// file : build/rule.cxx -*- C++ -*- // copyright : Copyright (c) 2014-2015 Code Synthesis Tools CC // license : MIT; see accompanying LICENSE file #include <build/rule> #include <utility> // move() #include <system_error> #include <build/scope> #include <build/algorithm> #include <build/diagnostics> #include <build/timestamp> #include <build/filesystem> #include <build/context> using namespace std; namespace build { operation_rule_map rules; // path_rule // // Note that this rule is special. It is the last, fallback rule. If // it doesn't match, then no other rule can possibly match and we have // an error. It also cannot be ambigious with any other rule. As a // result the below implementation bends or ignores quite a few rules // that normal implementations should follow. So you probably shouldn't // use it as a guide to implement your own, normal, rules. // void* path_rule:: match (action a, target& t, const string&) const { // While strictly speaking we should check for the file's existence // for every action (because that's the condition for us matching), // for some actions this is clearly a waste. Say, perform_clean: we // are not doing anything for this action so not checking if the file // exists seems harmless. What about, say, configure_update? Again, // whether we match or not, there is nothing to be done for this // action. And who knows, maybe the file doesn't exist during // configure_update but will magically appear during perform_update. // So the overall guideline seems to be this: if we don't do anything // for the action (other than performing it on the prerequisites), // then we match. // switch (a) { case perform_update_id: { // @@ TODO: // // - need to try all the target-type-specific extensions, just // like search_existing_file(). // path_target& pt (dynamic_cast<path_target&> (t)); // Assign the path. While nromally we shouldn't do this in match(), // no other rule should ever be ambiguous with the fallback one. // if (pt.path ().empty ()) { // @@ TMP: using target name as the default extension. // pt.path (pt.derived_path (pt.type ().name)); } return pt.mtime () != timestamp_nonexistent ? &t : nullptr; } default: return &t; } } recipe path_rule:: apply (action a, target& t, void*) const { // Update triggers the update of this target's prerequisites // so it would seem natural that we should also trigger their // cleanup. However, this possibility is rather theoretical // since such an update would render this target out of date // which in turn would lead to an error. So until we see a // real use-case for this functionality, we simply ignore // the clean operation. // if (a.operation () == clean_id) return noop_recipe; // Search and match all the prerequisites. // search_and_match (a, t); return a == perform_update_id ? &perform_update : t.prerequisites.empty () ? noop_recipe : default_recipe; } target_state path_rule:: perform_update (action a, target& t) { // Make sure the target is not older than any of its prerequisites. // timestamp mt (dynamic_cast<path_target&> (t).mtime ()); for (target* pt: t.prerequisites) { assert (pt != nullptr); // We don't skip anything. target_state ts (execute (a, *pt)); // If this is an mtime-based target, then compare timestamps. // if (auto mpt = dynamic_cast<const mtime_target*> (pt)) { timestamp mp (mpt->mtime ()); if (mt < mp) fail << "no recipe to " << diag_do (a, t) << info << "prerequisite " << *pt << " is ahead of " << t << " by " << (mp - mt); } else { // Otherwise we assume the prerequisite is newer if it was changed. // if (ts == target_state::changed) fail << "no recipe to " << diag_do (a, t) << info << "prerequisite " << *pt << " is ahead of " << t << " because it was updated"; } } return target_state::unchanged; } // dir_rule // void* dir_rule:: match (action a, target& t, const string&) const { return &t; } recipe dir_rule:: apply (action a, target& t, void*) const { // When cleaning, ignore prerequisites that are not in the same // or a subdirectory of ours. For default, we don't do anything // other than letting our prerequisites do their thing. // switch (a.operation ()) { case default_id: case update_id: search_and_match (a, t); break; case clean_id: search_and_match (a, t, t.dir); break; default: assert (false); } return default_recipe; } // fsdir_rule // void* fsdir_rule:: match (action a, target& t, const string&) const { return &t; } recipe fsdir_rule:: apply (action a, target& t, void*) const { switch (a.operation ()) { // For default, we don't do anything other than letting our // prerequisites do their thing. // case default_id: case update_id: search_and_match (a, t); break; // For clean, ignore prerequisites that are not in the same or a // subdirectory of ours (if t.dir is foo/bar/, then "we" are bar // and our directory is foo/). Just meditate on it a bit and you // will see the light. // case clean_id: search_and_match (a, t, t.dir.root () ? t.dir : t.dir.directory ()); break; default: assert (false); } // Inject dependency on the parent directory. // inject_parent_fsdir (a, t); switch (a) { case perform_update_id: return &perform_update; case perform_clean_id: return &perform_clean; default: return default_recipe; // Forward to prerequisites. } } target_state fsdir_rule:: perform_update (action a, target& t) { target_state ts (target_state::unchanged); // First update prerequisites (e.g. create parent directories) // then create this directory. // if (!t.prerequisites.empty ()) ts = execute_prerequisites (a, t); const path& d (t.dir); // Everything is in t.dir. // Generally, it is probably correct to assume that in the majority // of cases the directory will already exist. If so, then we are // going to get better performance by first checking if it indeed // exists. See try_mkdir() for details. // if (!dir_exists (d)) { if (verb) text << "mkdir " << d; else text << "mkdir " << t; try { try_mkdir (d); } catch (const system_error& e) { fail << "unable to create directory " << d << ": " << e.what (); } ts = target_state::changed; } return ts; } target_state fsdir_rule:: perform_clean (action a, target& t) { // The reverse order of update: first delete this directory, // then clean prerequisites (e.g., delete parent directories). // rmdir_status rs (rmdir (t.dir, t)); target_state ts (target_state::unchanged); if (!t.prerequisites.empty ()) ts = reverse_execute_prerequisites (a, t); // If we couldn't remove the directory, return postponed meaning // that the operation could not be performed at this time. // switch (rs) { case rmdir_status::success: return target_state::changed; case rmdir_status::not_empty: return target_state::postponed; default: return ts; } } }