// file : libbuild2/module.cxx -*- C++ -*- // license : MIT; see accompanying LICENSE file #include <libbuild2/module.hxx> #if !defined(BUILD2_BOOTSTRAP) && !defined(LIBBUILD2_STATIC_BUILD) # ifndef _WIN32 # include <dlfcn.h> # else # include <libbutl/win32-utility.hxx> # endif #endif #include <libbuild2/file.hxx> // import_*() #include <libbuild2/scope.hxx> #include <libbuild2/target.hxx> #include <libbuild2/variable.hxx> #include <libbuild2/operation.hxx> #include <libbuild2/diagnostics.hxx> // Core modules bundled with libbuild2. // #include <libbuild2/dist/init.hxx> #include <libbuild2/test/init.hxx> #include <libbuild2/config/init.hxx> #include <libbuild2/install/init.hxx> using namespace std; using namespace butl; namespace build2 { mutex loaded_modules_lock::mutex_; loaded_module_map loaded_modules; void load_builtin_module (module_load_function* lf) { for (const module_functions* i (lf ()); i->name != nullptr; ++i) loaded_modules[i->name] = i; } // Sorted array of bundled modules (excluding core modules bundled with // libbuild2; see below). // static const char* bundled_modules[] = { "bash", "bin", "c", "cc", "cxx", "in", "version" }; static inline bool bundled_module (const string& mod) { return binary_search ( bundled_modules, bundled_modules + sizeof (bundled_modules) / sizeof (*bundled_modules), mod); } // Note: also used by ad hoc recipes thus not static. // void create_module_context (context& ctx, const location& loc) { assert (ctx.module_context == nullptr); assert (*ctx.module_context_storage == nullptr); // Since we are using the same scheduler, it makes sense to reuse the // same global mutexes. Also disable nested module context for good // measure. // ctx.module_context_storage->reset ( new context (ctx.sched, ctx.mutexes, false, /* match_only */ false, /* dry_run */ ctx.keep_going, ctx.global_var_overrides, /* cmd_vars */ nullopt)); /* module_context */ // We use the same context for building any nested modules that might be // required while building modules. // ctx.module_context = ctx.module_context_storage->get (); ctx.module_context->module_context = ctx.module_context; // Setup the context to perform update. In a sense we have a long-running // perform meta-operation batch (indefinite, in fact, since we never call // the meta-operation's *_post() callbacks) in which we periodically // execute update operations. // // Note that we perform each build in a separate update operation. Failed // that, if the same target is update twice (which may happen with ad hoc // recipes) we will see the old state. // if (mo_perform.meta_operation_pre != nullptr) mo_perform.meta_operation_pre ({} /* parameters */, loc); ctx.module_context->current_meta_operation (mo_perform); if (mo_perform.operation_pre != nullptr) mo_perform.operation_pre ({} /* parameters */, update_id); } // Note: also used by ad hoc recipes thus not static. // const target& update_in_module_context (context& ctx, const scope& rs, names tgt, const location& loc, const path& bf) { // New update operation. // ctx.module_context->current_operation (op_update); // Un-tune the scheduler. // // Note that we can only do this if we are running serially because // otherwise we cannot guarantee the scheduler is idle (we could have // waiting threads from the outer context). This is fine for now since the // only two tuning level we use are serial and full concurrency (turns out // currently we don't really need this: we will always be called during // load or match phases and we always do parallel match; but let's keep it // in case things change). // auto sched_tune (ctx.sched.serial () ? scheduler::tune_guard (ctx.sched, 0) : scheduler::tune_guard ()); // Remap verbosity level 0 to 1 unless we were requested to be silent. // Failed that, we may have long periods of seemingly nothing happening // while we quietly update the module, which may look like things have // hung up. // // @@ CTX: modifying global verbosity level won't work if we have multiple // top-level contexts running in parallel. // auto verbg = make_guard ( [z = !silent && verb == 0 ? (verb = 1, true) : false] () { if (z) verb = 0; }); // Note that for now we suppress progress since it would clash with the // progress of what we are already doing (maybe in the future we can do // save/restore but then we would need some sort of diagnostics that we // have switched to another task). // action a (perform_update_id); action_targets tgs; mo_perform.search ({}, /* parameters */ rs, /* root scope */ rs, /* base scope */ bf, /* buildfile */ rs.find_target_key (tgt, loc), loc, tgs); mo_perform.match ({}, /* parameters */ a, tgs, 1, /* diag (failures only) */ false /* progress */); mo_perform.execute ({}, /* parameters */ a, tgs, 1, /* diag (failures only) */ false /* progress */); assert (tgs.size () == 1); return tgs[0].as<target> (); } // Note: also used by ad hoc recipes thus not static. // #if !defined(BUILD2_BOOTSTRAP) && !defined(LIBBUILD2_STATIC_BUILD) pair<void* /* handle */, void* /* symbol */> load_module_library (const path& lib, const string& sym, string& err) { // Note that we don't unload our modules since it's not clear what would // the benefit be. // void* h (nullptr); void* s (nullptr); #ifndef _WIN32 // Use RTLD_NOW instead of RTLD_LAZY to both speed things up (we are going // to use this module now) and to detect any symbol mismatches. // if ((h = dlopen (lib.string ().c_str (), RTLD_NOW | RTLD_GLOBAL))) { s = dlsym (h, sym.c_str ()); if (s == nullptr) err = dlerror (); } else err = dlerror (); #else if (HMODULE m = LoadLibrary (lib.string ().c_str ())) { h = static_cast<void*> (m); s = function_cast<void*> (GetProcAddress (m, sym.c_str ())); if (s == nullptr) err = win32::last_error_msg (); } else err = win32::last_error_msg (); #endif return make_pair (h, s); } #else pair<void*, void*> load_module_library (const path&, const string&, string&) { return pair<void*, void*> (nullptr, nullptr); } #endif static module_load_function* import_module ( #if defined(BUILD2_BOOTSTRAP) || defined(LIBBUILD2_STATIC_BUILD) scope&, #else scope& bs, #endif const string& mod, const location& loc, bool boot, bool opt) { tracer trace ("import_module"); // Take care of core modules that are bundled with libbuild2 in case they // are not pre-loaded by the driver. // if (mod == "config") return &config::build2_config_load; else if (mod == "dist") return &dist::build2_dist_load; else if (mod == "install") return &install::build2_install_load; else if (mod == "test") return &test::build2_test_load; bool bundled (bundled_module (mod)); // Importing external modules during bootstrap is problematic: we haven't // loaded config.build nor entered all the variable overrides so it's not // clear what import() can do except confuse matters. So this requires // more thinking. // if (boot && !bundled) { fail (loc) << "unable to load build system module " << mod << info << "loading external modules during bootstrap is not yet " << "supported"; } module_load_function* r (nullptr); // No dynamic loading of build system modules during bootstrap or if // statically-linked.. // #if defined(BUILD2_BOOTSTRAP) || defined(LIBBUILD2_STATIC_BUILD) if (!opt) { fail (loc) << "unknown build system module " << mod << #ifdef BUILD2_BOOTSTRAP info << "running bootstrap build system"; #else info << "running statically-linked build system"; #endif } #else context& ctx (bs.ctx); // See if we can import a target for this module. // path lib; // If this is a top-level module update, then we use the nested context. // If, however, this is a nested module update (i.e., a module required // while updating a module), then we reuse the same module context. // // If you are wondering why don't we always use the top-level context, the // reason is that it might be running a different meta/operation (say, // configure or clean); with the nested context we always know it is // perform update. // // And the reason for not simply creating a nested context for each nested // module update is due to the no-overlap requirement of contexts: while // we can naturally expect the top-level project(s) and the modules they // require to be in separate configurations that don't shared anything, // the same does not hold for build system modules. In fact, it would be // natural to have a single build configuration for all of them and they // could plausibly share some common libraries. // bool nested (ctx.module_context == &ctx); // If this is one of the bundled modules, the project name is build2, // otherwise -- libbuild2-<mod>. // project_name proj; try { proj = project_name (bundled ? "build2" : "libbuild2-" + mod); } catch (const invalid_argument& e) { fail (loc) << "invalid build system module '" << mod << "': " << e; } // The target we are looking for is <prj>%libs{build2-<mod>}. // // We only search in subprojects if this is a nested module update // (remember, if it's top-level, then it must be in an isolated // configuration). // pair<name, optional<dir_path>> ir ( import_search (bs, name (proj, dir_path (), "libs", "build2-" + mod), opt, nullopt /* metadata */, nested /* subprojects */, loc)); if (ir.first.empty ()) { assert (opt); return nullptr; } if (ir.second) { // What if a module is specified with config.import.<mod>.<lib>.libs? // Note that this could still be a project-qualified target. // if (ir.second->empty ()) fail (loc) << "direct module target importation not yet supported"; // We found the module as a target in a project. Now we need to update // the target (which will also give us the shared library path). // l5 ([&]{trace << "found " << ir.first << " in " << *ir.second;}); // Create the build context if necessary. // if (ctx.module_context == nullptr) { if (!ctx.module_context_storage) fail (loc) << "unable to update build system module " << mod << info << "building of build system modules is disabled"; create_module_context (ctx, loc); } // Inherit loaded_modules lock from the outer context. // ctx.module_context->modules_lock = ctx.modules_lock; // "Switch" to the module context. // context& ctx (*bs.ctx.module_context); // Load the imported project in the module context. // pair<names, const scope&> lr ( import_load (ctx, move (ir), false /* metadata */, loc)); l5 ([&]{trace << "loaded " << lr.first;}); // What happens next depends on whether this is a top-level or nested // module update. // if (nested) { // This could be initial or exclusive load. // // @@ TODO: see the ad hoc recipe case as a reference. // fail (loc) << "nested build system module updates not yet supported"; } else { const target* l; { // Cutoff the existing diagnostics stack and push our own entry. // diag_frame::stack_guard diag_cutoff (nullptr); auto df = make_diag_frame ( [&loc, &mod] (const diag_record& dr) { dr << info (loc) << "while loading build system module " << mod; }); l = &update_in_module_context ( ctx, lr.second, move (lr.first), loc, path ()); } if (!l->is_a ("libs")) fail (loc) << "wrong export from build system module " << mod; lib = l->as<file> ().path (); l5 ([&]{trace << "updated " << lib;}); } ctx.modules_lock = nullptr; // For good measure. } else { // No module project found. Form the shared library name (incorporating // build system core version) and try using system-default search // (installed, rpath, etc). // @@ This is unfortunate: it would have been nice to do something // similar to what we've done for exe{}. While libs{} is in the bin // module, we could bring it in (we've done it for exe{}). The // problems are: it is intertwined with its group (lib{}) and we // don't have any mechanisms to deal with prefixes, only extensions. // const char* pfx; const char* sfx; #if defined(__MINGW32__) pfx = "libbuild2-"; sfx = ".dll"; #elif defined(_WIN32) pfx = "build2-"; sfx = ".dll"; #elif defined(__APPLE__) pfx = "libbuild2-"; sfx = ".dylib"; #else pfx = "libbuild2-"; sfx = ".so"; #endif lib = path (pfx + mod + '-' + build_version_interface + sfx); l5 ([&]{trace << "system-default search for " << lib;}); } // The build2_<mod>_load() symbol name. // string sym (sanitize_identifier ("build2_" + mod + "_load")); string err; pair<void*, void*> hs (load_module_library (lib, sym, err)); if (hs.first != nullptr) { // I don't think we should ignore this even if the module is optional. // if (hs.second == nullptr) fail (loc) << "unable to lookup " << sym << " in build system module " << mod << " (" << lib << "): " << err; r = function_cast<module_load_function*> (hs.second); } else if (!opt) { // Add import suggestion similar to import phase 2. // fail (loc) << "unable to load build system module " << mod << " (" << lib << "): " << err << info << "use config.import." << proj.variable () << " command " << "line variable to specify its project out_root"; } else l5 ([&]{trace << "unable to load " << lib << ": " << err;}); #endif // BUILD2_BOOTSTRAP || LIBBUILD2_STATIC_BUILD return r; } static const module_functions* find_module (scope& bs, const string& smod, const location& loc, bool boot, bool opt) { tracer trace ("find_module"); // Note that we hold the lock for the entire time it takes to build a // module. // loaded_modules_lock lock (bs.ctx); // Optional modules and submodules sure make this logic convoluted. So we // divide it into two parts: (1) find or insert an entry (for submodule // or, failed that, for the main module, the latter potentially NULL) and // (2) analyze the entry and issue diagnostics. // auto i (loaded_modules.find (smod)), e (loaded_modules.end ()); if (i == e) { // If this is a submodule, get the main module name. // string mmod (smod, 0, smod.find ('.')); if (mmod != smod) i = loaded_modules.find (mmod); if (i == e) { module_load_function* f (import_module (bs, mmod, loc, boot, opt)); if (f != nullptr) { // Enter all the entries noticing which one is our submodule. If // none are, then we notice the main module. // for (const module_functions* j (f ()); j->name != nullptr; ++j) { const string& n (j->name); l5 ([&]{trace << "registering " << n;}); auto p (loaded_modules.emplace (n, j)); if (!p.second) fail (loc) << "build system submodule name " << n << " of main " << "module " << mmod << " is already in use"; if (n == smod || (i == e && n == mmod)) i = p.first; } // We should at least have the main module. // if (i == e) fail (loc) << "invalid function list in build system module " << mmod; } else i = loaded_modules.emplace (move (mmod), nullptr).first; } } // Now the iterator points to a submodule or to the main module, the // latter potentially NULL. // if (!opt) { if (i->second == nullptr) { fail (loc) << "unable to load build system module " << i->first; } else if (i->first != smod) { fail (loc) << "build system module " << i->first << " has no " << "submodule " << smod; } } // Note that if the main module exists but has no such submodule, we // return NULL rather than fail (think of an older version of a module // that doesn't implement some extra functionality). // return i->second; } void boot_module (scope& rs, const string& mod, const location& loc) { // First see if this modules has already been booted for this project. // module_map& lm (rs.root_extra->modules); auto i (lm.find (mod)); if (i != lm.end ()) { module_state& s (i->second); // The only valid situation here is if the module has already been // bootstrapped. // assert (s.boot); return; } // Otherwise search for this module. // const module_functions& mf ( *find_module (rs, mod, loc, true /* boot */, false /* optional */)); if (mf.boot == nullptr) fail (loc) << "build system module " << mod << " should not be loaded " << "during bootstrap"; i = lm.emplace (mod, module_state {true, false, mf.init, nullptr, loc}).first; { module_boot_extra extra {i->second.module}; i->second.first = mf.boot (rs, loc, extra); } rs.assign (rs.var_pool ().insert (mod + ".booted")) = true; } module_state* init_module (scope& rs, scope& bs, const string& mod, const location& loc, bool opt, const variable_map& hints) { // First see if this modules has already been inited for this project. // module_map& lm (rs.root_extra->modules); auto i (lm.find (mod)); bool f (i == lm.end ()); if (f) { // Otherwise search for this module. // if (const module_functions* mf = find_module ( bs, mod, loc, false /* boot */, opt)) { if (mf->boot != nullptr) fail (loc) << "build system module " << mod << " should be loaded " << "during bootstrap"; i = lm.emplace ( mod, module_state {false, false, mf->init, nullptr, loc}).first; } } else { module_state& s (i->second); if (s.boot) { s.boot = false; f = true; // This is a first call to init. } } // Note: pattern-typed in context ctor as project visibility variables of // type bool. // // We call the variable 'loaded' rather than 'inited' because it is // buildfile-visible (where we use the term "load a module"; see the note // on terminology above) // auto& vp (rs.var_pool ()); value& lv (bs.assign (vp.insert (mod + ".loaded"))); value& cv (bs.assign (vp.insert (mod + ".configured"))); bool l; // Loaded (initialized). bool c; // Configured. // Suppress duplicate init() calls for the same module in the same scope. // if (!lv.null) { assert (!cv.null); l = cast<bool> (lv); c = cast<bool> (cv); if (!opt) { if (!l) fail (loc) << "unable to load build system module " << mod; // We don't have original diagnostics. We could call init() again so // that it can issue it. But that means optional modules must be // prepared to be called again if configuring failed. Let's keep it // simple for now. // if (!c) fail (loc) << "build system module " << mod << " failed to " << "configure"; } } else { l = i != lm.end (); if ((c = l)) { module_init_extra extra {i->second.module, hints}; c = i->second.init (rs, bs, loc, f, opt, extra); } lv = l; cv = c; } return l && c ? &i->second : nullptr; } // @@ TODO: This is a bit of a fuzzy mess: // // - The .loaded variable check: it's not clear if init_module() // already has this semantics? // // - Why do we use variable instead of the module map entry? Probably // because of optional. Also entry present if only booted. Need to be // careful here. Also root vs base! // // Note that it would have been nice to keep these inline but we need the // definition of scope for the variable lookup. // const shared_ptr<module>* load_module (scope& rs, scope& bs, const string& name, const location& loc, bool opt, const variable_map& hints) { if (cast_false<bool> (bs[name + ".loaded"])) { if (cast_false<bool> (bs[name + ".configured"])) return &rs.root_extra->modules.find (name)->second.module; } else { if (module_state* ms = init_module (rs, bs, name, loc, opt, hints)) return &ms->module; } return nullptr; } const shared_ptr<module>& load_module (scope& rs, scope& bs, const string& name, const location& loc, const variable_map& hints) { //@@ TODO: shouldn't we also check for configured? What if the previous // attempt to load it was optional? return cast_false<bool> (bs[name + ".loaded"]) ? rs.root_extra->modules.find (name)->second.module : init_module (rs, bs, name, loc, false /* optional */, hints)->module; } }