// file : build/cxx/rule.cxx -*- C++ -*- // copyright : Copyright (c) 2014-2015 Code Synthesis Tools CC // license : MIT; see accompanying LICENSE file #include #include #include #include // size_t #include // exit #include // move() #include #include #include #include #include #include #include #include using namespace std; namespace build { namespace cxx { // T is either target or scope. // template static void append_options (vector& args, T& s, const char* var) { if (auto val = s[var]) { for (const name& n: val.template as ()) { if (!n.type.empty () || !n.dir.empty ()) fail << "expected option instead of " << n << info << "in variable " << var; args.push_back (n.value.c_str ()); } } } static void append_std (vector& args, target& t, string& opt) { if (auto val = t["cxx.std"]) { const string& v (val.as ()); // @@ Need to translate 11 to 0x for older versions. // opt = "-std=c++" + v; args.push_back (opt.c_str ()); } } // compile // void* compile:: match (action a, target& t, const string&) const { tracer trace ("cxx::compile::match"); // @@ TODO: // // - check prerequisites: single source file // - check prerequisites: the rest are headers (other ignorable?) // - if path already assigned, verify extension? // if (t.is_a ()) fail << diag_doing (a, t) << " directly not supported"; // See if we have a C++ source file. // for (prerequisite_target& pe: t.prerequisites) { if (pe.prereq->type.id == typeid (cxx)) return &pe; } if (t.group != nullptr) { for (prerequisite_target& pe: t.group->prerequisites) { if (pe.prereq->type.id == typeid (cxx)) return &pe; } } level3 ([&]{trace << "no c++ source file for target " << t;}); return nullptr; } recipe compile:: apply (action a, target& xt, void* v) const { path_target& t (static_cast (xt)); // Derive file name from target name. // if (t.path ().empty ()) { if (t.is_a ()) t.path (t.derived_path ("o")); else t.path (t.derived_path ("o", nullptr, "-so")); } // Search and match all the existing prerequisites. The injection // code (below) takes care of the ones it is adding. // // When cleaning, ignore prerequisites that are not in the same // or a subdirectory of ours. // switch (a.operation ()) { case default_id: case update_id: search_and_match (a, t); break; case clean_id: search_and_match (a, t, t.dir); break; default: assert (false); } // Inject additional prerequisites. For now we only do it for // update and default. // if (a.operation () == update_id || a.operation () == default_id) { prerequisite_target& spe (*static_cast (v)); cxx& st (dynamic_cast (*spe.target)); if (st.mtime () != timestamp_nonexistent) inject_prerequisites (a, t, st, spe.prereq->scope); } // Inject dependency on the output directory. // inject_parent_fsdir (a, t); switch (a) { case perform_update_id: return &perform_update; case perform_clean_id: return &perform_clean_file; default: return default_recipe; // Forward to prerequisites. } } // Return the next make prerequisite starting from the specified // position and update position to point to the start of the // following prerequisite or l.size() if there are none left. // static string next (const string& l, size_t& p) { size_t n (l.size ()); // Skip leading spaces. // for (; p != n && l[p] == ' '; p++) ; // Lines containing multiple prerequisites are 80 characters max. // string r; r.reserve (n); // Scan the next prerequisite while watching out for escape sequences. // for (; p != n && l[p] != ' '; p++) { char c (l[p]); if (c == '\\') c = l[++p]; r += c; } // Skip trailing spaces. // for (; p != n && l[p] == ' '; p++) ; // Skip final '\'. // if (p == n - 1 && l[p] == '\\') p++; return r; } void compile:: inject_prerequisites (action a, target& t, const cxx& s, scope& ds) const { tracer trace ("cxx::compile::inject_prerequisites"); scope& rs (*t.root_scope ()); // Shouldn't have matched if nullptr. const string& cxx (rs["config.cxx"].as ()); vector args {cxx.c_str ()}; append_options (args, rs, "config.cxx.poptions"); append_options (args, t, "cxx.poptions"); // @@ Some C++ options (e.g., -std, -m) affect the preprocessor. // Or maybe they are not C++ options? Common options? // append_options (args, rs, "config.cxx.coptions"); string std; // Storage. append_std (args, t, std); append_options (args, t, "cxx.coptions"); if (t.is_a ()) args.push_back ("-fPIC"); args.push_back ("-MM"); // @@ Change to -M args.push_back ("-MG"); // Treat missing headers as generated. args.push_back ("-MQ"); // Quoted target name. args.push_back ("*"); // Old versions can't handle empty target name. // We are using absolute source file path in order to get // absolute paths in the result. Any relative paths in the // result are non-existent generated headers. // // @@ We will also have to use absolute -I paths to guarantee // that. // args.push_back (s.path ().string ().c_str ()); args.push_back (nullptr); if (verb >= 2) print_process (args); level5 ([&]{trace << "target: " << t;}); try { process pr (args.data (), false, false, true); __gnu_cxx::stdio_filebuf fb (pr.in_ofd, ios_base::in); istream is (&fb); for (bool first (true); !is.eof (); ) { string l; getline (is, l); if (is.fail () && !is.eof ()) fail << "io error while parsing g++ -M output"; size_t pos (0); if (first) { // Empty output should mean the wait() call below will return // false. // if (l.empty ()) break; assert (l[0] == '*' && l[1] == ':' && l[2] == ' '); next (l, (pos = 3)); // Skip the source file. first = false; } while (pos != l.size ()) { path f (next (l, pos)); f.normalize (); assert (f.absolute ()); // Logic below depends on this. level5 ([&]{trace << "prerequisite path: " << f.string ();}); // Split the name into its directory part, the name part, and // extension. Here we can assume the name part is a valid // filesystem name. // // Note that if the file has no extension, we record an empty // extension rather than NULL (which would signify that the // default extension needs to be added). // dir_path d (f.directory ()); string n (f.leaf ().base ().string ()); const char* es (f.extension ()); const string* e (&extension_pool.find (es != nullptr ? es : "")); // Find or insert prerequisite. // // If there is no extension (e.g., standard C++ headers), // then assume it is a header. Otherwise, let the standard // mechanism derive the type from the extension. @@ TODO. // prerequisite& p ( ds.prerequisites.insert ( hxx::static_type, move (d), move (n), e, ds, trace).first); // Resolve to target. // path_target& pt (dynamic_cast (search (p))); // Add to prerequisites list. // t.prerequisites.emplace_back (p, pt); // Assign path. // if (pt.path ().empty ()) pt.path (move (f)); // Match to a rule. // build::match (a, pt); } } // We assume the child process issued some diagnostics. // if (!pr.wait ()) throw failed (); } catch (const process_error& e) { error << "unable to execute " << args[0] << ": " << e.what (); // In a multi-threaded program that fork()'ed but did not exec(), // it is unwise to try to do any kind of cleanup (like unwinding // the stack and running destructors). // if (e.child ()) exit (1); throw failed (); } } target_state compile:: perform_update (action a, target& xt) { path_target& t (static_cast (xt)); cxx* s (execute_prerequisites (a, t, t.mtime ())); if (s == nullptr) return target_state::unchanged; // Translate paths to relative (to working directory) ones. This // results in easier to read diagnostics. // path relo (relative (t.path ())); path rels (relative (s->path ())); scope& rs (*t.root_scope ()); // Shouldn't have matched if nullptr. const string& cxx (rs["config.cxx"].as ()); vector args {cxx.c_str ()}; append_options (args, rs, "config.cxx.poptions"); append_options (args, t, "cxx.poptions"); append_options (args, rs, "config.cxx.coptions"); string std; // Storage. append_std (args, t, std); append_options (args, t, "cxx.coptions"); if (t.is_a ()) args.push_back ("-fPIC"); args.push_back ("-o"); args.push_back (relo.string ().c_str ()); args.push_back ("-c"); args.push_back (rels.string ().c_str ()); args.push_back (nullptr); if (verb >= 1) print_process (args); else text << "c++ " << *s; try { process pr (args.data ()); if (!pr.wait ()) throw failed (); // Should we go to the filesystem and get the new mtime? We // know the file has been modified, so instead just use the // current clock time. It has the advantage of having the // subseconds precision. // t.mtime (system_clock::now ()); return target_state::changed; } catch (const process_error& e) { error << "unable to execute " << args[0] << ": " << e.what (); // In a multi-threaded program that fork()'ed but did not exec(), // it is unwise to try to do any kind of cleanup (like unwinding // the stack and running destructors). // if (e.child ()) exit (1); throw failed (); } } // link // void* link:: match (action a, target& t, const string& hint) const { tracer trace ("cxx::link::match"); // @@ TODO: // // - check prerequisites: object files, libraries // - if path already assigned, verify extension? // // @@ Q: // // - if there is no .o, are we going to check if the one derived // from target exist or can be built? A: No. // What if there is a library. Probably ok if .a, not if .so. // (i.e., a utility library). // bool so (t.is_a ()); // Scan prerequisites and see if we can work with what we've got. // bool seen_cxx (false), seen_c (false), seen_obj (false); for (prerequisite& p: t.prerequisites) { if (p.type.id == typeid (cxx)) // @@ Should use is_a (add to p.type). { seen_cxx = seen_cxx || true; } else if (p.type.id == typeid (c)) { seen_c = seen_c || true; } else if (p.type.id == typeid (obja)) { if (so) fail << "shared library " << t << " prerequisite " << p << " is static object"; seen_obj = seen_obj || true; } else if (p.type.id == typeid (objso) || p.type.id == typeid (obj)) { seen_obj = seen_obj || true; } else if (p.type.id != typeid (fsdir)) { level3 ([&]{trace << "unexpected prerequisite type " << p.type;}); return nullptr; } } // We will only chain a C source if there is also a C++ source or we // were explicitly told to. // if (seen_c && !seen_cxx && hint < "cxx") { level3 ([&]{trace << "c prerequisite(s) without c++ or hint";}); return nullptr; } return seen_cxx || seen_c || seen_obj ? &t : nullptr; } recipe link:: apply (action a, target& xt, void*) const { tracer trace ("cxx::link::apply"); path_target& t (static_cast (xt)); bool so (t.is_a ()); // Derive file name from target name. // if (t.path ().empty ()) { if (so) t.path (t.derived_path ("so", "lib")); else t.path (t.derived_path ()); // exe } // We may need the project roots for rule chaining (see below). // We will resolve them lazily only if needed. // const dir_path* out_root (nullptr); const dir_path* src_root (nullptr); // Process prerequisites: do rule chaining for C and C++ source // files as well as search and match. // for (prerequisite_target& pe: t.prerequisites) { prerequisite& p (pe); if (!p.is_a () && !p.is_a ()) { // The same basic logic as in search_and_match(). // pe.target = &search (p); if (a.operation () == clean_id && !pe.target->dir.sub (t.dir)) { pe.target = nullptr; // Ignore. continue; } // If this is the obj{} target group, then pick the appropriate // member and make sure it is searched and matched. // if (obj* o = pe.target->is_a ()) { pe.target = so ? static_cast (o->so) : o->a; if (pe.target == nullptr) { const target_type& type ( so ? objso::static_type : obja::static_type); pe.target = &search ( prerequisite_key {&type, &p.dir, &p.name, &p.ext, &p.scope}); } } build::match (a, *pe.target); continue; } if (out_root == nullptr) { // Which scope shall we use to resolve the root? Unlikely, // but possible, the prerequisite is from a different project // altogether. So we are going to use the target's project. // scope* rs (t.root_scope ()); assert (rs != nullptr); // Shouldn't have matched. out_root = &rs->path (); src_root = &rs->src_path (); } prerequisite& cp (p); const target_type& o_type ( so ? objso::static_type : obja::static_type); // Come up with the obj*{} prerequisite. The c(xx){} prerequisite // directory can be relative (to the scope) or absolute. If it is // relative, then use it as is. If it is absolute, then translate // it to the corresponding directory under out_root. While the // c(xx){} directory is most likely under src_root, it is also // possible it is under out_root (e.g., generated source). // dir_path d; if (cp.dir.relative () || cp.dir.sub (*out_root)) d = cp.dir; else { if (!cp.dir.sub (*src_root)) fail << "out of project prerequisite " << cp << info << "specify corresponding " << o_type.name << "{} " << "target explicitly"; d = *out_root / cp.dir.leaf (*src_root); } prerequisite& op ( cp.scope.prerequisites.insert ( o_type, move (d), cp.name, nullptr, cp.scope, trace).first); // Resolve this prerequisite to target. // target& ot (search (op)); // If we are cleaning, check that this target is in the same or // a subdirectory of ours. // // If it is not, then we are effectively leaving the prerequisites // half-rewritten (we only rewrite those that we should clean). // What will happen if, say, after clean we have update? Well, // update will come and finish the rewrite process (it will even // reuse op that we have created but then ignored). So all is good. // if (a.operation () == clean_id && !ot.dir.sub (t.dir)) { // If we shouldn't clean obj{}, then it is fair to assume // we shouldn't clean cxx{} either (generated source will // be in the same directory as obj{} and if not, well, go // and find yourself another build system). // pe.target = nullptr; // Skip. continue; } // If this target already exists, then it needs to be "compatible" // with what we are doing here. // // This gets a bit tricky. We need to make sure the source files // are the same which we can only do by comparing the targets to // which they resolve. But we cannot search the ot's prerequisites // -- only the rule that matches can. Note, however, that if all // this works out, then our next step is to search and match the // re-written prerequisite (which points to ot). If things don't // work out, then we fail, in which case searching and matching // speculatively doesn't really hurt. // prerequisite* cp1 (nullptr); for (prerequisite& p: ot.prerequisites) { // Ignore some known target types (fsdir, headers). // if (p.type.id == typeid (fsdir) || p.type.id == typeid (h) || (cp.type.id == typeid (cxx) && (p.type.id == typeid (hxx) || p.type.id == typeid (ixx) || p.type.id == typeid (txx)))) continue; if (p.type.id == typeid (cxx)) { cp1 = &p; // Check the rest of the prerequisites. continue; } fail << "synthesized target for prerequisite " << cp << " would be incompatible with existing target " << ot << info << "unknown existing prerequsite type " << p << info << "specify corresponding obj{} target explicitly"; } if (cp1 != nullptr) { build::match (a, ot); // Now cp1 should be resolved. search (cp); // Our own prerequisite, so this is ok. if (cp.target != cp1->target) fail << "synthesized target for prerequisite " << cp << " would be incompatible with existing target " << ot << info << "existing prerequsite " << *cp1 << " does not " << "match " << cp << info << "specify corresponding " << o_type.name << "{} " << "target explicitly"; } else { ot.prerequisites.emplace_back (cp); build::match (a, ot); } // Change the exe{} target's prerequsite ref from cxx{} to obj*{}. // pe.prereq = &op; pe.target = &ot; } // Inject dependency on the output directory. // inject_parent_fsdir (a, t); switch (a) { case perform_update_id: return &perform_update; case perform_clean_id: return &perform_clean_file; default: return default_recipe; // Forward to prerequisites. } } target_state link:: perform_update (action a, target& xt) { // @@ Q: // // - what are we doing with libraries? // path_target& t (static_cast (xt)); bool so (t.is_a ()); if (!execute_prerequisites (a, t, t.mtime ())) return target_state::unchanged; // Translate paths to relative (to working directory) ones. This // results in easier to read diagnostics. // path relt (relative (t.path ())); vector relo; scope& rs (*t.root_scope ()); // Shouldn't have matched if nullptr. const string& cxx (rs["config.cxx"].as ()); vector args {cxx.c_str ()}; append_options (args, rs, "config.cxx.coptions"); string std; // Storage. append_std (args, t, std); append_options (args, t, "cxx.coptions"); if (so) args.push_back ("-shared"); args.push_back ("-o"); args.push_back (relt.string ().c_str ()); append_options (args, rs, "config.cxx.loptions"); append_options (args, t, "cxx.loptions"); for (target* pt: t.prerequisites) { if (pt == nullptr) continue; // Skipped. path_target* ppt; if (obj* o = pt->is_a ()) ppt = so ? static_cast (o->so) : o->a; else if ((ppt = pt->is_a ())) ; else if ((ppt = pt->is_a ())) ; else continue; relo.push_back (relative (ppt->path ())); args.push_back (relo.back ().string ().c_str ()); } append_options (args, rs, "config.cxx.libs"); append_options (args, t, "cxx.libs"); args.push_back (nullptr); if (verb >= 1) print_process (args); else text << "ld " << t; try { process pr (args.data ()); if (!pr.wait ()) throw failed (); // Should we go to the filesystem and get the new mtime? We // know the file has been modified, so instead just use the // current clock time. It has the advantage of having the // subseconds precision. // t.mtime (system_clock::now ()); return target_state::changed; } catch (const process_error& e) { error << "unable to execute " << args[0] << ": " << e.what (); // In a multi-threaded program that fork()'ed but did not exec(), // it is unwise to try to do any kind of cleanup (like unwinding // the stack and running destructors). // if (e.child ()) exit (1); throw failed (); } } } }