!d.sub (out_root) || d == out_root)
return;
level6 ([&]{trace << "for " << t;});
fsdir& dt (search<fsdir> (d, string (), nullptr, &s));
match (a, dt);
t.prerequisite_targets.emplace_back (&dt);
}
target_state
execute_impl (action a, target& t)
{
// Implementation with some multi-threading ideas in mind.
//
switch (t.raw_state)
{
case target_state::group: // Means group's state is unknown.
case target_state::unknown:
case target_state::postponed:
{
auto g (
make_exception_guard (
[a, &t]()
{
t.raw_state = target_state::failed;
info << "while " << diag_doing (a, t);
}));
target_state ts (t.recipe (a) (a, t));
assert (ts != target_state::unknown && ts != target_state::failed);
// Set the target's state unless it should be the group's state.
//
if (t.raw_state != target_state::group)
t.raw_state = ts;
return ts;
}
case target_state::unchanged:
case target_state::changed:
// Should have been handled by inline execute().
assert (false);
case target_state::failed:
break;
}
throw failed ();
}
target_state
execute_prerequisites (action a, target& t)
{
target_state r (target_state::unchanged);
for (target* pt: t.prerequisite_targets)
{
if (pt == nullptr) // Skipped.
continue;
r |= execute (a, *pt);
}
return r;
}
target_state
reverse_execute_prerequisites (action a, target& t)
{
target_state r (target_state::unchanged);
for (target* pt: reverse_iterate (t.prerequisite_targets))
{
if (pt == nullptr) // Skipped.
continue;
r |= execute (a, *pt);
}
return r;
}
bool
execute_prerequisites (action a, target& t, const timestamp& mt)
{
bool e (mt == timestamp_nonexistent);
for (target* pt: t.prerequisite_targets)
{
if (pt == nullptr) // Skipped.
continue;
target_state ts (execute (a, *pt));
if (!e)
{
// If this is an mtime-based target, then compare timestamps.
//
if (auto mpt = dynamic_cast<const mtime_target*> (pt))
{
timestamp mp (mpt->mtime ());
// What do we do if timestamps are equal? This can happen, for
// example, on filesystems that don't have subsecond resolution.
// There is not much we can do here except detect the case where
// the prerequisite was changed in this run which means the
// action must be executed on the target as well.
//
if (mt < mp || (mt == mp && ts == target_state::changed))
e = true;
}
else
{
// Otherwise we assume the prerequisite is newer if it was changed.
//
if (ts == target_state::changed)
e = true;
}
}
}
return e;
}
target_state
noop_action (action, target&)
{
assert (false); // We shouldn't be called, see target::recipe().
return target_state::unchanged;
}
target_state
group_action (action a, target& t)
{
target_state r (execute (a, *t.group));
// Indicate to the standard execute() logic that this target's
// state comes from the group.
//
t.raw_state = target_state::group;
return r;
}
target_state
default_action (action a, target& t)
{
return current_mode == execution_mode::first
? execute_prerequisites (a, t)
: reverse_execute_prerequisites (a, t);
}
target_state
perform_clean (action a, target& t)
{
// The reverse order of update: first delete the file, then clean
// prerequisites.
//
file& ft (dynamic_cast<file&> (t));
target_state r (rmfile (ft.path (), ft)
? target_state::changed
: target_state::unchanged);
// Update timestamp in case there are operations after us that
// could use the information.
//
ft.mtime (timestamp_nonexistent);
// Clean prerequisites.
//
r |= reverse_execute_prerequisites (a, t);
return r;
}
}
|