1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
|
// file : build/algorithm.cxx -*- C++ -*-
// copyright : Copyright (c) 2014-2015 Code Synthesis Tools CC
// license : MIT; see accompanying LICENSE file
#include <build/algorithm>
#include <memory> // unique_ptr
#include <utility> // move
#include <cassert>
#include <build/path>
#include <build/scope>
#include <build/target>
#include <build/prerequisite>
#include <build/rule>
#include <build/search>
#include <build/utility>
#include <build/diagnostics>
using namespace std;
namespace build
{
target&
search (prerequisite& p)
{
assert (p.target == nullptr);
if (target* t = p.type.search (p))
return *t;
return create_new_target (p);
}
void
match_impl (target& t)
{
for (auto tt (&t.type ());
tt != nullptr && !t.recipe ();
tt = tt->base)
{
auto i (rules.find (tt->id));
if (i == rules.end ()) // No rules registered for this target type.
continue;
const auto& rules (i->second); // Hint map.
string hint; // @@ TODO
auto rs (rules.find_prefix (hint));
for (auto i (rs.first); i != rs.second; ++i)
{
const string& n (i->first);
const rule& ru (i->second);
void* m;
{
auto g (
make_exception_guard (
[](target& t, const string& n)
{
info << "while matching rule " << n << " for target " << t;
},
t, n));
m = ru.match (t, hint);
}
if (m != nullptr)
{
// Do the ambiguity test.
//
bool ambig (false);
diag_record dr;
for (++i; i != rs.second; ++i)
{
const string& n1 (i->first);
const rule& ru1 (i->second);
void* m1;
{
auto g (
make_exception_guard (
[](target& t, const string& n1)
{
info << "while matching rule " << n1 << " for target "
<< t;
},
t, n1));
m1 = ru1.match (t, hint);
}
if (m1 != nullptr)
{
if (!ambig)
{
dr << fail << "multiple rules matching target " << t
<< info << "rule " << n << " matches";
ambig = true;
}
dr << info << "rule " << n1 << " also matches";
}
}
if (!ambig)
{
auto g (
make_exception_guard (
[](target& t, const string& n)
{
info << "while applying rule " << n << " for target " << t;
},
t, n));
t.recipe (ru.apply (t, m));
break;
}
else
dr << info << "use rule hint to disambiguate this match";
}
}
}
if (!t.recipe ())
fail << "no rule to update target " << t;
}
void
search_and_match (target& t)
{
for (prerequisite& p: t.prerequisites)
{
if (p.target == nullptr)
search (p);
match (*p.target);
}
}
target_state
update (target& t)
{
// Implementation with some multi-threading ideas in mind.
//
switch (target_state ts = t.state ())
{
case target_state::unknown:
{
t.state (target_state::failed); // So the rule can just throw.
auto g (
make_exception_guard (
[](target& t){info << "while updating target " << t;},
t));
ts = t.recipe () (t);
assert (ts != target_state::unknown && ts != target_state::failed);
t.state (ts);
return ts;
}
case target_state::uptodate:
case target_state::updated:
return ts;
case target_state::failed:
throw failed ();
}
}
target_state
update_prerequisites (target& t)
{
target_state ts (target_state::uptodate);
for (const prerequisite& p: t.prerequisites)
{
assert (p.target != nullptr);
if (update (*p.target) != target_state::uptodate)
ts = target_state::updated;
}
return ts;
}
bool
update_prerequisites (target& t, const timestamp& mt)
{
bool u (mt == timestamp_nonexistent);
for (const prerequisite& p: t.prerequisites)
{
assert (p.target != nullptr);
target& pt (*p.target);
target_state ts (update (pt));
if (!u)
{
// If this is an mtime-based target, then compare timestamps.
//
if (auto mpt = dynamic_cast<const mtime_target*> (&pt))
{
timestamp mp (mpt->mtime ());
// What do we do if timestamps are equal? This can happen, for
// example, on filesystems that don't have subsecond resolution.
// There is not much we can do here except detect the case where
// the prerequisite was updated in this run which means the
// target must be out of date.
//
if (mt < mp || mt == mp && ts == target_state::updated)
u = true;
}
else
{
// Otherwise we assume the prerequisite is newer if it was updated.
//
if (ts == target_state::updated)
u = true;
}
}
}
return u;
}
}
|