// file : build/bin/rule.cxx -*- C++ -*- // copyright : Copyright (c) 2014-2015 Code Synthesis Ltd // license : MIT; see accompanying LICENSE file #include <build/bin/rule> #include <build/scope> #include <build/target> #include <build/algorithm> #include <build/diagnostics> #include <build/bin/target> using namespace std; namespace build { namespace bin { // obj // match_result obj_rule:: match (action a, target& t, const std::string&) const { fail << diag_doing (a, t) << " target group" << info << "explicitly select either obja{} or objso{} member"; return nullptr; } recipe obj_rule:: apply (action, target&, const match_result&) const {return empty_recipe;} // lib // // The whole logic is pretty much as if we had our two group // members as our prerequisites. // match_result lib_rule:: match (action a, target& xt, const std::string&) const { lib& t (static_cast<lib&> (xt)); // @@ We have to re-query it on each match_only()! // Get the library type to build. If not set for a target, this // should be configured at the project scope by init_lib(). // const string& type (as<string> (*t["bin.lib"])); bool ar (type == "static" || type == "both"); bool so (type == "shared" || type == "both"); if (!ar && !so) fail << "unknown library type: " << type << info << "'static', 'shared', or 'both' expected"; // Search and pre-match the members. The pre-match here is part // of the "library meta-information protocol" that could be used // by the module that actually builds the members. The idea is // that pre-matching members may populate our prerequisite_targets // with prerequisite libraries from which others can extract the // meta-information about the library, such as the options to use // when linking it, etc. // if (ar) { if (t.a == nullptr) t.a = &search<liba> (t.dir, t.name, t.ext, nullptr); match_only (a, *t.a); } if (so) { if (t.so == nullptr) t.so = &search<libso> (t.dir, t.name, t.ext, nullptr); match_only (a, *t.so); } match_result mr (t, &type); // If there is an outer operation, indicate that we match // unconditionally so that we don't override ourselves. // if (a.outer_operation () != 0) mr.recipe_action = action (a.meta_operation (), a.operation ()); return mr; } recipe lib_rule:: apply (action a, target& xt, const match_result& mr) const { lib& t (static_cast<lib&> (xt)); const string& type (*static_cast<const string*> (mr.cpvalue)); bool ar (type == "static" || type == "both"); bool so (type == "shared" || type == "both"); // Now we do full match. // if (ar) build::match (a, *t.a); if (so) build::match (a, *t.so); return &perform; } target_state lib_rule:: perform (action a, target& xt) { lib& t (static_cast<lib&> (xt)); //@@ Not cool we have to do this again. Looks like we need // some kind of a cache vs resolved pointer, like in // prerequisite vs prerequisite_target. // // const string& type (as<string> (*t["bin.lib"])); bool ar (type == "static" || type == "both"); bool so (type == "shared" || type == "both"); target* m1 (ar ? t.a : nullptr); target* m2 (so ? t.so : nullptr); if (current_mode == execution_mode::last) swap (m1, m2); target_state r (target_state::unchanged); if (m1 != nullptr) r |= execute (a, *m1); if (m2 != nullptr) r |= execute (a, *m2); return r; } } }