// file : libbuild2/bin/rule.cxx -*- C++ -*- // license : MIT; see accompanying LICENSE file #include <libbuild2/bin/rule.hxx> #include <libbuild2/scope.hxx> #include <libbuild2/target.hxx> #include <libbuild2/algorithm.hxx> #include <libbuild2/diagnostics.hxx> #include <libbuild2/bin/target.hxx> #include <libbuild2/bin/utility.hxx> using namespace std; namespace build2 { namespace bin { // obj_rule // bool obj_rule:: match (action a, target& t) const { const char* n (t.dynamic_type->name); // Ignore derived type. fail << diag_doing (a, t) << " target group" << info << "explicitly select " << n << "e{}, " << n << "a{}, or " << n << "s{} member" << endf; } recipe obj_rule:: apply (action, target&) const {return empty_recipe;} // libul_rule // bool libul_rule:: match (action, target&) const { return true; } recipe libul_rule:: apply (action a, target& t) const { // Pick one of the members. First looking for the one already matched. // const target* m (nullptr); const libus* ls (nullptr); { ls = search_existing<libus> (t.ctx, t.dir, t.out, t.name); if (ls != nullptr && ls->matched (a)) m = ls; } const libua* la (nullptr); if (m == nullptr) { la = search_existing<libua> (t.ctx, t.dir, t.out, t.name); if (la != nullptr && la->matched (a)) m = la; } if (m == nullptr) { const scope& bs (t.base_scope ()); lmembers lm (link_members (*bs.root_scope ())); if (lm.s && lm.a) { // Use the bin.exe.lib order as a heuristics to pick the library // (i.e., the most likely utility library to be built is the one // most likely to be linked). // lorder lo (link_order (bs, otype::e)); (lo == lorder::s_a || lo == lorder::s ? lm.a : lm.s) = false; } if (lm.s) m = ls != nullptr ? ls : &search<libus> (t, t.dir, t.out, t.name); else m = la != nullptr ? la : &search<libua> (t, t.dir, t.out, t.name); } // Save the member we picked in case others (e.g., $x.lib_poptions()) // need this information. // t.prerequisite_targets[a].push_back (m); if (match_sync (a, *m, unmatch::safe).first) return noop_recipe; return [] (action a, const target& t) { const target* m (t.prerequisite_targets[a].back ()); // For update always return unchanged so we are consistent whether we // managed to unmatch or now. Note that for clean we may get postponed // so let's return the actual target state. // target_state r (execute_sync (a, *m)); return a == perform_update_id ? target_state::unchanged : r; }; } // lib_rule // // The whole logic is pretty much as if we had our two group members as // our prerequisites. // bool lib_rule:: match (action a, target& xt) const { lib& t (xt.as<lib> ()); lmembers bm (a.meta_operation () != dist_id ? link_members (t.root_scope ()) : lmembers {true, true}); t.a = bm.a ? &search<liba> (t, t.dir, t.out, t.name) : nullptr; t.s = bm.s ? &search<libs> (t, t.dir, t.out, t.name) : nullptr; return true; } recipe lib_rule:: apply (action a, target& xt) const { lib& t (xt.as<lib> ()); //@@ outer: also prerequisites (if outer) or not? const target* m[] = {t.a, t.s}; match_members (a, t, m); return &perform; } target_state lib_rule:: perform (action a, const target& xt) { const lib& t (xt.as<lib> ()); const target* m[] = {t.a, t.s}; return execute_members (a, t, m); } } }