Age | Commit message (Collapse) | Author | Files | Lines |
|
|
|
A rule hint is a target attribute, for example:
[rule_hint=cxx] exe{hello}: c{hello}
Rule hints can be used to resolve ambiguity when multiple rules match the same
target as well as to override an unambiguous match.
|
|
|
|
Note that the unmatch (match but do not update) and match (update during
match) values are only supported by certain rules (and potentially only for
certain prerequisite types).
Additionally:
- All operation-specific variables are now checked for false as an override
for the prerequisite-specific include value. In particular, this can now be
used to disable a prerequisite for update, for example:
./: exe{test}: update = false
- The cc::link_rule now supports the update=match value for headers and ad hoc
prerequisites. In particular, this can be used to make sure all the library
headers are updated before matching any of its (or dependent's) object
files.
|
|
This value signals any special mode the build system may be running
in. The two core modes are `no-external-modules` (bootstrapping of
external modules is disabled) and `normal` (normal build system
execution). Build system drivers may invent additional modes (for
example, the bpkg `skeleton` mode that is used to evaluate depends
clauses).
|
|
|
|
|
|
|
|
Explicit target{} should be used instead. Also, in this context, absent target
type is now treated as file{} rather than target{}, for consistency with all
other cases.
|
|
The implemented solution entails shadowing old phase queues so that helpers
don't pick up old phase tasks and boosting the max_threads count so that we
can create more helpers if all the existing ones are stuck in the old phase.
|
|
|
|
This turned out to be important when building in multiple contexts that share
the scheduler (e.g., main and module/recipe build context). In this case we
need an accurate active thread count in order to decide when to start an extra
helper thread past max_active.
|
|
|
|
|
|
|
|
|
|
|
|
This allows separation of legal files (LICENSE, AUTHORS, etc) from other
documentation. For example:
./: ... doc{README} legal{LICENSE}
$ b install ... config.install.legal=/usr/share/licenses/hello/
|
|
|
|
|
|
Specifically, now config.<tool> (like config.cli) is handled by the import
machinery (it is like a shorter alias for config.import.<tool>.<tool>.exe
that we already had). And the cli module now uses that instead of custom
logic.
This also adds support for uniform tool metadata extraction that is handled by
the import machinery. As a result, a tool that follows the "build2 way" can be
imported with metadata by the buildfile and/or corresponding module without
any tool-specific code or brittleness associated with parsing --version or
similar outputs. See the cli tool/module for details.
Finally, two new flavors of the import directive are now supported: import!
triggers immediate importation skipping any rule-specific logic while import?
is optional import (analogous to using?). Note that optional import is always
immediate. There is also the import-specific metadata attribute which can be
specified for these two import flavors in order to trigger metadata
importation. For example:
import? [metadata] cli = cli%exe{cli}
if ($cli != [null])
info "cli version $($cli:cli.version)"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
The new config.export variable specifies the alternative file to write the
configuration to as part of the configure meta-operation. For example:
$ b configure: proj/ config.export=proj-config.build
The config.export value "applies" only to the projects on whose root scope it
is specified or if it is a global override (the latter is a bit iffy but we
allow it, for example, to dump everything to stdout). This means that in order
to save a subproject's configuration we will have to use a scope-specific
override (since the default will apply to the outermost amalgamation). For
example:
$ b configure: subproj/ subproj/config.export=.../subproj-config.build
This could be somewhat unnatural but then it will be the amalgamation whose
configuration we normally want to export.
The new config.import variable specifies additional configuration files to be
loaded after the project's default config.build, if any. For example:
$ b create: cfg/,cc config.import=my-config.build
Similar to config.export, the config.import value "applies" only to the
project on whose root scope it is specified or if it is a global override.
This allows the use of the standard override "positioning" machinery (i.e.,
where the override applies) to decide where the extra configuration files are
loaded. The resulting semantics is quite natural and consistent with command
line variable overrides, for example:
$ b config.import=.../config.build # outermost amalgamation
$ b ./config.import=.../config.build # this project
$ b !config.import=.../config.build # every project
Both config.export and config.import recognize the special `-` file name as an
instruction to write/read to/from stdout/stdin, respectively. For example:
$ b configure: src-prj/ config.export=- | b configure: dst-prj/ config.import=-
|
|
This would be necessary if someone runs two parallel top-level contexts.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
All non-const global state is now in class context and we can now have
multiple independent builds going on at the same time.
|
|
|
|
|
|
This build system interface version should be embedded into build system
modules as load_suffix.
|
|
|
|
This turns out to be necessary for the deadlock detection to work properly.
|
|
|