// file : libbuild2/scope.hxx -*- C++ -*- // license : MIT; see accompanying LICENSE file #ifndef LIBBUILD2_SCOPE_HXX #define LIBBUILD2_SCOPE_HXX #include <unordered_set> #include <libbuild2/types.hxx> #include <libbuild2/forward.hxx> #include <libbuild2/utility.hxx> #include <libbuild2/module.hxx> #include <libbuild2/context.hxx> #include <libbuild2/variable.hxx> #include <libbuild2/rule-map.hxx> #include <libbuild2/operation.hxx> #include <libbuild2/target-key.hxx> #include <libbuild2/target-type.hxx> #include <libbuild2/target-state.hxx> #include <libbuild2/prerequisite-key.hxx> #include <libbuild2/export.hxx> namespace build2 { class dir; using subprojects = map<project_name, dir_path>; LIBBUILD2_SYMEXPORT ostream& operator<< (ostream&, const subprojects&); // Print as name@dir sequence. class LIBBUILD2_SYMEXPORT scope { public: // Context this scope belongs to. // context& ctx; // Absolute and normalized. // const dir_path& out_path () const {return *out_path_;} const dir_path& src_path () const {return *src_path_;} bool out_eq_src () const {return out_path_ == src_path_;} // These are pointers to the keys in scope_map. The second can be NULL // during bootstrap until initialized. // const dir_path* out_path_ = nullptr; const dir_path* src_path_ = nullptr; bool root () const; // Note that the *_scope() functions reaturn "logical" parent/root/etc // scopes, taking into account the project's var_amalgamation value. scope* parent_scope (); const scope* parent_scope () const; // Root scope of this scope or NULL if this scope is not (yet) in any // (known) project. Note that if the scope itself is root, then this // function return this. To get to the outer root, query the root scope of // the parent. // scope* root_scope (); const scope* root_scope () const; // Root scope of the outermost "strong" (source-based) amalgamation of // this scope or NULL if this scope is not (yet) in any (known) project. // If there is no strong amalgamation, then this function returns the root // scope of the project (in other words, in this case a project is treated // as its own strong amalgamation). // scope* strong_scope (); const scope* strong_scope () const; // Root scope of the outermost amalgamation or NULL if this scope is not // (yet) in any (known) project. If there is no amalgamation, then this // function returns the root scope of the project (in other words, in this // case a project is treated as its own amalgamation). // scope* weak_scope (); const scope* weak_scope () const; // Global scope. // scope& global_scope () {return const_cast<scope&> (ctx.global_scope);} const scope& global_scope () const {return ctx.global_scope;} // Return true if the specified root scope is a sub-scope of this root // scope. Note that both scopes must be root. // bool sub_root (const scope&) const; // Variables. // public: variable_map vars; // Lookup, including in outer scopes. If you only want to lookup in this // scope, do it on the the variables map directly (and note that there // will be no overrides). // using lookup_type = build2::lookup; lookup_type operator[] (const variable& var) const { return lookup (var).first; } lookup_type operator[] (const variable* var) const // For cached variables. { assert (var != nullptr); return operator[] (*var); } lookup_type operator[] (const string& name) const { const variable* var (ctx.var_pool.find (name)); return var != nullptr ? operator[] (*var) : lookup_type (); } // As above, but include target type/pattern-specific variables. // lookup_type lookup (const variable& var, const target_key& tk) const { return lookup (var, tk.type, tk.name).first; } lookup_type lookup (const variable& var, const target_type& tt, const string& tn) const { return lookup (var, &tt, &tn).first; } lookup_type lookup (const variable& var, const target_type& tt, const string& tn, const target_type& gt, const string& gn) const { return lookup (var, &tt, &tn, >, &gn).first; } pair<lookup_type, size_t> lookup (const variable& var, const target_type* tt = nullptr, const string* tn = nullptr, const target_type* gt = nullptr, const string* gn = nullptr) const { auto p (lookup_original (var, tt, tn, gt, gn)); return var.overrides == nullptr ? p : lookup_override (var, move (p)); } // Implementation details (used by scope target lookup). The start_depth // can be used to skip a number of initial lookups. // pair<lookup_type, size_t> lookup_original ( const variable&, const target_type* tt = nullptr, const string* tn = nullptr, const target_type* gt = nullptr, const string* gn = nullptr, size_t start_depth = 1) const; pair<lookup_type, size_t> lookup_override (const variable& var, pair<lookup_type, size_t> original, bool target = false, bool rule = false) const { return lookup_override_info (var, original, target, rule).lookup; } // As above but also return an indication of whether the resulting value // is/is based (e.g., via append/prepend overrides) on the original or an // "outright" override. Note that it will always be false if there is no // original. // struct override_info { pair<lookup_type, size_t> lookup; bool original; }; override_info lookup_override_info (const variable&, pair<lookup_type, size_t> original, bool target = false, bool rule = false) const; // Return a value suitable for assignment (or append if you only want to // append to the value from this scope). If the value does not exist in // this scope's map, then a new one with the NULL value is added and // returned. Otherwise the existing value is returned. // value& assign (const variable& var) {return vars.assign (var);} value& assign (const variable* var) {return vars.assign (var);} // For cached. template <typename T> T& assign (const variable& var, T&& val) { value& v (assign (var) = forward<T> (val)); return v.as<T> (); } template <typename T> T& assign (const variable* var, T&& val) { value& v (assign (var) = forward<T> (val)); return v.as<T> (); } // Assign an untyped non-overridable variable with project visibility. // value& assign (string name) { return assign (var_pool ().insert (move (name))); } // As above, but assign a typed variable (note: variable type must be // specified explicitly). // template <typename V> value& assign (string name) { return vars.assign (var_pool ().insert<V> (move (name))); } template <typename V, typename T> V& assign (string name, T&& val) { value& v (assign<V> (move (name)) = forward<T> (val)); return v.as<V> (); } // Return a value suitable for appending. If the variable does not exist // in this scope's map, then outer scopes are searched for the same // variable. If found then a new variable with the found value is added to // this scope and returned. Otherwise this function proceeds as assign(). // value& append (const variable&); value& append (string name) { return append (var_pool ().insert (move (name))); } template <typename V> value& append (string name) { return append (var_pool ().insert<V> (move (name))); } // Target type/pattern-specific variables. // variable_type_map target_vars; // Set of buildfiles already loaded for this scope. The included // buildfiles are checked against the project's root scope while // imported -- against the global scope (global_scope). // public: std::unordered_set<path> buildfiles; // Target types. // // Note that target types are project-wide (even if the module that // registers them is loaded in a base scope). The thinking here is that // having target types only visible in certain scopes of a project just // complicates and confuses things (e.g., you cannot refer to a target // whose buildfile you just included). On the other hand, it feels highly // unlikely that a target type will somehow need to be different for // different parts of the project (unlike, say, a rule). // // The target types are also project-local. This means one has to use // import to refer to targets across projects, even in own subprojects // (because we stop searching at project boundaries). // // See also context::global_target_types. // public: const target_type& insert_target_type (const target_type& tt) { return root_extra->target_types.insert (tt); } template <typename T> const target_type& insert_target_type () { return root_extra->target_types.insert<T> (); } void insert_target_type_file (const string& n, const target_type& tt) { root_extra->target_types.insert_file (n, tt); } const target_type* find_target_type (const string&) const; // Given a target name, figure out its type, taking into account // extensions, special names (e.g., '.' and '..'), or anything else that // might be relevant. Process the name (in place) by extracting (and // returning) extension, adjusting dir/leaf, etc., (note that the dir is // not necessarily normalized). Return NULL if not found. // pair<const target_type*, optional<string>> find_target_type (name&, const location&) const; // As above but process the potentially out-qualified target name further // by completing (relative to this scope) and normalizing the directories // and also issuing appropriate diagnostics if the target type is unknown. // If the first argument has the pair flag true, then the second should be // the out directory. // pair<const target_type&, optional<string>> find_target_type (name&, name&, const location&) const; // As above, but return the result as a target key (with its members // shallow-pointing to processed parts in the two names). // target_key find_target_key (name&, name&, const location&) const; // As above, but the names are passed as a vector. Issue appropriate // diagnostics if the wrong number of names is passed. // target_key find_target_key (names&, const location&) const; // Similar to the find_target_type() but does not complete relative // directories. // pair<const target_type&, optional<string>> find_prerequisite_type (name&, name&, const location&) const; // As above, but return a prerequisite key. // prerequisite_key find_prerequisite_key (name&, name&, const location&) const; prerequisite_key find_prerequisite_key (names&, const location&) const; // Dynamically derive a new target type from an existing one. Return the // reference to the target type and an indicator of whether it was // actually created. // pair<reference_wrapper<const target_type>, bool> derive_target_type (const string& name, const target_type& base); template <typename T> pair<reference_wrapper<const target_type>, bool> derive_target_type (const string& name) { return derive_target_type (name, T::static_type); } // Derive from an "exemplar" type overriding the factory. // const target_type& derive_target_type (const target_type&); // Rules. // public: rule_map rules; template <typename T> void insert_rule (action_id a, const char* hint, const rule& r) { rules.insert<T> (a, hint, r); } template <typename T> void insert_rule (meta_operation_id mid, operation_id oid, const char* hint, const rule& r) { rules.insert<T> (mid, oid, hint, r); } // Operation callbacks. // // An entity (module, core) can register a function that will be called // when an action is executed on the dir{} target that corresponds to this // scope. The pre callback is called just before the recipe and the post // -- immediately after. The callbacks are only called if the recipe // (including noop recipe) is executed for the corresponding target. The // callbacks should only be registered during the load phase. // // It only makes sense for callbacks to return target_state changed or // unchanged and to throw failed in case of an error. These pre/post // states will be merged with the recipe state and become the target // state. See execute_recipe() for details. // public: struct operation_callback { using callback = target_state (action, const scope&, const dir&); function<callback> pre; function<callback> post; }; using operation_callback_map = multimap<action_id, operation_callback>; operation_callback_map operation_callbacks; // Extra root scope-only data. // public: struct root_extra_type { // This project's name (var_project value). Absent means it is not yet // determined. NULL means simple project. Empty means unnamed project. // // Note that it is set to point to a temporary value before loading // bootstrap.build and to a permanent one (from the variable) after. // optional<const project_name*> project; // This project's amalgamation (var_amalgamation value). Absent means it // is not yet determined. NULL means amalgamation is disabled. // optional<const dir_path*> amalgamation; // This project's subprojects (var_subprojects value). Absent means it // is not yet determined (happens at the end of bootstrap_src()). NULL // means there are no subprojects. // optional<const build2::subprojects*> subprojects; bool altn; // True if using alternative build file/directory naming. // Build file/directory naming scheme used by this project. // const string& build_ext; // build or build2 (no dot) const dir_path& build_dir; // build/ or build2/ const path& buildfile_file; // buildfile or build2file const path& buildignore_file; // buildignore or build2ignore const dir_path& root_dir; // build[2]/root/ const dir_path& bootstrap_dir; // build[2]/bootstrap/ const dir_path& build_build_dir; // build[2]/build/ const path& bootstrap_file; // build[2]/bootstrap.build[2] const path& root_file; // build[2]/root.build[2] const path& export_file; // build[2]/export.build[2] const path& src_root_file; // build[2]/bootstrap/src-root.build[2] const path& out_root_file; // build[2]/bootstrap/src-root.build[2] // Meta/operations supported by this project. // build2::meta_operations meta_operations; build2::operations operations; // Modules loaded by this project. // module_map modules; // Variable override cache. // mutable variable_override_cache override_cache; // Target types. // target_type_map target_types; // Environment variable overrides. // // These overrides should be applied to the environment when running // tools (e.g., compilers) or querying environment variables from the // buildfiles and by the build system itself. Populated by the config // module and is not available during bootstrap (more precisely, not // available until before_first modules have been initialized). The list // is either empty of NULL-terminated. // // See also auto_project_env below. // vector<const char*> environment; // A checksum of the above environment variables (empty if there are // none). This can be used to take into account project environment // when, for example, caching environment-sensitive information. // string environment_checksum; }; unique_ptr<root_extra_type> root_extra; void insert_operation (operation_id id, const operation_info& in) { root_extra->operations.insert (id, in); } void insert_meta_operation (meta_operation_id id, const meta_operation_info& in) { root_extra->meta_operations.insert (id, in); } bool find_module (const string& name) const { return root_extra->modules.find_module<module> (name) != nullptr; } template <typename T> T* find_module (const string& name) const { return root_extra->modules.find_module<T> (name); } public: // RW access. // scope& rw () const { assert (ctx.phase == run_phase::load); return const_cast<scope&> (*this); } variable_pool& var_pool () { return ctx.var_pool.rw (*this); } private: friend class parser; friend class scope_map; friend class temp_scope; // These two from <libbuild2/file.hxx> set strong_. // friend LIBBUILD2_SYMEXPORT void create_bootstrap_outer (scope&); friend LIBBUILD2_SYMEXPORT scope& create_bootstrap_inner (scope&, const dir_path&); scope (context& c, bool global) : ctx (c), vars (c, global), target_vars (c, global) {} // Return true if this root scope can be amalgamated. // bool amalgamatable () const; // Note that these values represent "physical" scoping relationships not // taking into account the project's var_amalgamation value. // scope* parent_; scope* root_; scope* strong_ = nullptr; // Only set on root scopes. // NULL means no strong amalgamtion. }; inline bool operator== (const scope& x, const scope& y) { return &x == &y; } inline bool operator!= (const scope& x, const scope& y) { return !(x == y); } inline ostream& operator<< (ostream& os, const scope& s) { // Always absolute. // return to_stream (os, s.out_path (), true /* representation */); } // Automatic project environment setup/cleanup. // struct auto_project_env: auto_thread_env { auto_project_env () = default; explicit auto_project_env (nullptr_t p) // Clear current environment. : auto_thread_env (p) {} explicit auto_project_env (const scope& rs) : auto_thread_env (rs.root_extra->environment.empty () ? nullptr : rs.root_extra->environment.data ()) {} }; // Return the src/out directory corresponding to the given out/src. The // passed directory should be a sub-directory of out/src_root. // dir_path src_out (const dir_path& out, const scope& root); dir_path src_out (const dir_path& out, const dir_path& out_root, const dir_path& src_root); dir_path out_src (const dir_path& src, const scope& root); dir_path out_src (const dir_path& src, const dir_path& out_root, const dir_path& src_root); // Return the project name or empty if unnamed. // // Note that this function and named_project() below expect the root scope // to either be already bootstrapped or being src-bootstrapped (see // bootstrap_src()). // const project_name& project (const scope& root); // Return the name of the first innermost named project in the strong // amalgamation chain or empty if all are unnamed. // const project_name& named_project (const scope& root); // Temporary scope. The idea is to be able to create a temporary scope in // order not to change the variables in the current scope. Such a scope is // not entered in to the scope map. As a result it can only be used as a // temporary set of variables. In particular, defining targets directly in // such a scope will surely end up badly. Defining any nested scopes will be // as if defining such a scope in the parent (since path() returns parent's // path). // class temp_scope: public scope { public: temp_scope (scope& p) : scope (p.ctx, false /* global */) { out_path_ = p.out_path_; src_path_ = p.src_path_; parent_ = &p; root_ = p.root_; // No need to copy strong_ since we are never root scope. } }; // Scope map. Protected by the phase mutex. // // While it contains both out and src paths, the latter is not available // during bootstrap (see setup_root() and setup_base() for details). // // Note also that the same src path can be naturally associated with // multiple out paths/scopes (and one of them may be the same as src). // class scope_map { public: // The first element, if not NULL, is for the "owning" out path. The rest // of the elements are for the src path shallow references. // struct scopes: small_vector<scope*, 3> { scopes () = default; ~scopes () {if (!empty ()) delete front ();} scopes (scopes&&) = default; // For GCC 4.9 scopes (const scopes&) = delete; scopes& operator= (scopes&&) = delete; scopes& operator= (const scopes&) = delete; }; using map_type = dir_path_map<scopes>; using iterator = map_type::iterator; using const_iterator = map_type::const_iterator; // Insert a scope given its out path. // // Note that we assume the first insertion into the map is always the // global scope with empty key. // LIBBUILD2_SYMEXPORT iterator insert_out (const dir_path& our_path, bool root = false); // Insert a shallow reference to the scope for its src path. // LIBBUILD2_SYMEXPORT iterator insert_src (scope&, const dir_path& src_path); // Find the most qualified scope that encompasses this out path. // const scope& find_out (const dir_path& d) const { return const_cast<scope_map*> (this)->find_out (d); } // Find all the scopes that encompass this path (out or src). // // Note that the returned range will never be empty (there is always the // global scope). // // If the path is in src, then we may end up with multiple scopes. For // example, if two configurations of the same project are being built in a // single invocation. How can we pick the scope that is "ours", for some // definition of "ours"? // // The current think is that a project can be "associated" with other // projects: its sub-projects and imported projects (it doesn't feel like // its super-projects should be in this set, but maybe). And "ours" could // mean belonging to one of the associated projects. This feels correct // since a project shouldn't really be reaching into unrelated projects. // And a project can only import one instance of any given project. // // We could implement this by keeping track (in scope::root_extra) of all // the imported projects. The potential problem is performance: we would // need to traverse the imported projects set recursively (potentially // re-traversing the same projects multiple times). // // An alternative idea is to tag associated scopes with some marker so // that all the scopes that "know" about each other have the same tag, // essentially partitioning the scope set into connected subsets. One // issue here (other than the complexity of implementing something like // this) is that there could potentially be multiple source scopes with // the same tag (e.g., two projects that don't know anything about each // other could each import a different configuration of some common // project and in turn be both imported by yet another project thus all // acquiring the same tag). BTW, this could also be related to that // "island append" restriction we have on loading additional buildfile. // LIBBUILD2_SYMEXPORT pair<scopes::const_iterator, scopes::const_iterator> find (const dir_path&) const; const_iterator begin () const {return map_.begin ();} const_iterator end () const {return map_.end ();} const_iterator find_exact (const dir_path& d) const {return map_.find (d);} // RW access. // public: scope_map& rw () const { assert (ctx.phase == run_phase::load); return const_cast<scope_map&> (*this); } scope_map& rw (scope&) const {return const_cast<scope_map&> (*this);} private: friend class context; explicit scope_map (context& c): ctx (c) {} LIBBUILD2_SYMEXPORT scope& find_out (const dir_path&); private: context& ctx; map_type map_; }; } #include <libbuild2/scope.ixx> #endif // LIBBUILD2_SCOPE_HXX