// file : libbuild2/cc/guess.cxx -*- C++ -*- // copyright : Copyright (c) 2014-2019 Code Synthesis Ltd // license : MIT; see accompanying LICENSE file #include <libbuild2/cc/guess.hxx> #include <map> #include <cstring> // strlen(), strchr() #include <libbuild2/diagnostics.hxx> using namespace std; namespace build2 { namespace cc { string to_string (compiler_type t) { string r; switch (t) { case compiler_type::clang: r = "clang"; break; case compiler_type::gcc: r = "gcc"; break; case compiler_type::msvc: r = "msvc"; break; case compiler_type::icc: r = "icc"; break; } return r; } compiler_id:: compiler_id (const std::string& id) { using std::string; size_t p (id.find ('-')); if (id.compare (0, p, "gcc" ) == 0) type = compiler_type::gcc; else if (id.compare (0, p, "clang") == 0) type = compiler_type::clang; else if (id.compare (0, p, "msvc" ) == 0) type = compiler_type::msvc; else if (id.compare (0, p, "icc" ) == 0) type = compiler_type::icc; else throw invalid_argument ( "invalid compiler type '" + string (id, 0, p) + "'"); if (p != string::npos) { variant.assign (id, p + 1, string::npos); if (variant.empty ()) throw invalid_argument ("empty compiler variant"); } } string compiler_id:: string () const { std::string r (to_string (type)); if (!variant.empty ()) { r += '-'; r += variant; } return r; } string to_string (compiler_class c) { string r; switch (c) { case compiler_class::gcc: r = "gcc"; break; case compiler_class::msvc: r = "msvc"; break; } return r; } // Standard library detection for GCC-class compilers. // // The src argument should detect the standard library based on the // preprocessor macros and output the result in the stdlib:="XXX" form. // static string stdlib (lang xl, const process_path& xp, const strings* c_po, const strings* x_po, const strings* c_co, const strings* x_co, const char* src) { cstrings args {xp.recall_string ()}; if (c_po != nullptr) append_options (args, *c_po); if (x_po != nullptr) append_options (args, *x_po); if (c_co != nullptr) append_options (args, *c_co); if (x_co != nullptr) append_options (args, *x_co); args.push_back ("-x"); switch (xl) { case lang::c: args.push_back ("c"); break; case lang::cxx: args.push_back ("c++"); break; } args.push_back ("-E"); args.push_back ("-"); // Read stdin. args.push_back (nullptr); // The source we are going to preprocess may contains #include's which // may fail to resolve if, for example, there is no standard library // (-nostdinc/-nostdinc++). So we are going to suppress diagnostics and // assume the error exit code means no standard library (of course it // could also be because there is something wrong with the compiler or // options but that we simply leave to blow up later). // process pr (run_start (3 /* verbosity */, xp, args.data (), -1 /* stdin */, -1 /* stdout */, false /* error */)); string l, r; try { // Here we have to simultaneously write to stdin and read from stdout // with both operations having the potential to block. For now we // assume that src fits into the pipe's buffer. // ofdstream os (move (pr.out_fd)); ifdstream is (move (pr.in_ofd), fdstream_mode::skip, ifdstream::badbit); os << src << endl; os.close (); while (!eof (getline (is, l))) { size_t p (l.find_first_not_of (' ')); if (p != string::npos && l.compare (p, 9, "stdlib:=\"") == 0) { p += 9; r = string (l, p, l.size () - p - 1); // One for closing \". break; } } is.close (); } catch (const io_error&) { // Presumably the child process failed. Let run_finish() deal with // that. } if (!run_finish (args.data (), pr, false /* error */, l)) r = "none"; if (r.empty ()) fail << "unable to determine " << xl << " standard library"; return r; } // C standard library detection on POSIX (i.e., non-Windows) systems. // Notes: // // - We place platform macro-based checks (__FreeBSD__, __APPLE__, etc) // after library macro-based ones in case a non-default libc is used. // static const char* c_stdlib_src = "#if !defined(__STDC_HOSTED__) || __STDC_HOSTED__ == 1 \n" "# include <stddef.h> /* Forces defining __KLIBC__ for klibc. */ \n" "# include <limits.h> /* Includes features.h for glibc. */ \n" "# include <sys/types.h> /* Includes sys/cdefs.h for bionic. */ \n" " /* Includes sys/features.h for newlib. */ \n" " /* Includes features.h for uclibc. */ \n" "# if defined(__KLIBC__) \n" " stdlib:=\"klibc\" \n" "# elif defined(__BIONIC__) \n" " stdlib:=\"bionic\" \n" "# elif defined(__NEWLIB__) \n" " stdlib:=\"newlib\" \n" "# elif defined(__UCLIBC__) \n" " stdlib:=\"uclibc\" \n" "# elif defined(__dietlibc__) /* Also has to be defined manually by */ \n" " stdlib:=\"dietlibc\" /* or some wrapper. */ \n" "# elif defined(__MUSL__) /* This libc refuses to define __MUSL__ */ \n" " stdlib:=\"musl\" /* so it has to be defined by user. */ \n" "# elif defined(__GLIBC__) /* Check for glibc last since some libc's */ \n" " stdlib:=\"glibc\" /* pretend to be it. */ \n" "# elif defined(__FreeBSD__) \n" " stdlib:=\"freebsd\" \n" "# elif defined(__APPLE__) \n" " stdlib:=\"apple\" \n" "# else \n" " stdlib:=\"other\" \n" "# endif \n" "#else \n" " stdlib:=\"none\" \n" "#endif \n"; // Pre-guess the compiler type based on the compiler executable name and // also return the start of that name in the path (used to derive the // toolchain pattern). Return empty string/npos if can't make a guess (for // example, because the compiler name is a generic 'c++'). Note that it // only guesses the type, not the variant. // static pair<compiler_type, size_t> pre_guess (lang xl, const path& xc, const optional<compiler_id>& xi) { tracer trace ("cc::pre_guess"); // Analyze the last path component only. // const string& s (xc.string ()); size_t s_p (path::traits_type::find_leaf (s)); size_t s_n (s.size ()); // Name separator characters (e.g., '-' in 'g++-4.8'). // auto sep = [] (char c) -> bool { return c == '-' || c == '_' || c == '.'; }; auto stem = [&sep, &s, s_p, s_n] (const char* x) -> size_t { size_t m (strlen (x)); size_t p (s.find (x, s_p, m)); return (p != string::npos && ( p == s_p || sep (s[p - 1])) && // Separated beginning. ((p + m) == s_n || sep (s[p + m]))) // Separated end. ? p : string::npos; }; using type = compiler_type; using pair = std::pair<type, size_t>; // If the user specified the compiler id, then only check the stem for // that compiler. // auto check = [&xi, &stem] (type t, const char* s) -> optional<pair> { if (!xi || xi->type == t) { size_t p (stem (s)); if (p != string::npos) return pair (t, p); } return nullopt; }; // Warn if the user specified a C compiler instead of C++ or vice versa. // lang o; // Other language. const char* as (nullptr); // Actual stem. const char* es (nullptr); // Expected stem. switch (xl) { case lang::c: { // Keep msvc last since 'cl' is very generic. // if (auto r = check (type::gcc, "gcc") ) return *r; if (auto r = check (type::clang, "clang")) return *r; if (auto r = check (type::icc, "icc") ) return *r; if (auto r = check (type::msvc, "cl") ) return *r; if (check (type::gcc, as = "g++") ) es = "gcc"; else if (check (type::clang, as = "clang++")) es = "clang"; else if (check (type::icc, as = "icpc") ) es = "icc"; else if (check (type::msvc, as = "c++") ) es = "cc"; o = lang::cxx; break; } case lang::cxx: { // Keep msvc last since 'cl' is very generic. // if (auto r = check (type::gcc, "g++") ) return *r; if (auto r = check (type::clang, "clang++")) return *r; if (auto r = check (type::icc, "icpc") ) return *r; if (auto r = check (type::msvc, "cl") ) return *r; if (check (type::gcc, as = "gcc") ) es = "g++"; else if (check (type::clang, as = "clang")) es = "clang++"; else if (check (type::icc, as = "icc") ) es = "icpc"; else if (check (type::msvc, as = "cc") ) es = "c++"; o = lang::c; break; } } if (es != nullptr) warn << xc << " looks like a " << o << " compiler" << info << "should it be '" << es << "' instead of '" << as << "'?"; // If the user specified the id, then continue as if we pre-guessed. // if (xi) return pair (xi->type, string::npos); l4 ([&]{trace << "unable to guess compiler type of " << xc;}); return pair (invalid_compiler_type, string::npos); } // Guess the compiler type and variant by running it. If the pre argument // is not empty, then only "confirm" the pre-guess. Return empty result if // unable to guess. // struct guess_result { compiler_id id; string signature; string checksum; process_path path; guess_result () = default; guess_result (compiler_id i, string&& s) : id (move (i)), signature (move (s)) {} bool empty () const {return id.empty ();} }; // Allowed to change pre if succeeds. // static guess_result guess (const char* xm, lang, const path& xc, const optional<compiler_id>& xi, compiler_type& pre) { tracer trace ("cc::guess"); assert (!xi || xi->type == pre); guess_result r; process_path xp; { auto df = make_diag_frame ( [&xm](const diag_record& dr) { dr << info << "use config." << xm << " to override"; }); // Only search in PATH (specifically, omitting the current // executable's directory on Windows). // xp = run_search (xc, false /* init */, // Note: result is cached. dir_path () /* fallback */, true /* path_only */); } using type = compiler_type; const type invalid = invalid_compiler_type; // Start with -v. This will cover gcc and clang. // // While icc also writes what may seem like something we can use to // detect it: // // icpc version 16.0.2 (gcc version 4.9.0 compatibility) // // That first word is actually the executable name. So if we rename // icpc to foocpc, we will get: // // foocpc version 16.0.2 (gcc version 4.9.0 compatibility) // // In fact, if someone renames icpc to g++, there will be no way for // us to detect this. Oh, well, their problem. // if (r.empty () && (pre == invalid || pre == type::gcc || pre == type::clang)) { auto f = [&xi] (string& l, bool last) -> guess_result { if (xi) { // The signature line is first in Clang and last in GCC. // if (xi->type != type::gcc || last) return guess_result (*xi, move (l)); } // The gcc/g++ -v output will have a last line in the form: // // "gcc version X.Y.Z ..." // // The "version" word can probably be translated. For example: // // gcc version 3.4.4 // gcc version 4.2.1 // gcc version 4.8.2 (GCC) // gcc version 4.8.5 (Ubuntu 4.8.5-2ubuntu1~14.04.1) // gcc version 4.9.2 (Ubuntu 4.9.2-0ubuntu1~14.04) // gcc version 5.1.0 (Ubuntu 5.1.0-0ubuntu11~14.04.1) // gcc version 6.0.0 20160131 (experimental) (GCC) // if (last && l.compare (0, 4, "gcc ") == 0) return guess_result (compiler_id {type::gcc, ""}, move (l)); // The Apple clang/clang++ -v output will have a line (currently // first) in the form: // // "Apple (LLVM|clang) version X.Y.Z ..." // // Apple clang version 3.1 (tags/Apple/clang-318.0.58) (based on LLVM 3.1svn) // Apple clang version 4.0 (tags/Apple/clang-421.0.60) (based on LLVM 3.1svn) // Apple clang version 4.1 (tags/Apple/clang-421.11.66) (based on LLVM 3.1svn) // Apple LLVM version 4.2 (clang-425.0.28) (based on LLVM 3.2svn) // Apple LLVM version 5.0 (clang-500.2.79) (based on LLVM 3.3svn) // Apple LLVM version 5.1 (clang-503.0.40) (based on LLVM 3.4svn) // Apple LLVM version 6.0 (clang-600.0.57) (based on LLVM 3.5svn) // Apple LLVM version 6.1.0 (clang-602.0.53) (based on LLVM 3.6.0svn) // Apple LLVM version 7.0.0 (clang-700.0.53) // Apple LLVM version 7.0.0 (clang-700.1.76) // Apple LLVM version 7.0.2 (clang-700.1.81) // Apple LLVM version 7.3.0 (clang-703.0.16.1) // // Note that the gcc/g++ "aliases" for clang/clang++ also include // this line but it is (currently) preceded by "Configured with: // ...". // // Check for Apple clang before the vanilla one since the above line // also includes "clang". // if (l.compare (0, 6, "Apple ") == 0 && (l.compare (6, 5, "LLVM ") == 0 || l.compare (6, 6, "clang ") == 0)) return guess_result (compiler_id {type::clang, "apple"}, move (l)); // The vanilla clang/clang++ -v output will have a first line in the // form: // // "[... ]clang version X.Y.Z[-...] ..." // // The "version" word can probably be translated. For example: // // FreeBSD clang version 3.4.1 (tags/RELEASE_34/dot1-final 208032) 20140512 // Ubuntu clang version 3.5.0-4ubuntu2~trusty2 (tags/RELEASE_350/final) (based on LLVM 3.5.0) // Ubuntu clang version 3.6.0-2ubuntu1~trusty1 (tags/RELEASE_360/final) (based on LLVM 3.6.0) // clang version 3.7.0 (tags/RELEASE_370/final) // if (l.find ("clang ") != string::npos) return guess_result (compiler_id {type::clang, ""}, move (l)); return guess_result (); }; // The -v output contains other information (such as the compiler // build configuration for gcc or the selected gcc installation for // clang) which makes sense to include into the compiler checksum. So // ask run() to calculate it for every line of the -v ouput. // // One notable consequence of this is that if the locale changes // (e.g., via LC_ALL), then the compiler signature will most likely // change as well because of the translated text. // sha256 cs; // Suppress all the compiler errors because we may be trying an // unsupported option (but still consider the exit code). // r = run<guess_result> (3, xp, "-v", f, false, false, &cs); if (r.empty ()) { if (xi) { // Fallback to --version below in case this GCC/Clang-like // compiler doesn't support -v. // //fail << "unable to obtain " << xc << " signature with -v"; } } else { // If this is clang-apple and pre-guess was gcc then change it so // that we don't issue any warnings. // if (r.id.type == type::clang && r.id.variant == "apple" && pre == type::gcc) pre = type::clang; r.checksum = cs.string (); } } // Next try --version to detect icc. As well as obtain signature for // GCC/Clang-like compilers in case -v above didn't work. // if (r.empty () && (pre == invalid || pre == type::icc || pre == type::gcc || pre == type::clang)) { auto f = [&xi] (string& l, bool) -> guess_result { // Assume the first line is the signature. // if (xi) return guess_result (*xi, move (l)); // The first line has the " (ICC) " in it, for example: // // icpc (ICC) 9.0 20060120 // icpc (ICC) 11.1 20100414 // icpc (ICC) 12.1.0 20110811 // icpc (ICC) 14.0.0 20130728 // icpc (ICC) 15.0.2 20150121 // icpc (ICC) 16.0.2 20160204 // icc (ICC) 16.0.2 20160204 // if (l.find (" (ICC) ") != string::npos) return guess_result (compiler_id {type::icc, ""}, move (l)); return guess_result (); }; r = run<guess_result> (3, xp, "--version", f, false); if (r.empty ()) { if (xi) fail << "unable to obtain " << xc << " signature with --version"; } } // Finally try to run it without any options to detect msvc. // if (r.empty () && (pre == invalid || pre == type::msvc)) { auto f = [&xi] (string& l, bool) -> guess_result { // Assume the first line is the signature. // if (xi) return guess_result (*xi, move (l)); // Check for "Microsoft (R)" and "C/C++" in the first line as a // signature since all other words/positions can be translated. For // example: // // Microsoft (R) 32-bit C/C++ Optimizing Compiler Version 13.10.6030 for 80x86 // Microsoft (R) 32-bit C/C++ Optimizing Compiler Version 14.00.50727.762 for 80x86 // Microsoft (R) 32-bit C/C++ Optimizing Compiler Version 15.00.30729.01 for 80x86 // Compilador de optimizacion de C/C++ de Microsoft (R) version 16.00.30319.01 para x64 // Microsoft (R) C/C++ Optimizing Compiler Version 17.00.50727.1 for x86 // Microsoft (R) C/C++ Optimizing Compiler Version 18.00.21005.1 for x86 // Microsoft (R) C/C++ Optimizing Compiler Version 19.00.23026 for x86 // Microsoft (R) C/C++ Optimizing Compiler Version 19.10.24629 for x86 // // In the recent versions the architecture is either "x86", "x64", // or "ARM". // if (l.find ("Microsoft (R)") != string::npos && l.find ("C/C++") != string::npos) return guess_result (compiler_id {type::msvc, ""}, move (l)); return guess_result (); }; // One can pass extra options/arguments to cl.exe with the CL and _CL_ // environment variables. However, if such extra options are passed // without anything to compile, then cl.exe no longer prints usage and // exits successfully but instead issues an error and fails. So we are // going to unset these variables for our test (interestingly, only CL // seem to cause the problem but let's unset both, for good measure). // const char* env[] = {"CL=", "_CL_=", nullptr}; r = run<guess_result> (3, process_env (xp, env), f, false); if (r.empty ()) { if (xi) fail << "unable to obtain " << xc << " signature"; } } if (!r.empty ()) { if (pre != invalid && r.id.type != pre) { l4 ([&]{trace << "compiler type guess mismatch" << ", pre-guessed " << pre << ", determined " << r.id.type;}); r = guess_result (); } else { l5 ([&]{trace << xc << " is " << r.id << ": '" << r.signature << "'";}); r.path = move (xp); } } else l4 ([&]{trace << "unable to determine compiler type of " << xc;}); return r; } // Try to derive the toolchain pattern. // // The s argument is the stem to look for in the leaf of the path. The ls // and rs arguments are the left/right separator characters. If either is // NULL, then the stem should be the prefix/suffix of the leaf, // respectively. Note that a path that is equal to stem is not considered // a pattern. // // Note that the default right separator includes digits to handle cases // like clang++37 (FreeBSD). // static string pattern (const path& xc, const char* s, const char* ls = "-_.", const char* rs = "-_.0123456789") { string r; size_t sn (strlen (s)); if (xc.size () > sn) { string l (xc.leaf ().string ()); size_t ln (l.size ()); size_t b; if (ln >= sn && (b = l.find (s)) != string::npos) { // Check left separators. // if (b == 0 || (ls != nullptr && strchr (ls, l[b - 1]) != nullptr)) { // Check right separators. // size_t e (b + sn); if (e == ln || (rs != nullptr && strchr (rs, l[e]) != nullptr)) { l.replace (b, sn, "*", 1); path p (xc.directory ()); p /= l; r = move (p).string (); } } } } return r; } static compiler_info guess_gcc (const char* xm, lang xl, const path& xc, const string* xv, const string* xt, const strings* c_po, const strings* x_po, const strings* c_co, const strings* x_co, const strings*, const strings*, guess_result&& gr) { tracer trace ("cc::guess_gcc"); const process_path& xp (gr.path); // Extract the version. The signature line has the following format // though language words can be translated and even rearranged (see // examples above). // // "gcc version A.B.C[ ...]" // compiler_version v; { auto df = make_diag_frame ( [&xm](const diag_record& dr) { dr << info << "use config." << xm << ".version to override"; }); // Treat the custom version as just a tail of the signature. // const string& s (xv == nullptr ? gr.signature : *xv); // Scan the string as words and look for one that looks like a // version. // size_t b (0), e (0); while (next_word (s, b, e)) { // The third argument to find_first_not_of() is the length of the // first argument, not the length of the interval to check. So to // limit it to [b, e) we are also going to compare the result to the // end of the word position (first space). In fact, we can just // check if it is >= e. // if (s.find_first_not_of ("1234567890.", b, 11) >= e) break; } if (b == e) fail << "unable to extract gcc version from '" << s << "'"; v.string.assign (s, b, string::npos); // Split the version into components. // size_t vb (b), ve (b); auto next = [&s, b, e, &vb, &ve] (const char* m) -> uint64_t { try { if (next_word (s, e, vb, ve, '.')) return stoull (string (s, vb, ve - vb)); } catch (const invalid_argument&) {} catch (const out_of_range&) {} fail << "unable to extract gcc " << m << " version from '" << string (s, b, e - b) << "'" << endf; }; v.major = next ("major"); v.minor = next ("minor"); v.patch = next ("patch"); if (e != s.size ()) v.build.assign (s, e + 1, string::npos); } // Figure out the target architecture. This is actually a lot trickier // than one would have hoped. // // There is the -dumpmachine option but gcc doesn't adjust it per the // compile options (e.g., -m32). However, starting with 4.6 it has the // -print-multiarch option which gives (almost) the right answer. The // "almost" part has to do with it not honoring the -arch option (which // is really what this compiler is building for). To get to that, we // would have to resort to a hack like this: // // gcc -v -E - 2>&1 | grep cc1 // .../cc1 ... -mtune=generic -march=x86-64 // // Also, -print-multiarch will print am empty line if the compiler // actually wasn't built with multi-arch support. // // So for now this is what we are going to do for the time being: First // try -print-multiarch. If that works out (recent gcc configure with // multi-arch support), then use the result. Otherwise, fallback to // -dumpmachine (older gcc or not multi-arch). // string t, ot; if (xt == nullptr) { cstrings args {xp.recall_string (), "-print-multiarch"}; if (c_co != nullptr) append_options (args, *c_co); if (x_co != nullptr) append_options (args, *x_co); args.push_back (nullptr); // The output of both -print-multiarch and -dumpmachine is a single // line containing just the target triplet. // auto f = [] (string& l, bool) {return move (l);}; t = run<string> (3, xp, args.data (), f, false); if (t.empty ()) { l5 ([&]{trace << xc << " doesn's support -print-multiarch, " << "falling back to -dumpmachine";}); args[1] = "-dumpmachine"; t = run<string> (3, xp, args.data (), f, false); } if (t.empty ()) fail << "unable to extract target architecture from " << xc << " using -print-multiarch or -dumpmachine output" << info << "use config." << xm << ".target to override"; ot = t; } else ot = t = *xt; // Parse the target into triplet (for further tests) ignoring any // failures. // target_triplet tt; try {tt = target_triplet (t);} catch (const invalid_argument&) {} // Derive the toolchain pattern. Try cc/c++ as a fallback. // string pat (pattern (xc, xl == lang::c ? "gcc" : "g++")); if (pat.empty ()) pat = pattern (xc, xl == lang::c ? "cc" : "c++"); // Runtime and standard library. // // GCC always uses libgcc (even on MinGW). Even with -nostdlib GCC's // documentation says that you should usually specify -lgcc. // string rt ("libgcc"); string csl (tt.system == "mingw32" ? "msvc" : stdlib (xl, xp, c_po, x_po, c_co, x_co, c_stdlib_src)); string xsl; switch (xl) { case lang::c: xsl = csl; break; case lang::cxx: { // While GCC only supports it's own C++ standard library (libstdc++) // we still run the test to detect the "none" case (-nostdinc++). // const char* src = "#include <bits/c++config.h> \n" "stdlib:=\"libstdc++\" \n"; xsl = stdlib (xl, xp, c_po, x_po, c_co, x_co, src); break; } } return compiler_info { move (gr.path), move (gr.id), compiler_class::gcc, move (v), move (gr.signature), move (gr.checksum), // Calculated on whole -v output. move (t), move (ot), move (pat), "", move (rt), move (csl), move (xsl)}; } static compiler_info guess_clang (const char* xm, lang xl, const path& xc, const string* xv, const string* xt, const strings* c_po, const strings* x_po, const strings* c_co, const strings* x_co, const strings* c_lo, const strings* x_lo, guess_result&& gr) { const process_path& xp (gr.path); // Extract the version. Here we will try to handle both vanilla and // Apple clang since the signature lines are fairly similar. They have // the following format though language words can probably be translated // and even rearranged (see examples above). // // "[... ]clang version A.B.C[( |-)...]" // "Apple (clang|LLVM) version A.B[.C] ..." // compiler_version v; { auto df = make_diag_frame ( [&xm](const diag_record& dr) { dr << info << "use config." << xm << ".version to override"; }); // Treat the custom version as just a tail of the signature. // const string& s (xv == nullptr ? gr.signature : *xv); // Some overrides for testing. // //s = "clang version 3.7.0 (tags/RELEASE_370/final)"; // //gr.id.variant = "apple"; //s = "Apple LLVM version 7.3.0 (clang-703.0.16.1)"; //s = "Apple clang version 3.1 (tags/Apple/clang-318.0.58) (based on LLVM 3.1svn)"; // Scan the string as words and look for one that looks like a // version. Use '-' as a second delimiter to handle versions like // "3.6.0-2ubuntu1~trusty1". // size_t b (0), e (0); while (next_word (s, b, e, ' ', '-')) { // The third argument to find_first_not_of() is the length of the // first argument, not the length of the interval to check. So to // limit it to [b, e) we are also going to compare the result to the // end of the word position (first space). In fact, we can just // check if it is >= e. // if (s.find_first_not_of ("1234567890.", b, 11) >= e) break; } if (b == e) fail << "unable to extract clang version from '" << s << "'"; v.string.assign (s, b, string::npos); // Split the version into components. // size_t vb (b), ve (b); auto next = [&s, b, e, &vb, &ve] (const char* m, bool opt) -> uint64_t { try { if (next_word (s, e, vb, ve, '.')) return stoull (string (s, vb, ve - vb)); if (opt) return 0; } catch (const invalid_argument&) {} catch (const out_of_range&) {} fail << "unable to extract clang " << m << " version from '" << string (s, b, e - b) << "'" << endf; }; v.major = next ("major", false); v.minor = next ("minor", false); v.patch = next ("patch", gr.id.variant == "apple"); if (e != s.size ()) v.build.assign (s, e + 1, string::npos); } // Figure out the target architecture. // // Unlike gcc, clang doesn't have -print-multiarch. Its -dumpmachine, // however, respects the compile options (e.g., -m32). // string t, ot; if (xt == nullptr) { cstrings args {xp.recall_string (), "-dumpmachine"}; if (c_co != nullptr) append_options (args, *c_co); if (x_co != nullptr) append_options (args, *x_co); args.push_back (nullptr); // The output of -dumpmachine is a single line containing just the // target triplet. // auto f = [] (string& l, bool) {return move (l);}; t = run<string> (3, xp, args.data (), f, false); if (t.empty ()) fail << "unable to extract target architecture from " << xc << " using -dumpmachine output" << info << "use config." << xm << ".target to override"; ot = t; } else ot = t = *xt; // Parse the target into triplet (for further tests) ignoring any // failures. // target_triplet tt; try {tt = target_triplet (t);} catch (const invalid_argument&) {} // For Clang on Windows targeting MSVC we remap the target to match // MSVC's. // if (tt.system == "windows-msvc") { // Keep the CPU and replace the rest. // // @@ Note that currently there is no straightforward way to determine // the VC version Clang is using. See: // // http://lists.llvm.org/pipermail/cfe-dev/2017-December/056240.html // tt.vendor = "microsoft"; tt.system = "win32-msvc"; tt.version = "14.1"; t = tt.string (); } // Derive the toolchain pattern. Try clang/clang++, the gcc/g++ alias, // as well as cc/c++. // string pat (pattern (xc, xl == lang::c ? "clang" : "clang++")); if (pat.empty ()) pat = pattern (xc, xl == lang::c ? "gcc" : "g++"); if (pat.empty ()) pat = pattern (xc, xl == lang::c ? "cc" : "c++"); // Runtime and standard library. // // Clang can use libgcc, its own compiler-rt, or, on Windows targeting // MSVC, the VC's runtime. As usual, there is no straightforward way // to query this and silence on the mailing list. See: // // http://lists.llvm.org/pipermail/cfe-dev/2018-January/056494.html // // So for now we will just look for --rtlib (note: linker option) and if // none specified, assume some platform-specific defaults. // string rt; { auto find_rtlib = [] (const strings* ops) -> const string* { return ops != nullptr ? find_option_prefix ("--rtlib=", *ops, false) : nullptr; }; const string* o; if ((o = find_rtlib (x_lo)) != nullptr || (o = find_rtlib (c_lo)) != nullptr) { rt = string (*o, 8); } else if (tt.system == "win32-msvc") rt = "msvc"; else if (tt.system == "linux-gnu" || tt.system == "freebsd") rt = "libgcc"; else /* Mac OS, etc. */ rt = "compiler-rt"; } string csl (tt.system == "win32-msvc" || tt.system == "mingw32" ? "msvc" : stdlib (xl, xp, c_po, x_po, c_co, x_co, c_stdlib_src)); string xsl; switch (xl) { case lang::c: xsl = csl; break; case lang::cxx: { // All Clang versions that we care to support have __has_include() // so we use it to determine which standard library is available. // // Note that we still include the corresponding headers to verify // things are usable. For the "other" case we include some // standard header to detect the "none" case (e.g, -nostdinc++). // const char* src = "#if __has_include(<__config>) \n" " #include <__config> \n" " stdlib:=\"libc++\" \n" "#elif __has_include(<bits/c++config.h>) \n" " #include <bits/c++config.h> \n" " stdlib:=\"libstdc++\" \n" "#else \n" " #include <cstddef> \n" " stdlib:=\"other\" \n" "#endif \n"; xsl = tt.system == "win32-msvc" ? "msvcp" : stdlib (xl, xp, c_po, x_po, c_co, x_co, src); break; } } return compiler_info { move (gr.path), move (gr.id), compiler_class::gcc, move (v), move (gr.signature), move (gr.checksum), // Calculated on whole -v output. move (t), move (ot), move (pat), "", move (rt), move (csl), move (xsl)}; } static compiler_info guess_icc (const char* xm, lang xl, const path& xc, const string* xv, const string* xt, const strings* c_po, const strings* x_po, const strings* c_co, const strings* x_co, const strings*, const strings*, guess_result&& gr) { const process_path& xp (gr.path); // Extract the version. If the version has the fourth component, then // the signature line (extracted with --version) won't include it. So we // will have to get a more elaborate line with -V. We will also have to // do it to get the compiler target that respects the -m option: icc // doesn't support -print-multiarch like gcc and its -dumpmachine // doesn't respect -m like clang. In fact, its -dumpmachine is // completely broken as it appears to print the compiler's host and not // the target (e.g., .../bin/ia32/icpc prints x86_64-linux-gnu). // // Some examples of the signature lines from -V output: // // Intel(R) C++ Compiler for 32-bit applications, Version 9.1 Build 20070215Z Package ID: l_cc_c_9.1.047 // Intel(R) C++ Compiler for applications running on Intel(R) 64, Version 10.1 Build 20071116 // Intel(R) C++ Compiler for applications running on IA-32, Version 10.1 Build 20071116 Package ID: l_cc_p_10.1.010 // Intel C++ Intel 64 Compiler Professional for applications running on Intel 64, Version 11.0 Build 20081105 Package ID: l_cproc_p_11.0.074 // Intel(R) C++ Intel(R) 64 Compiler Professional for applications running on Intel(R) 64, Version 11.1 Build 20091130 Package ID: l_cproc_p_11.1.064 // Intel C++ Intel 64 Compiler XE for applications running on Intel 64, Version 12.0.4.191 Build 20110427 // Intel(R) C++ Intel(R) 64 Compiler for applications running on Intel(R) 64, Version 16.0.2.181 Build 20160204 // Intel(R) C++ Intel(R) 64 Compiler for applications running on IA-32, Version 16.0.2.181 Build 20160204 // Intel(R) C++ Intel(R) 64 Compiler for applications running on Intel(R) MIC Architecture, Version 16.0.2.181 Build 20160204 // Intel(R) C Intel(R) 64 Compiler for applications running on Intel(R) MIC Architecture, Version 16.0.2.181 Build 20160204 // // We should probably also assume the language words can be translated // and even rearranged. // auto f = [] (string& l, bool) { return l.compare (0, 5, "Intel") == 0 && (l[5] == '(' || l[5] == ' ') ? move (l) : string (); }; if (xv == nullptr) { string& s (gr.signature); s.clear (); // The -V output is sent to STDERR. // s = run<string> (3, xp, "-V", f, false); if (s.empty ()) fail << "unable to extract signature from " << xc << " -V output"; if (s.find (xl == lang::c ? " C " : " C++ ") == string::npos) fail << xc << " does not appear to be the Intel " << xl << " compiler" << info << "extracted signature: '" << s << "'"; } // Scan the string as words and look for the version. It consist of only // digits and periods and contains at least one period. // compiler_version v; { auto df = make_diag_frame ( [&xm](const diag_record& dr) { dr << info << "use config." << xm << ".version to override"; }); // Treat the custom version as just a tail of the signature. // const string& s (xv == nullptr ? gr.signature : *xv); // Some overrides for testing. // //s = "Intel(R) C++ Compiler for 32-bit applications, Version 9.1 Build 20070215Z Package ID: l_cc_c_9.1.047"; //s = "Intel(R) C++ Compiler for applications running on Intel(R) 64, Version 10.1 Build 20071116"; //s = "Intel(R) C++ Compiler for applications running on IA-32, Version 10.1 Build 20071116 Package ID: l_cc_p_10.1.010"; //s = "Intel C++ Intel 64 Compiler Professional for applications running on Intel 64, Version 11.0 Build 20081105 Package ID: l_cproc_p_11.0.074"; //s = "Intel(R) C++ Intel(R) 64 Compiler Professional for applications running on Intel(R) 64, Version 11.1 Build 20091130 Package ID: l_cproc_p_11.1.064"; //s = "Intel C++ Intel 64 Compiler XE for applications running on Intel 64, Version 12.0.4.191 Build 20110427"; size_t b (0), e (0); while (next_word (s, b, e, ' ', ',') != 0) { // The third argument to find_first_not_of() is the length of the // first argument, not the length of the interval to check. So to // limit it to [b, e) we are also going to compare the result to the // end of the word position (first space). In fact, we can just // check if it is >= e. Similar logic for find_first_of() except // that we add space to the list of character to make sure we don't // go too far. // if (s.find_first_not_of ("1234567890.", b, 11) >= e && s.find_first_of (". ", b, 2) < e) break; } if (b == e) fail << "unable to extract icc version from '" << s << "'"; v.string.assign (s, b, string::npos); // Split the version into components. // size_t vb (b), ve (b); auto next = [&s, b, e, &vb, &ve] (const char* m, bool opt) -> uint64_t { try { if (next_word (s, e, vb, ve, '.')) return stoull (string (s, vb, ve - vb)); if (opt) return 0; } catch (const invalid_argument&) {} catch (const out_of_range&) {} fail << "unable to extract icc " << m << " version from '" << string (s, b, e - b) << "'" << endf; }; v.major = next ("major", false); v.minor = next ("minor", false); v.patch = next ("patch", true); if (vb != ve && next_word (s, e, vb, ve, '.')) v.build.assign (s, vb, ve - vb); if (e != s.size ()) { if (!v.build.empty ()) v.build += ' '; v.build.append (s, e + 1, string::npos); } } // Figure out the target CPU by re-running the compiler with -V and // compile options (which may include, e.g., -m32). The output will // contain two CPU keywords: the first is the host and the second is the // target (hopefully this won't get rearranged by the translation). // // The CPU keywords (based on the above samples) appear to be: // // "32-bit" // "IA-32" // "Intel" "64" // "Intel(R)" "64" // "Intel(R)" "MIC" (-dumpmachine says: x86_64-k1om-linux) // string t, ot; if (xt == nullptr) { auto df = make_diag_frame ( [&xm](const diag_record& dr) { dr << info << "use config." << xm << ".target to override"; }); cstrings args {xp.recall_string (), "-V"}; if (c_co != nullptr) append_options (args, *c_co); if (x_co != nullptr) append_options (args, *x_co); args.push_back (nullptr); // The -V output is sent to STDERR. // t = run<string> (3, xp, args.data (), f, false); if (t.empty ()) fail << "unable to extract target architecture from " << xc << " -V output"; string arch; for (size_t b (0), e (0), n; (n = next_word (t, b, e, ' ', ',')) != 0; ) { if (t.compare (b, n, "Intel(R)", 8) == 0 || t.compare (b, n, "Intel", 5) == 0) { if ((n = next_word (t, b, e, ' ', ',')) != 0) { if (t.compare (b, n, "64", 2) == 0) { arch = "x86_64"; } else if (t.compare (b, n, "MIC", 3) == 0) { arch = "x86_64"; // Plus "-k1om-linux" from -dumpmachine below. } } else break; } else if (t.compare (b, n, "IA-32", 5) == 0 || t.compare (b, n, "32-bit", 6) == 0) { arch = "i386"; } } if (arch.empty ()) fail << "unable to extract icc target architecture from '" << t << "'"; // So we have the CPU but we still need the rest of the triplet. While // icc currently doesn't support cross-compilation (at least on Linux) // and we could have just used the build triplet (i.e., the // architecture on which we are running), who knows what will happen // in the future. So instead we are going to use -dumpmachine and // substitute the CPU. // { auto f = [] (string& l, bool) {return move (l);}; t = run<string> (3, xp, "-dumpmachine", f); } if (t.empty ()) fail << "unable to extract target architecture from " << xc << " using -dumpmachine output"; // The first component in the triplet is always CPU. // size_t p (t.find ('-')); if (p == string::npos) fail << "unable to parse icc target architecture '" << t << "'"; t.swap (arch); t.append (arch, p, string::npos); ot = t; } else ot = t = *xt; // Parse the target into triplet (for further tests) ignoring any // failures. // target_triplet tt; try {tt = target_triplet (t);} catch (const invalid_argument&) {} // Derive the toolchain pattern. // string pat (pattern (xc, xl == lang::c ? "icc" : "icpc")); // Runtime and standard library. // // For now we assume that unless it is Windows, we are targeting // Linux/GCC. // string rt (tt.system == "win32-msvc" ? "msvc" : "libgcc"); string csl (tt.system == "win32-msvc" ? "msvc" : stdlib (xl, xp, c_po, x_po, c_co, x_co, c_stdlib_src)); string xsl; switch (xl) { case lang::c: xsl = csl; break; case lang::cxx: { xsl = tt.system == "win32-msvc" ? "msvcp" : "libstdc++"; break; } } return compiler_info { move (gr.path), move (gr.id), compiler_class::gcc, //@@ TODO: msvc on Windows? move (v), move (gr.signature), "", move (t), move (ot), move (pat), "", move (rt), move (csl), move (xsl)}; } static compiler_info guess_msvc (const char* xm, lang xl, const path& xc, const string* xv, const string* xt, const strings*, const strings*, const strings*, const strings*, const strings*, const strings*, guess_result&& gr) { // Extract the version. The signature line has the following format // though language words can be translated and even rearranged (see // examples above). // // "Microsoft (R) C/C++ Optimizing Compiler Version A.B.C[.D] for CPU" // // The CPU keywords (based on the above samples) appear to be: // // "80x86" // "x86" // "x64" // "ARM" // compiler_version v; { auto df = make_diag_frame ( [&xm](const diag_record& dr) { dr << info << "use config." << xm << ".version to override"; }); // Treat the custom version as just a tail of the signature. // const string& s (xv == nullptr ? gr.signature : *xv); // Some overrides for testing. // //string s; //s = "Microsoft (R) 32-bit C/C++ Optimizing Compiler Version 15.00.30729.01 for 80x86"; //s = "Compilador de optimizacion de C/C++ de Microsoft (R) version 16.00.30319.01 para x64"; //s = "Compilateur d'optimisation Microsoft (R) C/C++ version 19.16.27026.1 pour x64"; // Scan the string as words and look for the version. // size_t b (0), e (0); while (next_word (s, b, e, ' ', ',')) { // The third argument to find_first_not_of() is the length of the // first argument, not the length of the interval to check. So to // limit it to [b, e) we are also going to compare the result to the // end of the word position (first space). In fact, we can just // check if it is >= e. // if (s.find_first_not_of ("1234567890.", b, 11) >= e) break; } if (b == e) fail << "unable to extract msvc version from '" << s << "'"; v.string.assign (s, b, e - b); // Split the version into components. // size_t vb (b), ve (b); auto next = [&s, b, e, &vb, &ve] (const char* m) -> uint64_t { try { if (next_word (s, e, vb, ve, '.')) return stoull (string (s, vb, ve - vb)); } catch (const invalid_argument&) {} catch (const out_of_range&) {} fail << "unable to extract msvc " << m << " version from '" << string (s, b, e - b) << "'" << endf; }; v.major = next ("major"); v.minor = next ("minor"); v.patch = next ("patch"); if (next_word (s, e, vb, ve, '.')) v.build.assign (s, vb, ve - vb); } // Figure out the target architecture. // string t, ot; if (xt == nullptr) { auto df = make_diag_frame ( [&xm](const diag_record& dr) { dr << info << "use config." << xm << ".target to override"; }); const string& s (gr.signature); // Scan the string as words and look for the CPU. // string arch; for (size_t b (0), e (0), n; (n = next_word (s, b, e, ' ', ',')) != 0; ) { if (s.compare (b, n, "x64", 3) == 0 || s.compare (b, n, "x86", 3) == 0 || s.compare (b, n, "ARM", 3) == 0 || s.compare (b, n, "80x86", 5) == 0) { arch.assign (s, b, n); break; } } if (arch.empty ()) fail << "unable to extract msvc target architecture from " << "'" << s << "'"; // Now we need to map x86, x64, and ARM to the target triplets. The // problem is, there aren't any established ones so we got to invent // them ourselves. Based on the discussion in // <libbutl/target-triplet.mxx>, we need something in the // CPU-VENDOR-OS-ABI form. // // The CPU part is fairly straightforward with x86 mapped to 'i386' // (or maybe 'i686'), x64 to 'x86_64', and ARM to 'arm' (it could also // include the version, e.g., 'amrv8'). // // The (toolchain) VENDOR is also straightforward: 'microsoft'. Why // not omit it? Two reasons: firstly, there are other compilers with // the otherwise same target, for example Intel C/C++, and it could be // useful to distinguish between them. Secondly, by having all four // components we remove any parsing ambiguity. // // OS-ABI is where things are not as clear cut. The OS part shouldn't // probably be just 'windows' since we have Win32 and WinCE. And // WinRT. And Universal Windows Platform (UWP). So perhaps the // following values for OS: 'win32', 'wince', 'winrt', 'winup'. // // For 'win32' the ABI part could signal the Microsoft C/C++ runtime // by calling it 'msvc'. And seeing that the runtimes are incompatible // from version to version, we should probably add the 'X.Y' version // at the end (so we essentially mimic the DLL name, for example, // msvcr120.dll). Some suggested we also encode the runtime type // (those pesky /M* options) though I am not sure: the only // "redistributable" runtime is multi-threaded release DLL. // // The ABI part for the other OS values needs thinking. For 'winrt' // and 'winup' it probably makes sense to encode the WINAPI_FAMILY // macro value (perhaps also with the version). Some of its values: // // WINAPI_FAMILY_APP Windows 10 // WINAPI_FAMILY_PC_APP Windows 8.1 // WINAPI_FAMILY_PHONE_APP Windows Phone 8.1 // // For 'wince' we may also want to add the OS version, for example, // 'wince4.2'. // // Putting it all together, Visual Studio 2015 will then have the // following target triplets: // // x86 i386-microsoft-win32-msvc14.0 // x64 x86_64-microsoft-win32-msvc14.0 // ARM arm-microsoft-winup-??? // if (arch == "ARM") fail << "cl.exe ARM/WinRT/UWP target is not yet supported"; else { if (arch == "x64") t = "x86_64-microsoft-win32-msvc"; else if (arch == "x86" || arch == "80x86") t = "i386-microsoft-win32-msvc"; else assert (false); // Mapping of compiler versions to runtime versions: // // Note that VC 15 has runtime version 14.1 but the DLLs are still // called *140.dll (they are said to be backwards-compatible). // // And VC 16 seems to have the runtime version 14.1 (and not 14.2, // as one might expect; DLLs are still *140.dll but there are now _1 // and _2 variants for, say, msvcp140.dll). We will, however, call // it 14.2 (which is the version of the "toolset") in our target // triplet. // // year ver cl crt/dll toolset // // 2019 16.1 19.21 14.2/140 14.21 // 2019 16.0 19.20 14.2/140 // 2017 15.9 19.16 14.1/140 // 2017 15.8 19.15 14.1/140 // 2017 15.7 19.14 14.1/140 // 2017 15.6 19.13 14.1/140 // 2017 15.5 19.12 14.1/140 // 2017 15.3 19.11 14.1/140 // 2017 15 19.10 14.1/140 // 2015 14 19.00 14.0/140 // 2013 12 18.00 12.0/120 // 2012 11 17.00 11.0/110 // 2010 10 16.00 10.0/100 // 2008 9 15.00 9.0/90 // 2005 8 14.00 8.0/80 // 2003 7.1 13.10 7.1/71 // // _MSC_VER is the numeric cl version, e.g., 1921 for 19.21. // /**/ if (v.major == 19 && v.minor >= 20) t += "14.2"; else if (v.major == 19 && v.minor >= 10) t += "14.1"; else if (v.major == 19 && v.minor == 0) t += "14.0"; else if (v.major == 18 && v.minor == 0) t += "12.0"; else if (v.major == 17 && v.minor == 0) t += "11.0"; else if (v.major == 16 && v.minor == 0) t += "10.0"; else if (v.major == 15 && v.minor == 0) t += "9.0"; else if (v.major == 14 && v.minor == 0) t += "8.0"; else if (v.major == 13 && v.minor == 10) t += "7.1"; else fail << "unable to map msvc compiler version '" << v.string << "' to runtime version"; } ot = t; } else ot = t = *xt; // Derive the toolchain pattern. // // If the compiler name is/starts with 'cl' (e.g., cl.exe, cl-14), // then replace it with '*' and use it as a pattern for lib, link, // etc. // string cpat (pattern (xc, "cl", nullptr, ".-")); string bpat (cpat); // Binutils pattern is the same as toolchain. // Runtime and standard library. // string rt ("msvc"); string csl ("msvc"); string xsl; switch (xl) { case lang::c: xsl = csl; break; case lang::cxx: xsl = "msvcp"; break; } return compiler_info { move (gr.path), move (gr.id), compiler_class::msvc, move (v), move (gr.signature), "", move (t), move (ot), move (cpat), move (bpat), move (rt), move (csl), move (xsl)}; } // Compiler checks can be expensive (we often need to run the compiler // several times) so we cache the result. // static map<string, compiler_info> cache; const compiler_info& guess (const char* xm, lang xl, const path& xc, const string* xis, const string* xv, const string* xt, const strings* c_po, const strings* x_po, const strings* c_co, const strings* x_co, const strings* c_lo, const strings* x_lo) { // First check the cache. // string key; { sha256 cs; cs.append (static_cast<size_t> (xl)); cs.append (xc.string ()); if (xis != nullptr) cs.append (*xis); if (c_po != nullptr) hash_options (cs, *c_po); if (x_po != nullptr) hash_options (cs, *x_po); if (c_co != nullptr) hash_options (cs, *c_co); if (x_co != nullptr) hash_options (cs, *x_co); if (c_lo != nullptr) hash_options (cs, *c_lo); if (x_lo != nullptr) hash_options (cs, *x_lo); key = cs.string (); auto i (cache.find (key)); if (i != cache.end ()) return i->second; } // Parse the user-specified compiler id (config.x.id). // optional<compiler_id> xi; if (xis != nullptr) { try { xi = compiler_id (*xis); } catch (const invalid_argument& e) { fail << "invalid compiler id '" << *xis << "' " << "specified in variable config." << xm << ".id: " << e; } } pair<compiler_type, size_t> pre (pre_guess (xl, xc, xi)); compiler_type& type (pre.first); // If we could pre-guess the type based on the excutable name, then // try the test just for that compiler. // guess_result gr; if (type != invalid_compiler_type) { gr = guess (xm, xl, xc, xi, type); if (gr.empty ()) { warn << xc << " looks like " << type << " but it is not" << info << "use config." << xm << " to override"; type = invalid_compiler_type; // Clear pre-guess. } } if (gr.empty ()) gr = guess (xm, xl, xc, xi, type); if (gr.empty ()) fail << "unable to guess " << xl << " compiler type of " << xc << info << "use config." << xm << ".id to specify explicitly"; compiler_info r; const compiler_id& id (gr.id); switch (id.type) { case compiler_type::gcc: { r = guess_gcc (xm, xl, xc, xv, xt, c_po, x_po, c_co, x_co, c_lo, x_lo, move (gr)); break; } case compiler_type::clang: { r = guess_clang (xm, xl, xc, xv, xt, c_po, x_po, c_co, x_co, c_lo, x_lo, move (gr)); break; } case compiler_type::msvc: { r = guess_msvc (xm, xl, xc, xv, xt, c_po, x_po, c_co, x_co, c_lo, x_lo, move (gr)); break; } case compiler_type::icc: { r = guess_icc (xm, xl, xc, xv, xt, c_po, x_po, c_co, x_co, c_lo, x_lo, move (gr)); break; } } // By default use the signature line to generate the checksum. // if (r.checksum.empty ()) r.checksum = sha256 (r.signature).string (); // Derive binutils pattern unless this has already been done by the // compiler-specific code. // // When cross-compiling the whole toolchain is normally prefixed with // the target triplet, e.g., x86_64-w64-mingw32-{gcc,g++,ar,ld}. But // oftentimes it is not quite canonical (and sometimes -- outright // bogus). So instead we are going to first try to derive the prefix // using the pre-guessed position of the compiler name. Note that we // still want to try the target in case we could not pre-guess (think // x86_64-w64-mingw32-c++). // // BTW, for GCC we also get gcc-{ar,ranlib} (but not -ld) which add // support for the LTO plugin though it seems more recent GNU binutils // (2.25) are able to load the plugin when needed automatically. So it // doesn't seem we should bother trying to support this on our end (one // way we could do it is by passing config.bin.{ar,ranlib} as hints). // // It's also normal for native (i.e., non-cross-compiler) builds of GCC // and Clang to not have binutils installed in the same directory and // instead relying on the system ones. In this case, if the compiler is // specified with the absolute path, the pattern will be the fallback // search directory (though it feels like it should be checked first // rather than last). // if (r.bin_pattern.empty ()) { if (pre.second != 0 && pre.second != string::npos && !path::traits_type::is_separator (xc.string ()[pre.second - 1])) { r.bin_pattern.assign (xc.string (), 0, pre.second); r.bin_pattern += '*'; // '-' or similar is already there. } } if (r.bin_pattern.empty ()) { const string& t (r.target); size_t n (t.size ()); if (xc.size () > n + 1) { const string& l (xc.leaf ().string ()); if (l.size () > n + 1 && l.compare (0, n, t) == 0 && l[n] == '-') { path p (xc.directory ()); p /= t; p += "-*"; r.bin_pattern = move (p).string (); } } } // If we could not derive the pattern, then see if we can come up with a // fallback search directory. // if (r.bin_pattern.empty ()) { const path& p (r.path.recall.empty () ? xc : r.path.recall); if (!p.simple ()) r.bin_pattern = p.directory ().representation (); // Trailing slash. } return (cache[key] = move (r)); } path guess_default (lang xl, const string& cid, const string& pat) { compiler_id id (cid); const char* s (nullptr); using type = compiler_type; switch (xl) { case lang::c: { switch (id.type) { case type::gcc: s = "gcc"; break; case type::clang: s = "clang"; break; case type::icc: s = "icc"; break; case type::msvc: s = "cl"; break; } break; } case lang::cxx: { switch (id.type) { case type::gcc: s = "g++"; break; case type::clang: s = "clang++"; break; case type::icc: s = "icpc"; break; case type::msvc: s = "cl"; break; } break; } } return path (apply_pattern (s, &pat)); } } }