From 9fb791e9fad6c63fc1dac49f4d05ae63b8a3db9b Mon Sep 17 00:00:00 2001 From: Boris Kolpackov Date: Tue, 5 Jan 2016 11:55:15 +0200 Subject: Rename build directory/namespace to build2 --- build/cxx/link.cxx | 875 ----------------------------------------------------- 1 file changed, 875 deletions(-) delete mode 100644 build/cxx/link.cxx (limited to 'build/cxx/link.cxx') diff --git a/build/cxx/link.cxx b/build/cxx/link.cxx deleted file mode 100644 index 81e6c0b..0000000 --- a/build/cxx/link.cxx +++ /dev/null @@ -1,875 +0,0 @@ -// file : build/cxx/link.cxx -*- C++ -*- -// copyright : Copyright (c) 2014-2015 Code Synthesis Ltd -// license : MIT; see accompanying LICENSE file - -#include - -#include -#include -#include // size_t -#include // exit() -#include // move() - -#include -#include // reverse_iterate -#include -#include -#include -#include - -#include -#include -#include -#include -#include -#include - -#include -#include - -#include - -using namespace std; -using namespace butl; - -namespace build -{ - namespace cxx - { - using namespace bin; - - link::order link:: - link_order (target& t) - { - const char* var; - - switch (link_type (t)) - { - case type::e: var = "bin.exe.lib"; break; - case type::a: var = "bin.liba.lib"; break; - case type::so: var = "bin.libso.lib"; break; - } - - const auto& v (as (*t[var])); - return v[0] == "shared" - ? v.size () > 1 && v[1] == "static" ? order::so_a : order::so - : v.size () > 1 && v[1] == "shared" ? order::a_so : order::a; - } - - target& link:: - link_member (bin::lib& l, order lo) - { - bool lso (true); - const string& at (as (*l["bin.lib"])); // Available types. - - switch (lo) - { - case order::a: - case order::a_so: - lso = false; // Fall through. - case order::so: - case order::so_a: - { - if (lso ? at == "static" : at == "shared") - { - if (lo == order::a_so || lo == order::so_a) - lso = !lso; - else - fail << (lso ? "shared" : "static") << " build of " << l - << " is not available"; - } - } - } - - target* r (lso ? static_cast (l.so) : l.a); - - if (r == nullptr) - r = &search (lso ? libso::static_type : liba::static_type, - prerequisite_key {nullptr, l.key (), nullptr}); - - return *r; - } - - link::search_paths link:: - extract_library_paths (scope& bs) - { - search_paths r; - scope& rs (*bs.root_scope ()); - - // Extract user-supplied search paths (i.e., -L). - // - if (auto l = bs["cxx.loptions"]) - { - const auto& v (as (*l)); - - for (auto i (v.begin ()), e (v.end ()); i != e; ++i) - { - // -L can either be in the "-Lfoo" or "-L foo" form. - // - dir_path d; - if (*i == "-L") - { - if (++i == e) - break; // Let the compiler complain. - - d = dir_path (*i); - } - else if (i->compare (0, 2, "-L") == 0) - d = dir_path (*i, 2, string::npos); - else - continue; - - // Ignore relative paths. Or maybe we should warn? - // - if (!d.relative ()) - r.push_back (move (d)); - } - } - - // Extract system search paths. - // - cstrings args; - string std_storage; - - args.push_back (as (*rs["config.cxx"]).c_str ()); - append_options (args, bs, "cxx.coptions"); - append_std (args, bs, std_storage); - append_options (args, bs, "cxx.loptions"); - args.push_back ("-print-search-dirs"); - args.push_back (nullptr); - - if (verb >= 3) - print_process (args); - - string l; - try - { - process pr (args.data (), 0, -1); // Open pipe to stdout. - ifdstream is (pr.in_ofd); - - while (!is.eof ()) - { - string s; - getline (is, s); - - if (is.fail () && !is.eof ()) - fail << "error reading C++ compiler -print-search-dirs output"; - - if (s.compare (0, 12, "libraries: =") == 0) - { - l.assign (s, 12, string::npos); - break; - } - } - - is.close (); // Don't block. - - if (!pr.wait ()) - throw failed (); - } - catch (const process_error& e) - { - error << "unable to execute " << args[0] << ": " << e.what (); - - if (e.child ()) - exit (1); - - throw failed (); - } - - if (l.empty ()) - fail << "unable to extract C++ compiler system library paths"; - - // Now the fun part: figuring out which delimiter is used. - // Normally it is ':' but on Windows it is ';' (or can be; - // who knows for sure). Also note that these paths are - // absolute (or should be). So here is what we are going - // to do: first look for ';'. If found, then that's the - // delimiter. If not found, then there are two cases: - // it is either a single Windows path or the delimiter - // is ':'. To distinguish these two cases we check if - // the path starts with a Windows drive. - // - char d (';'); - string::size_type e (l.find (d)); - - if (e == string::npos && - (l.size () < 2 || l[0] == '/' || l[1] != ':')) - { - d = ':'; - e = l.find (d); - } - - // Now chop it up. We already have the position of the - // first delimiter (if any). - // - for (string::size_type b (0);; e = l.find (d, (b = e + 1))) - { - r.emplace_back (l, b, (e != string::npos ? e - b : e)); - r.back ().normalize (); - - if (e == string::npos) - break; - } - - return r; - } - - target* link:: - search_library (search_paths_cache& spc, prerequisite& p) - { - tracer trace ("cxx::link::search_library"); - - // First check the cache. - // - if (p.target != nullptr) - return p.target; - - bool l (p.is_a ()); - const string* ext (l ? nullptr : p.ext); // Only for liba/libso. - - // Then figure out what we need to search for. - // - - // liba - // - path an; - const string* ae; - - if (l || p.is_a ()) - { - an = path ("lib" + p.name); - - // Note that p.scope should be the same as the target's for - // which we are looking for this library. The idea here is - // that we have to use the same "extension configuration" as - // the target's. - // - ae = ext == nullptr - ? &liba::static_type.extension (p.key ().tk, p.scope) - : ext; - - if (!ae->empty ()) - { - an += '.'; - an += *ae; - } - } - - // libso - // - path sn; - const string* se; - - if (l || p.is_a ()) - { - sn = path ("lib" + p.name); - se = ext == nullptr - ? &libso::static_type.extension (p.key ().tk, p.scope) - : ext; - - if (!se->empty ()) - { - sn += '.'; - sn += *se; - } - } - - // Now search. - // - if (!spc) - spc = extract_library_paths (p.scope); - - liba* a (nullptr); - libso* s (nullptr); - - path f; // Reuse the buffer. - const dir_path* pd; - for (const dir_path& d: *spc) - { - timestamp mt; - - // liba - // - if (!an.empty ()) - { - f = d; - f /= an; - - if ((mt = file_mtime (f)) != timestamp_nonexistent) - { - // Enter the target. Note that because the search paths are - // normalized, the result is automatically normalized as well. - // - a = &targets.insert (d, p.name, ae, trace); - - if (a->path ().empty ()) - a->path (move (f)); - - a->mtime (mt); - } - } - - // libso - // - if (!sn.empty ()) - { - f = d; - f /= sn; - - if ((mt = file_mtime (f)) != timestamp_nonexistent) - { - s = &targets.insert (d, p.name, se, trace); - - if (s->path ().empty ()) - s->path (move (f)); - - s->mtime (mt); - } - } - - if (a != nullptr || s != nullptr) - { - pd = &d; - break; - } - } - - if (a == nullptr && s == nullptr) - return nullptr; - - if (l) - { - // Enter the target group. - // - lib& l (targets.insert (*pd, p.name, p.ext, trace)); - - // It should automatically link-up to the members we have found. - // - assert (l.a == a); - assert (l.so == s); - - // Set the bin.lib variable to indicate what's available. - // - const char* bl (a != nullptr - ? (s != nullptr ? "both" : "static") - : "shared"); - l.assign ("bin.lib") = bl; - - p.target = &l; - } - else - p.target = p.is_a () ? static_cast (a) : s; - - return p.target; - } - - match_result link:: - match (action a, target& t, const string& hint) const - { - tracer trace ("cxx::link::match"); - - // @@ TODO: - // - // - if path already assigned, verify extension? - // - // @@ Q: - // - // - if there is no .o, are we going to check if the one derived - // from target exist or can be built? A: No. - // What if there is a library. Probably ok if .a, not if .so. - // (i.e., a utility library). - // - - type lt (link_type (t)); - - // Scan prerequisites and see if we can work with what we've got. - // - bool seen_cxx (false), seen_c (false), seen_obj (false), - seen_lib (false); - - for (prerequisite_member p: group_prerequisite_members (a, t)) - { - if (p.is_a ()) - { - seen_cxx = seen_cxx || true; - } - else if (p.is_a ()) - { - seen_c = seen_c || true; - } - else if (p.is_a ()) - { - if (lt == type::so) - fail << "shared library " << t << " prerequisite " << p - << " is static object"; - - seen_obj = seen_obj || true; - } - else if (p.is_a () || - p.is_a ()) - { - seen_obj = seen_obj || true; - } - else if (p.is_a () || - p.is_a () || - p.is_a ()) - { - seen_lib = seen_lib || true; - } - } - - // We will only chain a C source if there is also a C++ source or we - // were explicitly told to. - // - if (seen_c && !seen_cxx && hint < "cxx") - { - level4 ([&]{trace << "c prerequisite(s) without c++ or hint";}); - return nullptr; - } - - // If we have any prerequisite libraries (which also means that - // we match), search/import and pre-match them to implement the - // "library meta-information protocol". Don't do this if we are - // called from the install rule just to check if we would match. - // - if (seen_lib && lt != type::e && - a.operation () != install_id && a.outer_operation () != install_id) - { - if (t.group != nullptr) - t.group->prerequisite_targets.clear (); // lib{}'s - - search_paths_cache lib_paths; // Extract lazily. - - for (prerequisite_member p: group_prerequisite_members (a, t)) - { - if (p.is_a () || p.is_a () || p.is_a ()) - { - target* pt (nullptr); - - // Handle imported libraries. - // - if (p.proj () != nullptr) - pt = search_library (lib_paths, p.prerequisite); - - if (pt == nullptr) - { - pt = &p.search (); - match_only (a, *pt); - } - - // If the prerequisite came from the lib{} group, then also - // add it to lib's prerequisite_targets. - // - if (!p.prerequisite.belongs (t)) - t.group->prerequisite_targets.push_back (pt); - - t.prerequisite_targets.push_back (pt); - } - } - } - - return seen_cxx || seen_c || seen_obj || seen_lib ? &t : nullptr; - } - - recipe link:: - apply (action a, target& xt, const match_result&) const - { - tracer trace ("cxx::link::apply"); - - path_target& t (static_cast (xt)); - - type lt (link_type (t)); - bool so (lt == type::so); - order lo (link_order (t)); - - // Derive file name from target name. - // - if (t.path ().empty ()) - { - auto l (t["extension"]); - const char* e (l ? as (*l).c_str () : nullptr); - - switch (lt) - { - case type::e: - { - t.derive_path (e != nullptr ? e : ""); - break; - } - case type::a: - case type::so: - { - auto l (t["bin.libprefix"]); - t.derive_path (e != nullptr ? e : (lt == type::a ? "a" : "so"), - l ? as (*l).c_str () : "lib"); - break; - } - } - } - - t.prerequisite_targets.clear (); // See lib pre-match in match() above. - - // Inject dependency on the output directory. - // - inject_parent_fsdir (a, t); - - // We may need the project roots for rule chaining (see below). - // We will resolve them lazily only if needed. - // - scope* root (nullptr); - const dir_path* out_root (nullptr); - const dir_path* src_root (nullptr); - - search_paths_cache lib_paths; // Extract lazily. - - // Process prerequisites: do rule chaining for C and C++ source - // files as well as search and match. - // - // When cleaning, ignore prerequisites that are not in the same - // or a subdirectory of our strong amalgamation. - // - const dir_path* amlg ( - a.operation () != clean_id - ? nullptr - : &t.strong_scope ().out_path ()); - - for (prerequisite_member p: group_prerequisite_members (a, t)) - { - bool group (!p.prerequisite.belongs (t)); // Group's prerequisite. - target* pt (nullptr); - - if (!p.is_a () && !p.is_a ()) - { - // Handle imported libraries. - // - if (p.proj () != nullptr) - pt = search_library (lib_paths, p.prerequisite); - - // The rest is the same basic logic as in search_and_match(). - // - if (pt == nullptr) - pt = &p.search (); - - if (a.operation () == clean_id && !pt->dir.sub (*amlg)) - continue; // Skip. - - // If this is the obj{} or lib{} target group, then pick the - // appropriate member and make sure it is searched and matched. - // - if (obj* o = pt->is_a ()) - { - pt = so ? static_cast (o->so) : o->a; - - if (pt == nullptr) - pt = &search (so ? objso::static_type : obja::static_type, - p.key ()); - } - else if (lib* l = pt->is_a ()) - { - pt = &link_member (*l, lo); - } - - build::match (a, *pt); - t.prerequisite_targets.push_back (pt); - continue; - } - - if (root == nullptr) - { - // Which scope shall we use to resolve the root? Unlikely, - // but possible, the prerequisite is from a different project - // altogether. So we are going to use the target's project. - // - root = &t.root_scope (); - out_root = &root->out_path (); - src_root = &root->src_path (); - } - - const prerequisite_key& cp (p.key ()); // c(xx){} prerequisite key. - const target_type& o_type ( - group - ? obj::static_type - : (so ? objso::static_type : obja::static_type)); - - // Come up with the obj*{} target. The c(xx){} prerequisite - // directory can be relative (to the scope) or absolute. If it is - // relative, then use it as is. If it is absolute, then translate - // it to the corresponding directory under out_root. While the - // c(xx){} directory is most likely under src_root, it is also - // possible it is under out_root (e.g., generated source). - // - dir_path d; - { - const dir_path& cpd (*cp.tk.dir); - - if (cpd.relative () || cpd.sub (*out_root)) - d = cpd; - else - { - if (!cpd.sub (*src_root)) - fail << "out of project prerequisite " << cp << - info << "specify corresponding " << o_type.name << "{} " - << "target explicitly"; - - d = *out_root / cpd.leaf (*src_root); - } - } - - target& ot (search (o_type, d, *cp.tk.name, nullptr, cp.scope)); - - // If we are cleaning, check that this target is in the same or - // a subdirectory of our strong amalgamation. - // - if (a.operation () == clean_id && !ot.dir.sub (*amlg)) - { - // If we shouldn't clean obj{}, then it is fair to assume - // we shouldn't clean cxx{} either (generated source will - // be in the same directory as obj{} and if not, well, go - // find yourself another build system ;-)). - // - continue; // Skip. - } - - // If we have created the obj{} target group, pick one of its - // members; the rest would be primarily concerned with it. - // - if (group) - { - obj& o (static_cast (ot)); - pt = so ? static_cast (o.so) : o.a; - - if (pt == nullptr) - pt = &search (so ? objso::static_type : obja::static_type, - o.dir, o.name, o.ext, nullptr); - } - else - pt = &ot; - - // If this obj*{} target already exists, then it needs to be - // "compatible" with what we are doing here. - // - // This gets a bit tricky. We need to make sure the source files - // are the same which we can only do by comparing the targets to - // which they resolve. But we cannot search the ot's prerequisites - // -- only the rule that matches can. Note, however, that if all - // this works out, then our next step is to match the obj*{} - // target. If things don't work out, then we fail, in which case - // searching and matching speculatively doesn't really hurt. - // - bool found (false); - for (prerequisite_member p1: - reverse_group_prerequisite_members (a, *pt)) - { - // Ignore some known target types (fsdir, headers, libraries). - // - if (p1.is_a () || - p1.is_a () || - (p.is_a () && (p1.is_a () || - p1.is_a () || - p1.is_a ())) || - p1.is_a () || - p1.is_a () || - p1.is_a ()) - { - continue; - } - - if (!p1.is_a ()) - fail << "synthesized target for prerequisite " << cp - << " would be incompatible with existing target " << *pt << - info << "unexpected existing prerequisite type " << p1 << - info << "specify corresponding obj{} target explicitly"; - - if (!found) - { - build::match (a, *pt); // Now p1 should be resolved. - - // Searching our own prerequisite is ok. - // - if (&p.search () != &p1.search ()) - fail << "synthesized target for prerequisite " << cp << " would " - << "be incompatible with existing target " << *pt << - info << "existing prerequisite " << p1 << " does not match " - << cp << - info << "specify corresponding " << o_type.name << "{} target " - << "explicitly"; - - found = true; - // Check the rest of the prerequisites. - } - } - - if (!found) - { - // Note: add the source to the group, not the member. - // - ot.prerequisites.emplace_back (p.as_prerequisite (trace)); - - // Add our lib*{} prerequisites to the object file (see - // cxx.export.poptions above for details). Note: no need - // to go into group members. - // - // Initially, we were only adding imported libraries, but - // there is a problem with this approach: the non-imported - // library might depend on the imported one(s) which we will - // never "see" unless we start with this library. - // - for (prerequisite& p: group_prerequisites (t)) - { - if (p.is_a () || p.is_a () || p.is_a ()) - ot.prerequisites.emplace_back (p); - } - - build::match (a, *pt); - } - - t.prerequisite_targets.push_back (pt); - } - - switch (a) - { - case perform_update_id: return &perform_update; - case perform_clean_id: return &perform_clean; - default: return noop_recipe; // Configure update. - } - } - - target_state link:: - perform_update (action a, target& xt) - { - path_target& t (static_cast (xt)); - - type lt (link_type (t)); - bool so (lt == type::so); - - if (!execute_prerequisites (a, t, t.mtime ())) - return target_state::unchanged; - - // Translate paths to relative (to working directory) ones. This - // results in easier to read diagnostics. - // - path relt (relative (t.path ())); - - scope& rs (t.root_scope ()); - cstrings args; - - // Storage. - // - string std; - string soname; - strings sargs; - - if (lt == type::a) - { - //@@ ranlib - // - args.push_back ("ar"); - args.push_back ("-rc"); - args.push_back (relt.string ().c_str ()); - } - else - { - args.push_back (as (*rs["config.cxx"]).c_str ()); - append_options (args, t, "cxx.coptions"); - append_std (args, t, std); - - if (so) - args.push_back ("-shared"); - - args.push_back ("-o"); - args.push_back (relt.string ().c_str ()); - - // Set soname. - // - if (so) - { - soname = "-Wl,-soname," + relt.leaf ().string (); - args.push_back (soname.c_str ()); - } - - // Add rpaths. First the ones specified by the user so that they - // take precedence. - // - if (auto l = t["bin.rpath"]) - for (const string& p: as (*l)) - sargs.push_back ("-Wl,-rpath," + p); - - // Then the paths of the shared libraries we are linking to. - // - for (target* pt: t.prerequisite_targets) - { - if (libso* ls = pt->is_a ()) - sargs.push_back ( - "-Wl,-rpath," + ls->path ().directory ().string ()); - } - } - - size_t oend (sargs.size ()); // Note the end of options. - - for (target* pt: t.prerequisite_targets) - { - path_target* ppt; - - if ((ppt = pt->is_a ()) || - (ppt = pt->is_a ()) || - (ppt = pt->is_a ()) || - (ppt = pt->is_a ())) - { - sargs.push_back (relative (ppt->path ()).string ()); // string()&& - } - } - - // Finish assembling args from sargs. - // - for (size_t i (0); i != sargs.size (); ++i) - { - if (lt != type::a && i == oend) - append_options (args, t, "cxx.loptions"); - - args.push_back (sargs[i].c_str ()); - } - - if (lt != type::a) - append_options (args, t, "cxx.libs"); - - args.push_back (nullptr); - - if (verb >= 2) - print_process (args); - else if (verb) - text << "ld " << t; - - try - { - process pr (args.data ()); - - if (!pr.wait ()) - throw failed (); - - // Should we go to the filesystem and get the new mtime? We - // know the file has been modified, so instead just use the - // current clock time. It has the advantage of having the - // subseconds precision. - // - t.mtime (system_clock::now ()); - return target_state::changed; - } - catch (const process_error& e) - { - error << "unable to execute " << args[0] << ": " << e.what (); - - // In a multi-threaded program that fork()'ed but did not exec(), - // it is unwise to try to do any kind of cleanup (like unwinding - // the stack and running destructors). - // - if (e.child ()) - exit (1); - - throw failed (); - } - } - - link link::instance; - } -} -- cgit v1.1