Age | Commit message (Collapse) | Author | Files | Lines |
|
|
|
|
|
|
|
An ad hoc pattern rule consists of a pattern that mimics a dependency
declaration followed by one or more recipes. For example:
exe{~'/(.*)/'}: cxx{~'/\1/'}
{{
$cxx.path -o $path($>) $path($<[0])
}}
If a pattern matches a dependency declaration of a target, then the recipe is
used to perform the corresponding operation on this target. For example, the
following dependency declaration matches the above pattern which means the
rule's recipe will be used to update this target:
exe{hello}: cxx{hello}
While the following declarations do not match the above pattern:
exe{hello}: c{hello} # Type mismatch.
exe{hello}: cxx{howdy} # Name mismatch.
On the left hand side of `:` in the pattern we can have a single target or an
ad hoc target group. The single target or the first (primary) ad hoc group
member must be a regex pattern (~). The rest of the ad hoc group members can
be patterns or substitutions (^). For example:
<exe{~'/(.*)/'} file{^'/\1.map/'}>: cxx{~'/\1/'}
{{
$cxx.path -o $path($>[0]) "-Wl,-Map=$path($>[1])" $path($<[0])
}}
On the left hand side of `:` in the pattern we have prerequisites which can
be patterns, substitutions, or non-patterns. For example:
<exe{~'/(.*)/'} file{^'/\1.map/'}>: cxx{~'/\1/'} hxx{^'/\1/'} hxx{common}
{{
$cxx.path -o $path($>[0]) "-Wl,-Map=$path($>[1])" $path($<[0])
}}
Substitutions on the left hand side of `:` and substitutions and non-patterns
on the right hand side are added to the dependency declaration. For example,
given the above rule and dependency declaration, the effective dependency is
going to be:
<exe{hello} file{hello.map>: cxx{hello} hxx{hello} hxx{common}
|
|
|
|
It turns out that when propagating {c,cxx}.config in tests we don't want to
propagate any options (such as *.std) that have been folded into our project's
mode.
|
|
Before the block used to apply to the set of prerequisites before the last
`:`. This turned out to be counterintuitive and not very useful since
prerequisite-specific variables are a lot less common than target specific.
And it doesn't fit with ad hoc recipes.
The new rule is if the chain ends with `:`, then the block applies to the last
set of prerequisites. Otherwise, it applies to the last set of targets. For
example:
./: exe{test}: cxx{main}
{
test = true # Applies to the exe{test} target.
}
./: exe{test}: libue{test}:
{
bin.whole = false # Applies to the libue{test} prerequisite.
}
This is actually consistent with both non-chain and non-block cases.
Consider:
exe{test}: cxx{main}
{
test = true
}
exe{test}: libue{test}:
{
bin.whole = false
}
exe{test}: libue{test}: bin.whole = false
The only exception we now have in this overall approach of "if the
dependency declaration ends with a colon, then what follows is for a
prerequisite" is for the first semicolon:
exe{test}:
{
test = true
}
exe{test}: test = true
But that's probably intuitive enough since there cannot be a prerequisite
without a target.
|
|
Use this information to omit ad hoc C++ recipe tests is testing statically-
linked build system.
|
|
|
|
|
|
We are reusing the buildspec syntax for that.
|
|
|
|
Also deduce the recipe name.
|
|
This will allow us to deal with backward-incompatible changes to cxx_rule
interface and semantics.
|
|
|
|
|
|
|
|
Now instead of:
./: exe{foo}
exe{foo}: cxx{*}
We can write:
./: exe{foo}: cxx{*}
Or even:
./: exe{foo}: libue{foo}: cxx{*}
This can be combined with prerequisite-specific variables (which naturally
only apply to the last set of prerequisites in the chain):
./: exe{foo}: libue{foo}: bin.whole = false
|