// file : build/cxx/compile.cxx -*- C++ -*- // copyright : Copyright (c) 2014-2015 Code Synthesis Ltd // license : MIT; see accompanying LICENSE file #include <build/cxx/compile> #include <map> #include <string> #include <cstddef> // size_t #include <cstdlib> // exit() #include <utility> // move() #include <butl/process> #include <butl/utility> // reverse_iterate #include <butl/fdstream> #include <butl/path-map> #include <build/types> #include <build/scope> #include <build/variable> #include <build/algorithm> #include <build/diagnostics> #include <build/context> #include <build/bin/target> #include <build/cxx/target> #include <build/cxx/utility> #include <build/cxx/link> using namespace std; using namespace butl; namespace build { namespace cxx { using namespace bin; match_result compile:: match (action a, target& t, const string&) const { tracer trace ("cxx::compile::match"); // @@ TODO: // // - check prerequisites: single source file // - if path already assigned, verify extension? // // See if we have a C++ source file. Iterate in reverse so that // a source file specified for an obj*{} member overrides the one // specified for the group. Also "see through" groups. // for (prerequisite_member p: reverse_group_prerequisite_members (a, t)) { if (p.is_a<cxx> ()) return p; } level4 ([&]{trace << "no c++ source file for target " << t;}); return nullptr; } static void inject_prerequisites (action, target&, cxx&, scope&); recipe compile:: apply (action a, target& xt, const match_result& mr) const { path_target& t (static_cast<path_target&> (xt)); // Derive file name from target name. // if (t.path ().empty ()) t.derive_path ("o", nullptr, (t.is_a<objso> () ? "-so" : nullptr)); // Inject dependency on the output directory. // inject_parent_fsdir (a, t); // Search and match all the existing prerequisites. The injection // code (below) takes care of the ones it is adding. // // When cleaning, ignore prerequisites that are not in the same // or a subdirectory of our strong amalgamation. // const dir_path* amlg ( a.operation () != clean_id ? nullptr : &t.strong_scope ().out_path ()); link::search_paths_cache lib_paths; // Extract lazily. for (prerequisite_member p: group_prerequisite_members (a, t)) { // A dependency on a library is there so that we can get its // cxx.export.poptions. In particular, making sure it is // executed before us will only restrict parallelism. But we // do need to pre-match it in order to get its // prerequisite_targets populated. This is the "library // meta-information protocol". See also append_lib_options() // above. // if (p.is_a<lib> () || p.is_a<liba> () || p.is_a<libso> ()) { if (a.operation () == update_id) { // Handle imported libraries. We know that for such libraries // we don't need to do match() in order to get options (if // any, they would be set by search_library()). // if (p.proj () == nullptr || link::search_library (lib_paths, p.prerequisite) == nullptr) { match_only (a, p.search ()); } } continue; } target& pt (p.search ()); if (a.operation () == clean_id && !pt.dir.sub (*amlg)) continue; build::match (a, pt); t.prerequisite_targets.push_back (&pt); } // Inject additional prerequisites. We only do it when // performing update since chances are we will have to // update some of our prerequisites in the process (auto- // generated source code). // if (a == perform_update_id) { // The cached prerequisite target should be the same as what // is in t.prerequisite_targets since we used standard // search() and match() above. // // @@ Ugly. // cxx& st ( dynamic_cast<cxx&> ( mr.target != nullptr ? *mr.target : *mr.prerequisite->target)); inject_prerequisites (a, t, st, mr.prerequisite->scope); } switch (a) { case perform_update_id: return &perform_update; case perform_clean_id: return &perform_clean; default: return noop_recipe; // Configure update. } } // The strings used as the map key should be from the extension_pool. // This way we can just compare pointers. // using ext_map = map<const string*, const target_type*>; static ext_map build_ext_map (scope& r) { ext_map m; if (auto l = r["h.ext"]) m[&extension_pool.find (as<string> (*l))] = &h::static_type; if (auto l = r["c.ext"]) m[&extension_pool.find (as<string> (*l))] = &c::static_type; if (auto l = r["hxx.ext"]) m[&extension_pool.find (as<string> (*l))] = &hxx::static_type; if (auto l = r["ixx.ext"]) m[&extension_pool.find (as<string> (*l))] = &ixx::static_type; if (auto l = r["txx.ext"]) m[&extension_pool.find (as<string> (*l))] = &txx::static_type; if (auto l = r["cxx.ext"]) m[&extension_pool.find (as<string> (*l))] = &cxx::static_type; return m; } // Mapping of include prefixes (e.g., foo in <foo/bar>) for auto- // generated headers to directories where they will be generated. // // We are using a prefix map of directories (dir_path_map) instead // of just a map in order also cover sub-paths (e.g., <foo/more/bar> // if we continue with the example). Specifically, we need to make // sure we don't treat foobar as a sub-directory of foo. // // @@ The keys should be canonicalized. // using prefix_map = dir_path_map<dir_path>; static void append_prefixes (prefix_map& m, target& t, const char* var) { tracer trace ("cxx::append_prefixes"); // If this target does not belong to any project (e.g, an // "imported as installed" library), then it can't possibly // generate any headers for us. // scope* rs (t.base_scope ().root_scope ()); if (rs == nullptr) return; const dir_path& out_base (t.dir); const dir_path& out_root (rs->out_path ()); if (auto l = t[var]) { const auto& v (as<strings> (*l)); for (auto i (v.begin ()), e (v.end ()); i != e; ++i) { // -I can either be in the "-Ifoo" or "-I foo" form. // dir_path d; if (*i == "-I") { if (++i == e) break; // Let the compiler complain. d = dir_path (*i); } else if (i->compare (0, 2, "-I") == 0) d = dir_path (*i, 2, string::npos); else continue; level6 ([&]{trace << "-I '" << d << "'";}); // If we are relative or not inside our project root, then // ignore. // if (d.relative () || !d.sub (out_root)) continue; // If the target directory is a sub-directory of the include // directory, then the prefix is the difference between the // two. Otherwise, leave it empty. // // The idea here is to make this "canonical" setup work auto- // magically: // // 1. We include all files with a prefix, e.g., <foo/bar>. // 2. The library target is in the foo/ sub-directory, e.g., // /tmp/foo/. // 3. The poptions variable contains -I/tmp. // dir_path p (out_base.sub (d) ? out_base.leaf (d) : dir_path ()); auto j (m.find (p)); if (j != m.end ()) { if (j->second != d) { // We used to reject duplicates but it seems this can // be reasonably expected to work according to the order // of the -I options. // if (verb >= 4) trace << "overriding dependency prefix '" << p << "'\n" << " old mapping to " << j->second << "\n" << " new mapping to " << d; j->second = d; } } else { level6 ([&]{trace << "'" << p << "' = '" << d << "'";}); m.emplace (move (p), move (d)); } } } } // Append library prefixes based on the cxx.export.poptions variables // recursively, prerequisite libraries first. // static void append_lib_prefixes (prefix_map& m, target& l) { for (target* t: l.prerequisite_targets) { if (t == nullptr) continue; if (t->is_a<lib> () || t->is_a<liba> () || t->is_a<libso> ()) append_lib_prefixes (m, *t); } append_prefixes (m, l, "cxx.export.poptions"); } static prefix_map build_prefix_map (target& t) { prefix_map m; // First process the include directories from prerequisite // libraries. Note that here we don't need to see group // members (see apply()). // for (prerequisite& p: group_prerequisites (t)) { target& pt (*p.target); // Already searched and matched. if (pt.is_a<lib> () || pt.is_a<liba> () || pt.is_a<libso> ()) append_lib_prefixes (m, pt); } // Then process our own. // append_prefixes (m, t, "cxx.poptions"); return m; } // Return the next make prerequisite starting from the specified // position and update position to point to the start of the // following prerequisite or l.size() if there are none left. // static string next (const string& l, size_t& p) { size_t n (l.size ()); // Skip leading spaces. // for (; p != n && l[p] == ' '; p++) ; // Lines containing multiple prerequisites are 80 characters max. // string r; r.reserve (n); // Scan the next prerequisite while watching out for escape sequences. // for (; p != n && l[p] != ' '; p++) { char c (l[p]); if (c == '\\') c = l[++p]; r += c; } // Skip trailing spaces. // for (; p != n && l[p] == ' '; p++) ; // Skip final '\'. // if (p == n - 1 && l[p] == '\\') p++; return r; } static void inject_prerequisites (action a, target& t, cxx& s, scope& ds) { tracer trace ("cxx::compile::inject_prerequisites"); scope& rs (t.root_scope ()); const string& cxx (as<string> (*rs["config.cxx"])); cstrings args {cxx.c_str ()}; // Add cxx.export.poptions from prerequisite libraries. Note // that here we don't need to see group members (see apply()). // for (prerequisite& p: group_prerequisites (t)) { target& pt (*p.target); // Already searched and matched. if (pt.is_a<lib> () || pt.is_a<liba> () || pt.is_a<libso> ()) append_lib_options (args, pt, "cxx.export.poptions"); } append_options (args, t, "cxx.poptions"); // @@ Some C++ options (e.g., -std, -m) affect the preprocessor. // Or maybe they are not C++ options? Common options? // append_options (args, t, "cxx.coptions"); string std; // Storage. append_std (args, t, std); if (t.is_a<objso> ()) args.push_back ("-fPIC"); args.push_back ("-M"); // Note: -MM -MG skips missing <>-included. args.push_back ("-MG"); // Treat missing headers as generated. args.push_back ("-MQ"); // Quoted target name. args.push_back ("*"); // Old versions can't handle empty target name. // We are using absolute source file path in order to get absolute // paths in the result. Any relative paths in the result are non- // existent, potentially auto-generated headers. // // @@ We will also have to use absolute -I paths to guarantee // that. Or just detect relative paths and error out? // args.push_back (s.path ().string ().c_str ()); args.push_back (nullptr); level6 ([&]{trace << "target: " << t;}); // Build the prefix map lazily only if we have non-existent files. // Also reuse it over restarts since it doesn't change. // prefix_map pm; // If any prerequisites that we have extracted changed, then we // have to redo the whole thing. The reason for this is auto- // generated headers: the updated header may now include a yet- // non-existent header. Unless we discover this and generate it // (which, BTW, will trigger another restart since that header, // in turn, can also include auto-generated headers), we will // end up with an error during compilation proper. // // One complication with this restart logic is that we will see // a "prefix" of prerequisites that we have already processed // (i.e., they are already in our prerequisite_targets list) and // we don't want to keep redoing this over and over again. One // thing to note, however, is that the prefix that we have seen // on the previous run must appear exactly the same in the // subsequent run. The reason for this is that none of the files // that it can possibly be based on have changed and thus it // should be exactly the same. To put it another way, the // presence or absence of a file in the dependency output can // only depend on the previous files (assuming the compiler // outputs them as it encounters them and it is hard to think // of a reason why would someone do otherwise). And we have // already made sure that all those files are up to date. And // here is the way we are going to exploit this: we are going // to keep track of how many prerequisites we have processed so // far and on restart skip right to the next one. // // Also, before we do all that, make sure the source file itself // if up to date. // execute_direct (a, s); size_t skip_count (0); for (bool restart (true); restart; ) { restart = false; if (verb >= 3) print_process (args); try { process pr (args.data (), 0, -1); // Open pipe to stdout. ifdstream is (pr.in_ofd); size_t skip (skip_count); for (bool first (true), second (true); !(restart || is.eof ()); ) { string l; getline (is, l); if (is.fail () && !is.eof ()) fail << "error reading C++ compiler -M output"; size_t pos (0); if (first) { // Empty output should mean the wait() call below will return // false. // if (l.empty ()) break; assert (l[0] == '*' && l[1] == ':' && l[2] == ' '); first = false; // While normally we would have the source file on the // first line, if too long, it will be moved to the next // line and all we will have on this line is "*: \". // if (l.size () == 4 && l[3] == '\\') continue; else pos = 3; // Skip "*: ". // Fall through to the 'second' block. } if (second) { second = false; next (l, pos); // Skip the source file. } // If things go wrong (and they often do in this area), give // the user a bit extra context. // auto g ( make_exception_guard ( [](target& s) { info << "while extracting dependencies from " << s; }, s)); while (pos != l.size ()) { string fs (next (l, pos)); // Skip until where we left off. // if (skip != 0) { skip--; continue; } path f (move (fs)); f.normalize (); if (!f.absolute ()) { // This is probably as often an error as an auto-generated // file, so trace at level 4. // level4 ([&]{trace << "non-existent header '" << f << "'";}); // If we already did it and build_prefix_map() returned empty, // then we would have failed below. // if (pm.empty ()) pm = build_prefix_map (t); // First try the whole file. Then just the directory. // // @@ Has to be a separate map since the prefix can be // the same as the file name. // // auto i (pm.find (f)); // Find the most qualified prefix of which we are a // sub-path. // auto i (pm.end ()); if (!pm.empty ()) { const dir_path& d (f.directory ()); i = pm.upper_bound (d); // Get the greatest less than, if any. We might // still not be a sub. Note also that we still // have to check the last element is upper_bound() // returned end(). // if (i == pm.begin () || !d.sub ((--i)->first)) i = pm.end (); } if (i == pm.end ()) fail << "unable to map presumably auto-generated header '" << f << "' to a project"; f = i->second / f; } level6 ([&]{trace << "injecting " << f;}); // Split the name into its directory part, the name part, and // extension. Here we can assume the name part is a valid // filesystem name. // // Note that if the file has no extension, we record an empty // extension rather than NULL (which would signify that the // default extension should be added). // dir_path d (f.directory ()); string n (f.leaf ().base ().string ()); const char* es (f.extension ()); const string* e (&extension_pool.find (es != nullptr ? es : "")); // Determine the target type. // const target_type* tt (nullptr); // See if this directory is part of any project out_root // hierarchy. Note that this will miss all the headers // that come from src_root (so they will be treated as // generic C headers below). Generally, we don't have // the ability to determine that some file belongs to // src_root of some project. But that's not a problem // for our purposes: it is only important for us to // accurately determine target types for headers that // could be auto-generated. // if (scope* r = scopes.find (d).root_scope ()) { // Get cached (or build) a map of the extensions for the // C/C++ files this project is using. // const ext_map& m (build_ext_map (*r)); auto i (m.find (e)); if (i != m.end ()) tt = i->second; } // If it is outside any project, or the project doesn't have // such an extension, assume it is a plain old C header. // if (tt == nullptr) tt = &h::static_type; // Find or insert target. // path_target& pt ( static_cast<path_target&> (search (*tt, d, n, e, &ds))); // Assign path. // if (pt.path ().empty ()) pt.path (move (f)); // Match to a rule. // build::match (a, pt); // Update it. // // There would normally be a lot of headers for every source // file (think all the system headers) and this can get // expensive. At the same time, most of these headers are // existing files that we will never be updated (again, // system headers, for example) and the rule that will match // them is fallback file_rule. That rule has an optimization // in that it returns noop_recipe (which causes the target // state to be automatically set to unchanged) if the file // is known to be up to date. // if (pt.state () != target_state::unchanged) { // We only want to restart if our call to execute() actually // caused an update. In particular, the target could already // have been in target_state::changed because of a dependency // extraction run for some other source file. // target_state os (pt.state ()); target_state ns (execute_direct (a, pt)); if (ns != os && ns != target_state::unchanged) { level6 ([&]{trace << "updated " << pt << ", restarting";}); restart = true; } } // Add to our prerequisite target list. // t.prerequisite_targets.push_back (&pt); skip_count++; } } // We may not have read all the output (e.g., due to a restart), // so close the file descriptor before waiting to avoid blocking // the other end. // is.close (); // We assume the child process issued some diagnostics. // if (!pr.wait ()) throw failed (); } catch (const process_error& e) { error << "unable to execute " << args[0] << ": " << e.what (); // In a multi-threaded program that fork()'ed but did not exec(), // it is unwise to try to do any kind of cleanup (like unwinding // the stack and running destructors). // if (e.child ()) exit (1); throw failed (); } } } target_state compile:: perform_update (action a, target& xt) { path_target& t (static_cast<path_target&> (xt)); cxx* s (execute_prerequisites<cxx> (a, t, t.mtime ())); if (s == nullptr) return target_state::unchanged; // Translate paths to relative (to working directory) ones. This // results in easier to read diagnostics. // path relo (relative (t.path ())); path rels (relative (s->path ())); scope& rs (t.root_scope ()); const string& cxx (as<string> (*rs["config.cxx"])); cstrings args {cxx.c_str ()}; // Add cxx.export.poptions from prerequisite libraries. Note that // here we don't need to see group members (see apply()). // for (prerequisite& p: group_prerequisites (t)) { target& pt (*p.target); // Already searched and matched. if (pt.is_a<lib> () || pt.is_a<liba> () || pt.is_a<libso> ()) append_lib_options (args, pt, "cxx.export.poptions"); } append_options (args, t, "cxx.poptions"); append_options (args, t, "cxx.coptions"); string std; // Storage. append_std (args, t, std); if (t.is_a<objso> ()) args.push_back ("-fPIC"); args.push_back ("-o"); args.push_back (relo.string ().c_str ()); args.push_back ("-c"); args.push_back (rels.string ().c_str ()); args.push_back (nullptr); if (verb >= 2) print_process (args); else if (verb) text << "c++ " << *s; try { process pr (args.data ()); if (!pr.wait ()) throw failed (); // Should we go to the filesystem and get the new mtime? We // know the file has been modified, so instead just use the // current clock time. It has the advantage of having the // subseconds precision. // t.mtime (system_clock::now ()); return target_state::changed; } catch (const process_error& e) { error << "unable to execute " << args[0] << ": " << e.what (); // In a multi-threaded program that fork()'ed but did not exec(), // it is unwise to try to do any kind of cleanup (like unwinding // the stack and running destructors). // if (e.child ()) exit (1); throw failed (); } } compile compile::instance; } }