// file : libbuild2/functions-integer.cxx -*- C++ -*- // license : MIT; see accompanying LICENSE file #include <libbuild2/function.hxx> #include <libbuild2/variable.hxx> using namespace std; namespace build2 { extern bool functions_sort_flags (optional<names>); // functions-builtin.cxx static const char hex_digits[] = "0123456789abcdef"; static string to_string (uint64_t i, optional<value> base, optional<value> width) { uint64_t b (base ? convert<uint64_t> (move (*base)) : 10); size_t w (width ? static_cast<size_t> (convert<uint64_t> (move (*width))) : 0); // One day we can switch to C++17 std::to_chars(). // string r; switch (b) { case 10: { r = to_string (i); if (w > r.size ()) r.insert (0, w - r.size (), '0'); break; } case 16: { r.reserve (18); r += "0x"; for (size_t j (64); j != 0; ) { j -= 4; size_t d ((i >> j) & 0x0f); // Omit leading zeros but watch out for the i==0 corner case. // if (d != 0 || r.size () != 2 || j == 0) r += hex_digits[d]; } if (w > r.size () - 2) r.insert (2, w - (r.size () - 2), '0'); break; } default: throw invalid_argument ("unsupported base"); } return r; } void integer_functions (function_map& m) { function_family f (m, "integer"); // $string(<int64>) // $string(<uint64>[, <base>[, <width>]]) // // Note that we don't handle NULL values for these type since they have no // empty representation. // f["string"] += [](int64_t i) {return to_string (i);}; f["string"] += [](uint64_t i, optional<value> base, optional<value> width) { return to_string (i, move (base), move (width)); }; // $integer_sequence(<begin>, <end>[, <step>]) // // Return the list of uint64 integers starting from <begin> (including) to // <end> (excluding) with the specified <step> or 1 if unspecified. If // <begin> is greater than <end>, empty list is returned. // // Note that currently negative numbers are not supported but this could // be handled if required (e.g., by returning int64s in this case). // // Note also that we could improve this by adding a shortcut to get the // indexes of a list (for example, $indexes(<list>) plus potentially a // similar $keys() function for maps). // f["integer_sequence"] += [](value begin, value end, optional<value> step) { uint64_t b (convert<uint64_t> (move (begin))); uint64_t e (convert<uint64_t> (move (end))); uint64_t s (step ? convert<uint64_t> (move (*step)) : 1); uint64s r; if (b < e) { r.reserve (static_cast<size_t> ((e - b) / s + 1)); for (; b < e; b += s) r.push_back (static_cast<size_t> (b)); } return r; }; // $size(<ints>) // // Return the number of elements in the sequence. // f["size"] += [] (int64s v) {return v.size ();}; f["size"] += [] (uint64s v) {return v.size ();}; // $sort(<ints> [, <flags>]) // // Sort integers in ascending order. // // The following flags are supported: // // dedup - in addition to sorting also remove duplicates // f["sort"] += [](int64s v, optional<names> fs) { sort (v.begin (), v.end ()); if (functions_sort_flags (move (fs))) v.erase (unique (v.begin(), v.end()), v.end ()); return v; }; f["sort"] += [](uint64s v, optional<names> fs) { sort (v.begin (), v.end ()); if (functions_sort_flags (move (fs))) v.erase (unique (v.begin(), v.end()), v.end ()); return v; }; // $find(<ints>, <int>) // // Return true if the integer sequence contains the specified integer. // f["find"] += [](int64s vs, value v) { return find (vs.begin (), vs.end (), convert<int64_t> (move (v))) != vs.end (); }; f["find"] += [](uint64s vs, value v) { return find (vs.begin (), vs.end (), convert<uint64_t> (move (v))) != vs.end (); }; // $find_index(<ints>, <int>) // // Return the index of the first element in the integer sequence that is // equal to the specified integer or $size(<ints>) if none is found. // f["find_index"] += [](int64s vs, value v) { auto i (find (vs.begin (), vs.end (), convert<int64_t> (move (v)))); return i != vs.end () ? i - vs.begin () : vs.size (); }; f["find_index"] += [](uint64s vs, value v) { auto i (find (vs.begin (), vs.end (), convert<uint64_t> (move (v)))); return i != vs.end () ? i - vs.begin () : vs.size (); }; } }