aboutsummaryrefslogtreecommitdiff
path: root/BOOTSTRAP-WINDOWS-CLANG.cli
blob: f35c212398fa0e4b214d99e40b8d80bdb40eec7e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
// file      : BOOTSTRAP-WINDOWS-CLANG.cli
// license   : MIT; see accompanying LICENSE file

"
Continuing from \l{#bootstrap-windows Bootstrapping on Windows}, there are two
common ways to obtain Clang on Windows: bundled with the MSVC installation or
as a separate installation. If you are using a separate installation, then the
Clang compiler is most likely already in your \c{PATH} environment variable
and, after confirming this is the case, you can continue using the command
prompt started on the previous step:

\
> where clang++
\

Otherwise, if you are using Clang that is bundled with MSVC (and haven't
manually added its compiler to \c{PATH}), start the Visual Studio \"x64 Native
Tools Command Prompt\" and set the \c{PATH} environment variable:

\
> set \"PATH=C:\build2\bin;%VCINSTALLDIR%Tools\Llvm\bin;%PATH%\"
> where clang++
\

To build with Clang you can either perform the following steps manually or, if
after reviewing the steps you are happy with using the defaults, run the
\c{build-clang.bat} batch file. It performs (and echoes) the same set of steps
as outlined below but only allows you to customize the installation directory
and a few other things (run \c{build-clang.bat /?} for usage).

For example, you could run this batch file (from the above-mentioned command
prompt) like this:

\
> .\build-clang.bat
\

\N|Note that at about half way through (\c{bpkg fetch} at step 4 below) the
script will stop and prompt you to verify the authenticity of the repository
certificate. To run the script unattended you can specify the certificate
fingerprint with the \c{--trust} option (see \c{build-clang.bat /?} for
details).|

The end result of the bootstrap process (performed either with the script or
manually) is the installed toolchain as well as the \c{bpkg} configuration in
\c{build2-toolchain-X.Y\\} that can be used to \l{#upgrade upgrade} to newer
versions. It can also be used to uninstall the toolchain:

\
> cd build2-toolchain-X.Y
> bpkg uninstall build2 bpkg bdep
\

\N|Note that in both cases (manual or scripted bootstrap), if something goes
wrong and you need to restart the process, you \b{must} start with a clean
toolchain source by unpacking it afresh from the archive.|

The rest of this section outlines the manual bootstrap process.

\dl|

\li|\b{1. Bootstrap, Phase 1}\n

First, we build a minimal build system with the provided
\c{bootstrap-clang.bat} batch file. Normally, the only argument you will pass
to this script is the C++ compiler to use but there is also a way to specify
compile options; run \c{bootstrap-clang.bat /?} and see the
\c{build2\\INSTALL} file for details.

\
> cd build2
> .\bootstrap-clang.bat clang++

> build2\b-boot --version
\

Alternatively, we can use the \c{bootstrap.gmake} GNU makefile to bootstrap
in parallel:

\
> cd build2
> mingw32-make -f bootstrap.gmake -j 8 CXX=clang++

> build2\b-boot --version
\

|

\li|\n\b{2. Bootstrap, Phase 2}\n

Then, we rebuild the build system with the result of Phase 1 linking libraries
statically.

\
> build2\b-boot           ^
  config.cxx=clang++      ^
  config.cc.coptions=-m64 ^
  config.bin.lib=static   ^
  build2\exe{b}

> move /y build2\b.exe build2\b-boot.exe

> build2\b-boot --version
\

|

\li|\n\b{3. Stage}\n

At this step the build system and package manager are built with shared
libraries and then staged:

\
> cd ..  # Back to build2-toolchain-X.Y.Z\

> build2\build2\b-boot configure      ^
  config.cxx=clang++                  ^
  config.cc.coptions=-m64             ^
  config.bin.lib=shared               ^
  config.bin.suffix=-stage            ^
  config.install.root=C:\build2       ^
  config.install.data_root=root\stage

> build2\build2\b-boot install: build2/ bpkg/
\

The strange-looking \c{config.install.data_root=root\\stage} means install
data files (as opposed to executable files) into the \c{stage\\} subdirectory
of wherever \c{config.install.root} points to (so in our case it will be
\c{C:\\build2\\stage\\}). This subdirectory is temporary and will be removed
in a few steps.

Verify that the toolchain binaries can be found and work (this relies on the
\c{PATH} environment variable we have set earlier):

\
> where b-stage
C:\build2\bin\b-stage.exe

> where bpkg-stage
C:\build2\bin\bpkg-stage.exe

> b-stage --version
> bpkg-stage --version
\

At the next step we will use \c{bpkg} to build and install the entire
toolchain. If for some reason you prefer not to build from packages (for
example, because the machine is offline), then you can convert this step into
a local installation and skip the rest. For this you will need to change
the \c{configure} and \c{install} command lines above along these lines (see
also a note on the following step about only building shared libraries):

\
> build2\build2\b-boot configure ^
  config.cxx=clang++             ^
  \"config.cc.coptions=-m64 -O3\"  ^
  config.bin.lib=shared          ^
  config.install.root=C:\build2

> build2\build2\b-boot install: build2/ bpkg/ bdep/
\

\N|To perform a local installation with the \c{build-clang.bat} batch file,
pass the \c{--local} option.|

To uninstall such a local installation, run:

\
> b uninstall: build2/ bpkg/ bdep/
\

|

\li|\n\b{4. Install}\n

Next, we use the staged tools to build and install the entire toolchain from
the package repository with the \c{bpkg} package manager. First, we create
the \c{bpkg} configuration. The configuration values are pretty similar to the
previous step and you may want/need to make similar adjustments.

\
> cd ..  # Back to build2-build\
> md build2-toolchain-X.Y
> cd build2-toolchain-X.Y

> bpkg-stage create             ^
  cc                            ^
  config.cxx=clang++            ^
  \"config.cc.coptions=-m64 -O3\" ^
  config.bin.lib=shared         ^
  config.install.root=C:\build2
\

\N|The above configuration will only build shared libraries. If you would like
to build both shared and static, remove \c{config.bin.lib=shared}.|

Next, we add the package repository, build, and install:

\
> bpkg-stage add https://pkg.cppget.org/1/alpha
> bpkg-stage fetch
> bpkg-stage build --for install build2 bpkg bdep
> bpkg-stage install build2 bpkg bdep
\

Finally, we verify the result:

\
> where b
C:\build2\bin\b.exe

> where bpkg
C:\build2\bin\bpkg.exe

> where bdep
C:\build2\bin\bdep.exe

> b --version
> bpkg --version
> bdep --version
\

|

\li|\n\b{5. Clean}\n

The last thing we need to do is uninstall the staged tools:

\
> cd ..\build2-toolchain-X.Y.Z  # Back to bootstrap.
> b uninstall: build2/ bpkg/
\

||
"