// file : build/bin/rule.cxx -*- C++ -*- // copyright : Copyright (c) 2014-2015 Code Synthesis Ltd // license : MIT; see accompanying LICENSE file #include <build/bin/rule> #include <build/scope> #include <build/target> #include <build/algorithm> #include <build/diagnostics> #include <build/bin/target> using namespace std; namespace build { namespace bin { // obj // match_result obj_rule:: match (action a, target& t, const std::string&) const { fail << diag_doing (a, t) << " target group" << info << "explicitly select either obja{} or objso{} member"; return nullptr; } recipe obj_rule:: apply (action, target&, const match_result&) const {return empty_recipe;} // lib // // The whole logic is pretty much as if we had our two group // members as our prerequisites. // match_result lib_rule:: match (action, target& t, const std::string&) const { return t; } recipe lib_rule:: apply (action a, target& xt, const match_result&) const { lib& t (static_cast<lib&> (xt)); // Get the library type to build. If not set for a target, this // should be configured at the project scope by init_lib(). // const string& type (t["bin.lib"].as<const string&> ()); bool ar (type == "static" || type == "both"); bool so (type == "shared" || type == "both"); if (!ar && !so) fail << "unknown library type: " << type << info << "'static', 'shared', or 'both' expected"; if (ar) { if (t.a == nullptr) t.a = &search<liba> (t.dir, t.name, t.ext, nullptr); build::match (a, *t.a); } if (so) { if (t.so == nullptr) t.so = &search<libso> (t.dir, t.name, t.ext, nullptr); build::match (a, *t.so); } // Search and match prerequisite libraries and add them to the // prerequisite targets. While we never execute this list // ourselves (see perform() below), this is necessary to make // the exported options machinery work for the library chains. // See cxx.export.*-related code in cxx/rule.cxx for details. // for (prerequisite& p: group_prerequisites (t)) { if (p.is_a<lib> () || p.is_a<liba> () || p.is_a<libso> ()) { target& pt (search (p)); build::match (a, pt); t.prerequisite_targets.push_back (&pt); } } return &perform; } target_state lib_rule:: perform (action a, target& xt) { lib& t (static_cast<lib&> (xt)); //@@ Not cool we have to do this again. Looks like we need // some kind of a cache vs resolved pointer, like in // prerequisite vs prerequisite_target. // // const string& type (t["bin.lib"].as<const string&> ()); bool ar (type == "static" || type == "both"); bool so (type == "shared" || type == "both"); target* m1 (ar ? t.a : nullptr); target* m2 (so ? t.so : nullptr); if (current_mode == execution_mode::last) swap (m1, m2); target_state ts (target_state::unchanged); if (m1 != nullptr && execute (a, *m1) == target_state::changed) ts = target_state::changed; if (m2 != nullptr && execute (a, *m2) == target_state::changed) ts = target_state::changed; return ts; } } }