aboutsummaryrefslogtreecommitdiff
path: root/bpkg/pkg-build.cxx
blob: de5c9c76d577a7d7e01eef9def95ae223f688ca8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
// file      : bpkg/pkg-build.cxx -*- C++ -*-
// copyright : Copyright (c) 2014-2017 Code Synthesis Ltd
// license   : MIT; see accompanying LICENSE file

#include <bpkg/pkg-build.hxx>

#include <map>
#include <set>
#include <list>
#include <cstring>    // strlen()
#include <iostream>   // cout
#include <algorithm>  // find()

#include <bpkg/package.hxx>
#include <bpkg/package-odb.hxx>
#include <bpkg/database.hxx>
#include <bpkg/diagnostics.hxx>
#include <bpkg/satisfaction.hxx>
#include <bpkg/manifest-utility.hxx>

#include <bpkg/common-options.hxx>

#include <bpkg/pkg-drop.hxx>
#include <bpkg/pkg-purge.hxx>
#include <bpkg/pkg-fetch.hxx>
#include <bpkg/pkg-unpack.hxx>
#include <bpkg/pkg-update.hxx>
#include <bpkg/pkg-verify.hxx>
#include <bpkg/pkg-configure.hxx>
#include <bpkg/pkg-disfigure.hxx>
#include <bpkg/system-repository.hxx>

using namespace std;
using namespace butl;

namespace bpkg
{
  // @@ TODO
  //
  //    - Detect and complain about dependency cycles.
  //    - Configuration vars (both passed and preserved)
  //

  // Try to find a package that optionally satisfies the specified
  // version constraint. Look in the specified repository, its
  // prerequisite repositories, and their complements, recursively
  // (note: recursivity applies to complements, not prerequisites).
  // Return the package and the repository in which it was found or
  // NULL for both if not found. Note that a stub satisfies any
  // constraint.
  //
  static pair<shared_ptr<available_package>, shared_ptr<repository>>
  find_available (database& db,
                  const string& name,
                  const shared_ptr<repository>& r,
                  const optional<dependency_constraint>& c)
  {
    using query = query<available_package>;

    query q (query::id.name == name);
    const auto& vm (query::id.version);

    // If there is a constraint, then translate it to the query. Otherwise,
    // get the latest version or stub versions if present.
    //
    if (c)
    {
      // If the revision is not explicitly specified, then compare ignoring the
      // revision. The idea is that when the user runs 'bpkg build libfoo/1'
      // and there is 1+1 available, it should just work. The user shouldn't
      // have to spell the revision explicitly. Similarly, when we have
      // 'depends: libfoo == 1', then it would be strange if 1+1 did not
      // satisfy this constraint. The same for libfoo <= 1 -- 1+1 should
      // satisfy.
      //
      // Note that strictly speaking 0 doesn't mean unspecified. Which means
      // with this implementation there is no way to say "I really mean
      // revision 0" since 1 == 1+0. One can, in the current model, say libfoo
      // == 1+1, though. This is probably ok since one would assume any
      // subsequent revision of a package version are just as (un)satisfactory
      // as the first one.
      //
      query qs (compare_version_eq (vm, wildcard_version, false));

      if (c->min_version &&
          c->max_version &&
          *c->min_version == *c->max_version)
      {
        const version& v (*c->min_version);

        q = q && (compare_version_eq (vm, v, v.revision != 0) || qs);
      }
      else
      {
        query qr (true);

        if (c->min_version)
        {
          const version& v (*c->min_version);

          if (c->min_open)
            qr = compare_version_gt (vm, v, v.revision != 0);
          else
            qr = compare_version_ge (vm, v, v.revision != 0);
        }

        if (c->max_version)
        {
          const version& v (*c->max_version);

          if (c->max_open)
            qr = qr && compare_version_lt (vm, v, v.revision != 0);
          else
            qr = qr && compare_version_le (vm, v, v.revision != 0);
        }

        q = q && (qr || qs);
      }
    }

    q += order_by_version_desc (vm);

    // Filter the result based on the repository to which each version
    // belongs.
    //
    return filter_one (r, db.query<available_package> (q));
  }

  // Create a transient (or fake, if you prefer) available_package
  // object corresponding to the specified selected object. Note
  // that the package locations list is left empty and that the
  // returned repository could be NULL if the package is an orphan.
  //
  static pair<shared_ptr<available_package>, shared_ptr<repository>>
  make_available (const common_options& options,
                  const dir_path& cd,
                  database& db,
                  const shared_ptr<selected_package>& sp)
  {
    assert (sp != nullptr && sp->state != package_state::broken);

    if (sp->system ())
      return make_pair (make_shared<available_package> (sp->name, sp->version),
                        nullptr);

    // First see if we can find its repository.
    //
    shared_ptr<repository> ar (
      db.find<repository> (
        sp->repository.canonical_name ()));

    // The package is in at least fetched state, which means we should
    // be able to get its manifest.
    //
    const optional<path>& a (sp->archive);
    const optional<dir_path>& d (sp->src_root);

    package_manifest m (
      sp->state == package_state::fetched
      ? pkg_verify (options, a->absolute () ? *a : cd / *a, true)
      : pkg_verify (d->absolute () ? *d : cd / *d, true));

    return make_pair (make_shared<available_package> (move (m)), move (ar));
  }

  // A "dependency-ordered" list of packages and their prerequisites.
  // That is, every package on the list only possibly depending on the
  // ones after it. In a nutshell, the usage is as follows: we first
  // add one or more packages (the "initial selection"; for example, a
  // list of packages the user wants built). The list then satisfies all
  // the prerequisites of the packages that were added, recursively. At
  // the end of this process we have an ordered list of all the packages
  // that we have to build, from last to first, in order to build our
  // initial selection.
  //
  // This process is split into two phases: satisfaction of all the
  // dependencies (the collect() function) and ordering of the list
  // (the order() function).
  //
  // During the satisfaction phase, we collect all the packages, their
  // prerequisites (and so on, recursively) in a map trying to satisfy
  // any dependency constraints. Specifically, during this step, we may
  // "upgrade" or "downgrade" a package that is already in a map as a
  // result of another package depending on it and, for example, requiring
  // a different version. One notable side-effect of this process is that
  // we may end up with a lot more packages in the map (but not in the list)
  // than we will have on the list. This is because some of the prerequisites
  // of "upgraded" or "downgraded" packages may no longer need to be built.
  //
  // Note also that we don't try to do exhaustive constraint satisfaction
  // (i.e., there is no backtracking). Specifically, if we have two
  // candidate packages each satisfying a constraint of its dependent
  // package, then if neither of them satisfy both constraints, then we
  // give up and ask the user to resolve this manually by explicitly
  // specifying the version that will satisfy both constraints.
  //
  struct build_package
  {
    shared_ptr<selected_package>  selected;   // NULL if not selected.
    shared_ptr<available_package> available;  // Can be NULL, fake/transient.
    shared_ptr<bpkg::repository>  repository; // Can be NULL (orphan) or root.

    // Hold flags. Note that we only "increase" the hold_package value that is
    // already in the selected package.
    //
    optional<bool> hold_package;
    optional<bool> hold_version;

    // Constraint value plus, normally, the dependent package name that
    // placed this constraint but can also be some other name for the
    // initial selection (e.g., package version specified by the user
    // on the command line).
    //
    struct constraint_type
    {
      string dependent;
      dependency_constraint value;

      constraint_type () = default;
      constraint_type (string d, dependency_constraint v)
          : dependent (move (d)), value (move (v)) {}
    };

    vector<constraint_type> constraints;

    // System package indicator. See also a note in collect()'s constraint
    // merging code.
    //
    bool system;

    const version&
    available_version () const
    {
      // This should have been diagnosed before creating build_package object.
      //
      assert (available != nullptr &&
              (system
               ? available->system_version () != nullptr
               : !available->stub ()));

      return system ? *available->system_version () : available->version;
    }

    // Set of package names that caused this package to be built. Empty
    // name signifies user selection.
    //
    set<string> required_by;

    // True if we need to reconfigure this package. If available package
    // is NULL, then reconfigure must be true (this is a dependent that
    // needs to be reconfigured because its prerequisite is being up/down-
    // graded or reconfigured). Note that in some cases reconfigure is
    // naturally implied. For example, if an already configured package
    // is being up/down-graded. For such cases we don't guarantee that
    // the reconfigure flag is true. We only make sure to set it for
    // cases that would otherwise miss the need for the reconfiguration.
    // As a result, use the reconfigure() accessor which detects both
    // explicit and implied cases.
    //
    // At first, it may seem that this flag is redundant and having the
    // available package set to NULL is sufficient. But consider the case
    // where the user asked us to build a package that is already in the
    // configured state (so all we have to do is pkg-update). Next, add
    // to this a prerequisite package that is being upgraded. Now our
    // original package has to be reconfigured. But without this flag
    // we won't know (available for our package won't be NULL).
    //
    bool reconfigure_;

    bool
    reconfigure () const
    {
      return selected != nullptr &&
        selected->state == package_state::configured &&
        (reconfigure_ || // Must be checked first, available could be NULL.
         selected->system () != system ||
         selected->version != available_version ());
    }

    bool
    user_selection () const
    {
      return required_by.find ("") != required_by.end ();
    }

    string
    available_name () const
    {
      assert (available != nullptr);

      const version& v (available_version ());
      string vs (v == wildcard_version ? "/*" : "/" + v.string ());

      return system
        ? "sys:" + available->id.name + vs
        : available->id.name + vs;
    }
  };

  struct build_packages: list<reference_wrapper<build_package>>
  {
    // Collect the package. Return its pointer if this package version was, in
    // fact, added to the map and NULL if it was already there or the existing
    // version was preferred. So can be used as bool.
    //
    build_package*
    collect (const common_options& options,
             const dir_path& cd,
             database& db,
             build_package&& pkg,
             bool recursively)
    {
      using std::swap; // ...and not list::swap().

      tracer trace ("collect");

      assert (pkg.available != nullptr); // No dependents allowed here.
      auto i (map_.find (pkg.available->id.name));

      // If we already have an entry for this package name, then we
      // have to pick one over the other.
      //
      if (i != map_.end ())
      {
        const string& n (i->first);

        // At the end we want p1 to point to the object that we keep
        // and p2 to the object whose constraints we should copy.
        //
        build_package* p1 (&i->second.package);
        build_package* p2 (&pkg);

        if (p1->available_version () != p2->available_version ())
        {
          using constraint_type = build_package::constraint_type;

          // If the versions differ, we have to pick one. Start with the
          // newest version since if both satisfy, then that's the one we
          // should prefer. So get the first to try into p1 and the second
          // to try -- into p2.
          //
          if (p2->available_version () > p1->available_version ())
            swap (p1, p2);

          // See if pv's version satisfies pc's constraints. Return the
          // pointer to the unsatisfied constraint or NULL if all are
          // satisfied.
          //
          auto test = [] (build_package* pv, build_package* pc)
            -> const constraint_type*
          {
            for (const constraint_type& c: pc->constraints)
              if (!satisfies (pv->available_version (), c.value))
                return &c;

            return nullptr;
          };

          // First see if p1 satisfies p2's constraints.
          //
          if (auto c2 = test (p1, p2))
          {
            // If not, try the other way around.
            //
            if (auto c1 = test (p2, p1))
            {
              const string& d1 (c1->dependent);
              const string& d2 (c2->dependent);

              fail << "unable to satisfy constraints on package " << n <<
                info << d1 << " depends on (" << n << " " << c1->value << ")" <<
                info << d2 << " depends on (" << n << " " << c2->value << ")" <<
                info << "available " << p1->available_name () <<
                info << "available " << p2->available_name () <<
                info << "explicitly specify " << n << " version to manually "
                   << "satisfy both constraints";
            }
            else
              swap (p1, p2);
          }

          l4 ([&]{trace << "pick " << p1->available_name ()
                        << " over " << p2->available_name ();});
        }
        // If versions are the same, then we still need to pick the entry as
        // one of them can build a package from source while another configure
        // a system package. We prefer a user-selected entry (if there is
        // one). If none of them is user-selected we prefer a source package
        // over a system one. Copy the constraints from the thrown aways entry
        // to the selected one.
        //
        else if (p2->user_selection () ||
                 (!p1->user_selection () && !p2->system))
          swap (p1, p2);

        // See if we are replacing the object. If not, then we don't
        // need to collect its prerequisites since that should have
        // already been done. Remember, p1 points to the object we
        // want to keep.
        //
        bool replace (p1 != &i->second.package);

        if (replace)
        {
          swap (*p1, *p2);
          swap (p1, p2); // Setup for constraints copying below.
        }

        p1->constraints.insert (p1->constraints.end (),
                                make_move_iterator (p2->constraints.begin ()),
                                make_move_iterator (p2->constraints.end ()));

        p1->required_by.insert (p2->required_by.begin (),
                                p2->required_by.end ());

        // Also copy hold_* flags if they are "stronger".
        //
        if (!p1->hold_package ||
            (p2->hold_package && *p2->hold_package > *p1->hold_package))
          p1->hold_package = p2->hold_package;

        if (!p1->hold_version ||
            (p2->hold_version && *p2->hold_version > *p1->hold_version))
          p1->hold_version = p2->hold_version;

        // Note that we don't copy the build_package::system flag. If it was
        // set from the command line ("strong system") then we will also have
        // the '== 0' constraint which means that this build_package object
        // will never be replaced.
        //
        // For other cases ("weak system") we don't want to copy system over
        // in order not prevent, for example, system to non-system upgrade.

        if (!replace)
          return nullptr;
      }
      else
      {
        // This is the first time we are adding this package name to the map.
        //
        l4 ([&]{trace << "add " << pkg.available_name ();});

        string n (pkg.available->id.name); // Note: copy; see emplace() below.
        i = map_.emplace (move (n), data_type {end (), move (pkg)}).first;
      }

      build_package& p (i->second.package);

      if (recursively)
        collect_prerequisites (options, cd, db, p);

      return &p;
    }

    // Collect the package prerequisites recursively. But first "prune" this
    // process if the package we build is a system one or is already configured
    // since that would mean all its prerequisites are configured as well. Note
    // that this is not merely an optimization: the package could be an orphan
    // in which case the below logic will fail (no repository in which to
    // search for prerequisites). By skipping the prerequisite check we are
    // able to gracefully handle configured orphans.
    //
    void
    collect_prerequisites (const common_options& options,
                           const dir_path& cd,
                           database& db,
                           const build_package& pkg)
    {
      tracer trace ("collect_prerequisites");

      const shared_ptr<selected_package>& sp (pkg.selected);

      if (pkg.system ||
          (sp != nullptr &&
           sp->state == package_state::configured &&
           sp->substate != package_substate::system &&
           sp->version == pkg.available_version ()))
        return;

      // Show how we got here if things go wrong.
      //
      auto g (
        make_exception_guard (
          [&pkg] ()
          {
            info << "while satisfying " << pkg.available_name ();
          }));

      const shared_ptr<available_package>& ap (pkg.available);
      const shared_ptr<repository>& ar (pkg.repository);
      const string& name (ap->id.name);

      for (const dependency_alternatives& da: ap->dependencies)
      {
        if (da.conditional) // @@ TODO
          fail << "conditional dependencies are not yet supported";

        if (da.size () != 1) // @@ TODO
          fail << "multiple dependency alternatives not yet supported";

        const dependency& d (da.front ());
        const string& dn (d.name);

        if (da.buildtime)
        {
          // Handle special names.
          //
          if (dn == "build2")
          {
            if (d.constraint)
              satisfy_build2 (options, name, d);

            continue;
          }
          else if (dn == "bpkg")
          {
            if (d.constraint)
              satisfy_bpkg (options, name, d);

            continue;
          }
          // else
          //
          // @@ TODO: in the future we would need to at least make sure the
          // build and target machines are the same. See also pkg-configure.
        }

        // The first step is to always find the available package even
        // if, in the end, it won't be the one we select. If we cannot
        // find the package then that means the repository is broken.
        // And if we have no repository to look in, then that means the
        // package is an orphan (we delay this check until we actually
        // need the repository to allow orphans without prerequisites).
        //
        if (ar == nullptr)
          fail << "package " << pkg.available_name () << " is orphaned" <<
            info << "explicitly upgrade it to a new version";

        // We look for prerequisites only in the repositories of this package
        // (and not in all the repositories of this configuration). At first
        // this might look strange, but it also kind of makes sense: we only
        // use repositories "approved" for this package version. Consider this
        // scenario as an example: hello/1.0.0 and libhello/1.0.0 in stable
        // and libhello/2.0.0 in testing. As a prerequisite of hello, which
        // version should libhello resolve to? While one can probably argue
        // either way, resolving it to 1.0.0 is the conservative choice and
        // the user can always override it by explicitly building libhello.
        //
        auto rp (find_available (db, dn, ar, d.constraint));
        shared_ptr<available_package>& dap (rp.first);

        if (dap == nullptr)
        {
          diag_record dr;
          dr << fail << "unknown prerequisite " << d << " of package " << name;

          if (!ar->location.empty ())
            dr << info << "repository " << ar->location << " appears to "
                       << "be broken";
        }

        // If all that's available is a stub then we need to make sure the
        // package is present in the system repository and it's version
        // satisfies the constraint. If a source package is available but there
        // is an optional system package specified on the command line and it's
        // version satisfies the constraint then the system package should be
        // preferred. To recognize such a case we just need to check if the
        // authoritative system version is set and it satisfies the constraint.
        // If the corresponding system package is non-optional it will be
        // preferred anyway.
        //
        bool system (false);
        if (dap->stub ())
        {
          if (dap->system_version () == nullptr)
            fail << "prerequisite " << d << " of package " << name << " is "
                 << "not available in source" <<
              info << "specify ?sys:" << dn << " if it is available from the "
                 << "system";

          if (!satisfies (*dap->system_version (), d.constraint))
          {
            fail << "prerequisite " << d << " of package " << name << " is "
                 << "not available in source" <<
              info << "sys:" << dn << "/" << *dap->system_version ()
                 << " does not satisfy the constrains";
          }

          system = true;
        }
        else
        {
          auto p (dap->system_version_authoritative ());

          if (p.first != nullptr &&
              p.second && // Authoritative.
              satisfies (*p.first, d.constraint))
            system = true;
        }

        // Next see if this package is already selected. If we already
        // have it in the configuraion and it satisfies our dependency
        // constraint, then we don't want to be forcing its upgrade (or,
        // worse, downgrade).
        //
        bool force (false);
        shared_ptr<selected_package> dsp (db.find<selected_package> (dn));
        if (dsp != nullptr)
        {
          if (dsp->state == package_state::broken)
            fail << "unable to build broken package " << dn <<
              info << "use 'pkg-purge --force' to remove";

          if (satisfies (dsp->version, d.constraint))
          {
            rp = make_available (options, cd, db, dsp);
            system = dsp->system ();
          }
          else
            // Remember that we may be forcing up/downgrade; we will deal
            // with it below.
            //
            force = true;
        }

        build_package dp {
          dsp,
          dap,
          rp.second,
          nullopt,      // Hold package.
          nullopt,      // Hold version.
          {},           // Constraints.
          system,       // System.
          {name},       // Required by.
          false};       // Reconfigure.

        // Add our constraint, if we have one.
        //
        if (d.constraint)
          dp.constraints.emplace_back (name, *d.constraint);

        // Now collect this prerequisite. If it was actually collected
        // (i.e., it wasn't already there) and we are forcing an upgrade
        // and the version is not held, then warn, unless we are running
        // quiet. Downgrade or upgrade of a held version -- refuse.
        //
        // Note though that while the prerequisite was collected it could have
        // happen because it is an optional system package and so not being
        // pre-collected earlier. Meanwhile the package version was specified
        // explicitly and we shouldn't consider that as a dependency-driven
        // up/down-grade enforcement. To recognize such a case we just need to
        // check for the system flag, so if it is true then the prerequisite
        // is an optional system package. If it were non-optional it wouldn't
        // be being collected now since it must have been pre-collected
        // earlier. And if it were created from the selected package then
        // the force flag wouldn't haven been true.
        //
        // Here is an example of the situation we need to handle properly:
        //
        // repo: foo/2(->bar/2), bar/0+1
        // build sys:bar/1
        // build foo ?sys:bar/2
        //
        const build_package* p (collect (options, cd, db, move (dp), true));
        if (p != nullptr && force && !p->system)
        {
          const version& av (p->available_version ());

          // Fail if downgrade non-system package or held.
          //
          bool u (av > dsp->version);
          bool f (dsp->hold_version || (!u && !dsp->system ()));

          if (verb || f)
          {
            bool c (d.constraint);
            diag_record dr;

            (f ? dr << fail : dr << warn)
              << "package " << name << " dependency on "
              << (c ? "(" : "") << d << (c ? ")" : "") << " is forcing "
              << (u ? "up" : "down") << "grade of " << *dsp << " to ";

            // Print both (old and new) package names in full if the system
            // attribution changes.
            //
            if (dsp->system ())
              dr << p->available_name ();
            else
              dr << av; // Can't be a system version so is never wildcard.

            if (dsp->hold_version)
              dr << info << "package version " << *dsp << " is held";

            if (f)
              dr << info << "explicitly request version "
                 << (u ? "up" : "down") << "grade to continue";
          }
        }
      }
    }

    void
    collect_prerequisites (const common_options& options,
                           const dir_path& cd,
                           database& db,
                           const string& name)
    {
      auto mi (map_.find (name));
      assert (mi != map_.end ());
      collect_prerequisites (options, cd, db, mi->second.package);
    }

    // Order the previously-collected package with the specified name
    // returning its positions. If reorder is true, then reorder this
    // package to be considered as "early" as possible.
    //
    iterator
    order (const string& name, bool reorder = true)
    {
      // Every package that we order should have already been collected.
      //
      auto mi (map_.find (name));
      assert (mi != map_.end ());

      // If this package is already in the list, then that would also
      // mean all its prerequisites are in the list and we can just
      // return its position. Unless we want it reordered.
      //
      iterator& pos (mi->second.position);
      if (pos != end ())
      {
        if (reorder)
          erase (pos);
        else
          return pos;
      }

      // Order all the prerequisites of this package and compute the
      // position of its "earliest" prerequisite -- this is where it
      // will be inserted.
      //
      build_package& p (mi->second.package);
      const shared_ptr<selected_package>& sp (p.selected);
      const shared_ptr<available_package>& ap (p.available);

      assert (ap != nullptr); // No dependents allowed here.

      // Unless this package needs something to be before it, add it to
      // the end of the list.
      //
      iterator i (end ());

      // Figure out if j is before i, in which case set i to j. The goal
      // here is to find the position of our "earliest" prerequisite.
      //
      auto update = [this, &i] (iterator j)
      {
        for (iterator k (j); i != j && k != end ();)
          if (++k == i)
            i = j;
      };

      // Similar to collect(), we can prune if the package is already
      // configured, right? Right for a system ones but not for others.
      // While in collect() we didn't need to add prerequisites of such a
      // package, it doesn't mean that they actually never ended up in the
      // map via another way. For example, some can be a part of the initial
      // selection. And in that case we must order things properly.
      //
      if (!p.system)
      {
        // So here we are going to do things differently depending on
        // whether the package is already configured or not. If it is and
        // not as a system package, then that means we can use its
        // prerequisites list. Otherwise, we use the manifest data.
        //
        if (sp != nullptr &&
            sp->state == package_state::configured &&
            sp->substate != package_substate::system &&
            sp->version == p.available_version ())
        {
          for (const auto& p: sp->prerequisites)
          {
            const string& name (p.first.object_id ());

            // The prerequisites may not necessarily be in the map.
            //
            if (map_.find (name) != map_.end ())
              update (order (name, false));
          }
        }
        else
        {
          // We are iterating in reverse so that when we iterate over
          // the dependency list (also in reverse), prerequisites will
          // be built in the order that is as close to the manifest as
          // possible.
          //
          for (const dependency_alternatives& da:
                 reverse_iterate (ap->dependencies))
          {
            assert (!da.conditional && da.size () == 1); // @@ TODO
            const dependency& d (da.front ());
            const string& dn (d.name);

            // Skip special names.
            //
            if (da.buildtime && (dn == "build2" || dn == "bpkg"))
              continue;

            update (order (d.name, false));
          }
        }
      }

      return pos = insert (i, p);
    }

    // If a configured package is being up/down-graded then that means
    // all its dependents could be affected and we have to reconfigure
    // them. This function examines every package that is already on
    // the list and collects and orders all its dependents. We also need
    // to make sure the dependents are ok with the up/downgrade.
    //
    // Should we reconfigure just the direct depends or also include
    // indirect, recursively? Consider this plauisible scenario as an
    // example: We are upgrading a package to a version that provides
    // an additional API. When its direct dependent gets reconfigured,
    // it notices this new API and exposes its own extra functionality
    // that is based on it. Now it would make sense to let its own
    // dependents (which would be our original package's indirect ones)
    // to also notice this.
    //
    void
    collect_order_dependents (database& db)
    {
      // For each package on the list we want to insert all its dependents
      // before it so that they get configured after the package on which
      // they depend is configured (remember, our build order is reverse,
      // with the last package being built first). This applies to both
      // packages that are already on the list as well as the ones that
      // we add, recursively.
      //
      for (auto i (begin ()); i != end (); ++i)
      {
        const build_package& p (*i);

        // Prune if this is not a configured package being up/down-graded
        // or reconfigured.
        //
        if (p.reconfigure ())
          collect_order_dependents (db, i);
      }
    }

    void
    collect_order_dependents (database& db, iterator pos)
    {
      tracer trace ("collect_order_dependents");

      build_package& p (*pos);
      const shared_ptr<selected_package>& sp (p.selected);

      const string& n (sp->name);

      // See if we are up/downgrading this package. In particular, the
      // available package could be NULL meaning we are just reconfiguring.
      //
      int ud (p.available != nullptr
              ? sp->version.compare (p.available_version ())
              : 0);

      using query = query<package_dependent>;

      for (auto& pd: db.query<package_dependent> (query::name == n))
      {
        string& dn (pd.name);
        auto i (map_.find (dn));

        // First make sure the up/downgraded package still satisfies this
        // dependent.
        //
        bool check (ud != 0 && pd.constraint);

        // There is one tricky aspect: the dependent could be in the process
        // of being up/downgraded as well. In this case all we need to do is
        // detect this situation and skip the test since all the (new)
        // contraints of this package have been satisfied in collect().
        //
        if (check && i != map_.end () && i->second.position != end ())
        {
          build_package& dp (i->second.package);

          check = dp.available == nullptr ||
            (dp.selected->system () == dp.system &&
             dp.selected->version == dp.available_version ());
        }

        if (check)
        {
          const version& av (p.available_version ());
          const dependency_constraint& c (*pd.constraint);

          if (!satisfies (av, c))
          {
            diag_record dr;

            dr << fail << "unable to " << (ud < 0 ? "up" : "down") << "grade "
               << "package " << *sp << " to ";

            // Print both (old and new) package names in full if the system
            // attribution changes.
            //
            if (p.system != sp->system ())
              dr << p.available_name ();
            else
              dr << av; // Can't be the wildcard otherwise would satisfy.

            dr << info << "because package " << dn << " depends on (" << n
               << " " << c << ")";

            string rb;
            if (!p.user_selection ())
            {
              for (const string& n: p.required_by)
                rb += ' ' + n;
            }

            if (!rb.empty ())
              dr << info << "package " << p.available_name ()
                 << " required by" << rb;

            dr << info << "explicitly request up/downgrade of package " << dn;

            dr << info << "or explicitly specify package " << n << " version "
               << "to manually satisfy these constraints";
          }

          // Add this contraint to the list for completeness.
          //
          p.constraints.emplace_back (dn, c);
        }

        // We can have three cases here: the package is already on the
        // list, the package is in the map (but not on the list) and it
        // is in neither.
        //
        if (i != map_.end ())
        {
          // Now add to the list.
          //
          build_package& dp (i->second.package);

          p.required_by.insert (dn);

          // Force reconfiguration in both cases.
          //
          dp.reconfigure_ = true;

          if (i->second.position == end ())
          {
            // Clean the build_package object up to make sure we don't
            // inadvertently force up/down-grade.
            //
            dp.available = nullptr;
            dp.repository = nullptr;

            i->second.position = insert (pos, dp);
          }
        }
        else
        {
          shared_ptr<selected_package> dsp (db.load<selected_package> (dn));
          bool system (dsp->system ()); // Save flag before the move(dsp) call.

          i = map_.emplace (
            move (dn),
            data_type
            {
              end (),
              build_package {
                move (dsp),
                nullptr,
                nullptr,
                nullopt,        // Hold package.
                nullopt,        // Hold version.
                {},             // Constraints.
                system,
                {n},            // Required by.
                true}           // Reconfigure.
            }).first;

          i->second.position = insert (pos, i->second.package);
        }

        // Collect our own dependents inserting them before us.
        //
        collect_order_dependents (db, i->second.position);
      }
    }

  private:
    struct data_type
    {
      iterator position;         // Note: can be end(), see collect().
      build_package package;
    };

    map<string, data_type> map_;
  };

  int
  pkg_build (const pkg_build_options& o, cli::scanner& a)
  {
    tracer trace ("pkg_build");

    const dir_path& c (o.directory ());
    l4 ([&]{trace << "configuration: " << c;});

    if (o.drop_prerequisite () && o.keep_prerequisite ())
      fail << "both --drop-prerequisite|-D and --keep-prerequisite|-K "
           << "specified" <<
        info << "run 'bpkg help pkg-build' for more information";

    if (o.update_dependent () && o.leave_dependent ())
      fail << "both --update-dependent|-U and --leave-dependent|-L "
           << "specified" <<
        info << "run 'bpkg help pkg-build' for more information";

    if (!a.more ())
      fail << "package name argument expected" <<
        info << "run 'bpkg help pkg-build' for more information";

    map<string, string> package_arg;

    // Check if the package is a duplicate. Return true if it is but harmless.
    //
    auto check_dup = [&package_arg] (const string& n, const char* arg) -> bool
    {
      auto r (package_arg.emplace (n, arg));

      if (!r.second && r.first->second != arg)
        fail << "duplicate package " << n <<
          info << "first mentioned as " << r.first->second <<
          info << "second mentioned as " << arg;

      return !r.second;
    };

    // Pre-scan the arguments and sort them out into optional and mandatory.
    //
    strings args;
    while (a.more ())
    {
      const char* arg (a.next ());
      const char* s (arg);

      bool opt (s[0] == '?');
      if (opt)
        ++s;
      else
        args.push_back (s);

      if (parse_package_scheme (s) == package_scheme::sys)
      {
        string n (parse_package_name (s));
        version v (parse_package_version (s));

        if (opt && check_dup (n, arg))
          continue;

        if (v.empty ())
          v = wildcard_version;

        const system_package* sp (system_repository.find (n));
        if (sp == nullptr) // Will deal with all the duplicates later.
          system_repository.insert (n, v, true);
      }
      else if (opt)
        warn << "no information can be extracted from ?" << s <<
          info << "package is ignored";
    }

    if (args.empty ())
    {
      warn << "nothing to build";
      return 0;
    }

    database db (open (c, trace));

    // Note that the session spans all our transactions. The idea here is
    // that selected_package objects in the build_packages list below will
    // be cached in this session. When subsequent transactions modify any
    // of these objects, they will modify the cached instance, which means
    // our list will always "see" their updated state.
    //
    session s;

    // Assemble the list of packages we will need to build.
    //
    build_packages pkgs;
    strings names;
    {
      transaction t (db.begin ());

      shared_ptr<repository> root (db.load<repository> (""));

      // Here is what happens here: are are going to try and guess whether we
      // are dealing with a package archive, package directory, or package
      // name/version by first trying it as an archive, then as a directory,
      // and then assume it is name/version. Sometimes, however, it is really
      // one of the first two but just broken. In this case things are really
      // confusing since we suppress all diagnostics for the first two
      // "guesses". So what we are going to do here is re-run them with full
      // diagnostics if the name/version guess doesn't pan out.
      //
      bool diag (false);
      for (auto i (args.cbegin ()); i != args.cend (); )
      {
        const char* package (i->c_str ());

        // Reduce all the potential variations (archive, directory, package
        // name, package name/version) to a single available_package object.
        //
        string n;
        version v;

        shared_ptr<repository> ar;
        shared_ptr<available_package> ap;

        bool sys (parse_package_scheme (package) == package_scheme::sys);

        if (!sys)
        {
          // Is this a package archive?
          //
          try
          {
            path a (package);
            if (exists (a))
            {
              if (diag)
                info << "'" << package << "' does not appear to be a valid "
                     << "package archive: ";

              package_manifest m (pkg_verify (o, a, true, diag));

              // This is a package archive (note that we shouldn't throw
              // failed from here on).
              //
              l4 ([&]{trace << "archive " << a;});
              n = m.name;
              v = m.version;
              ar = root;
              ap = make_shared<available_package> (move (m));
              ap->locations.push_back (package_location {root, move (a)});
            }
          }
          catch (const invalid_path&)
          {
            // Not a valid path so cannot be an archive.
          }
          catch (const failed&)
          {
            // Not a valid package archive.
          }

          // Is this a package directory?
          //
          // We used to just check any name which led to some really bizarre
          // behavior where a sub-directory of the working directory happened
          // to contain a manifest file and was therefore treated as a package
          // directory. So now we will only do this test if the name ends with
          // the directory separator.
          //
          size_t pn (strlen (package));
          if (pn != 0 && path::traits::is_separator (package[pn - 1]))
          {
            try
            {
              dir_path d (package);
              if (exists (d))
              {
                if (diag)
                  info << "'" << package << "' does not appear to be a valid "
                       << "package directory: ";

                package_manifest m (pkg_verify (d, true, diag));

                // This is a package directory (note that we shouldn't throw
                // failed from here on).
                //
                l4 ([&]{trace << "directory " << d;});
                n = m.name;
                v = m.version;
                ap = make_shared<available_package> (move (m));
                ar = root;
                ap->locations.push_back (package_location {root, move (d)});
              }
            }
            catch (const invalid_path&)
            {
              // Not a valid path so cannot be a package directory.
            }
            catch (const failed&)
            {
              // Not a valid package directory.
            }
          }
        }

        // If this was a diagnostics "run", then we are done.
        //
        if (diag)
          throw failed ();

        // Then it got to be a package name with optional version.
        //
        if (ap == nullptr)
        {
          try
          {
            n = parse_package_name (package);
            v = parse_package_version (package);

            l4 ([&]{trace << (sys ? "system " : "") << "package " << n
                          << "; version " << v;});

            // Either get the user-specified version or the latest for a
            // source code package. For a system package we peek the latest
            // one just to ensure the package is recognized.
            //
            auto rp (
              v.empty () || sys
              ? find_available (db, n, root, nullopt)
              : find_available (db, n, root, dependency_constraint (v)));

            ap = rp.first;
            ar = rp.second;
          }
          catch (const failed&)
          {
            diag = true;
            continue;
          }
        }

        // We are handling this argument.
        //
        if (check_dup (n, i++->c_str ()))
          continue;

        // Load the package that may have already been selected and
        // figure out what exactly we need to do here. The end goal
        // is the available_package object corresponding to the actual
        // package that we will be building (which may or may not be
        // the same as the selected package).
        //
        shared_ptr<selected_package> sp (db.find<selected_package> (n));

        if (sp != nullptr && sp->state == package_state::broken)
          fail << "unable to build broken package " << n <<
            info << "use 'pkg-purge --force' to remove";

        bool found (true);
        bool sys_advise (false);

        // If the package is not available from the repository we can try to
        // create it from the orphaned selected package. Meanwhile that doesn't
        // make sense for a system package. The only purpose to configure a
        // system package is to build it's dependent. But if the package is
        // not in the repository then there is no dependent for it, otherwise
        // the repository is broken.
        //
        if (!sys)
        {
          // If we failed to find the requested package we can still check if
          // the package name is present in the repositories and if that's the
          // case to inform a user about the possibility to configure the
          // package as a system one on failure. Note we still can end up
          // creating an orphan from the selected package and so succeed.
          //
          if (ap == nullptr)
          {
            if (!v.empty () &&
                find_available (db, n, root, nullopt).first != nullptr)
              sys_advise = true;
          }
          else if (ap->stub ())
          {
            sys_advise = true;
            ap = nullptr;
          }

          // If the user asked for a specific version, then that's what we
          // ought to be building.
          //
          if (!v.empty ())
          {
            for (;;)
            {
              if (ap != nullptr) // Must be that version, see above.
                break;

              // Otherwise, our only chance is that the already selected object
              // is that exact version.
              //
              if (sp != nullptr && !sp->system () && sp->version == v)
                break; // Derive ap from sp below.

              found = false;
              break;
            }
          }
          //
          // No explicit version was specified by the user (not relevant for a
          // system package, see above).
          //
          else
          {
            assert (!sys);

            if (ap != nullptr)
            {
              assert (!ap->stub ());

              // Even if this package is already in the configuration, should
              // we have a newer version, we treat it as an upgrade request;
              // otherwise, why specify the package in the first place? We just
              // need to check if what we already have is "better" (i.e.,
              // newer).
              //
              if (sp != nullptr && !sp->system () && ap->version < sp->version)
                ap = nullptr; // Derive ap from sp below.
            }
            else
            {
              if (sp == nullptr || sp->system ())
                found = false;

              // Otherwise, derive ap from sp below.
            }
          }
        }
        else if (ap == nullptr)
          found = false;

        if (!found)
        {
          diag_record dr;
          dr << fail;

          if (!sys_advise)
          {
            dr << "unknown package " << n;

            // Let's help the new user out here a bit.
            //
            if (db.query_value<repository_count> () == 0)
              dr << info << "configuration " << c << " has no repositories"
                 << info << "use 'bpkg rep-add' to add a repository";
            else if (db.query_value<available_package_count> () == 0)
              dr << info << "configuration " << c << " has no available "
                 << "packages"
                 << info << "use 'bpkg rep-fetch' to fetch available packages "
                 << "list";
          }
          else
          {
            dr << package << " is not available in source" <<
              info << "specify sys:" << package << " if it is available from "
               << "the system";
          }
        }

        // If the available_package object is still NULL, then it means
        // we need to get one corresponding to the selected package.
        //
        if (ap == nullptr)
        {
          assert (sp != nullptr && sp->system () == sys);

          auto rp (make_available (o, c, db, sp));
          ap = rp.first;
          ar = rp.second; // Could be NULL (orphan).
        }

        if (v.empty () && sys)
          v = wildcard_version;

        // Finally add this package to the list.
        //
        build_package p {
          move (sp),
          move (ap),
          move (ar),
          true,        // Hold package.
          !v.empty (), // Hold version.
          {},          // Constraints.
          sys,
          {""},        // Required by (command line).
          false};      // Reconfigure.

        l4 ([&]{trace << "collect " << p.available_name ();});

        // "Fix" the version the user asked for by adding the '==' constraint.
        //
        // Note: for a system package this must always be present (so that
        // this build_package instance is never replaced).
        //
        if (!v.empty ())
          p.constraints.emplace_back (
            "command line",
            dependency_constraint (v));

        // Pre-collect user selection to make sure dependency-forced
        // up/down-grades are handled properly (i.e., the order in which we
        // specify packages on the command line does not matter).
        //
        pkgs.collect (o, c, db, move (p), false);
        names.push_back (n);
      }

      // Collect all the packages prerequisites.
      //
      for (const string& n: names)
        pkgs.collect_prerequisites (o, c, db, n);

      // Now that we have collected all the package versions that we need
      // to build, arrange them in the "dependency order", that is, with
      // every package on the list only possibly depending on the ones
      // after it. Iterate over the names we have collected on the previous
      // step in reverse so that when we iterate over the packages (also in
      // reverse), things will be built as close as possible to the order
      // specified by the user (it may still get altered if there are
      // dependencies between the specified packages).
      //
      for (const string& n: reverse_iterate (names))
        pkgs.order (n);

      // Finally, collect and order all the dependents that we will need
      // to reconfigure because of the up/down-grades of packages that
      // are now on the list.
      //
      pkgs.collect_order_dependents (db);

      t.commit ();
    }

    // Print what we are going to do, then ask for the user's confirmation.
    // While at it, detect if we have any dependents that the user may want to
    // update.
    //
    bool update_dependents (false);

    // Print the plan and ask for the user's confirmation only if some implicit
    // action (such as building prerequisite or reconfiguring dependent
    // package) to be taken or there is a selected package which version must
    // be changed.
    //
    string plan;
    bool print_plan (false);

    if (o.print_only () || !o.yes ())
    {
      for (const build_package& p: reverse_iterate (pkgs))
      {
        const shared_ptr<selected_package>& sp (p.selected);

        string act;
        string cause;
        if (p.available == nullptr)
        {
          // This is a dependent needing reconfiguration.
          //
          // This is an implicit reconfiguration which requires the plan to be
          // printed. Will flag that later when composing the list of
          // prerequisites.
          //
          assert (sp != nullptr && p.reconfigure ());
          update_dependents = true;
          act = "reconfigure " + sp->name;
          cause = "dependent of";
        }
        else
        {
          // Even if we already have this package selected, we have to
          // make sure it is configured and updated.
          //
          if (sp == nullptr)
            act = p.system ? "configure " : "build ";
          else if (sp->version == p.available_version ())
          {
            // If this package is already configured and is not part of the
            // user selection, then there is nothing we will be explicitly
            // doing with it (it might still get updated indirectly as part
            // of the user selection update).
            //
            if (!p.reconfigure () &&
                sp->state == package_state::configured &&
                !p.user_selection ())
              continue;

            act = p.system
              ? "reconfigure "
              : p.reconfigure ()
                ? "reconfigure/build "
                : "build ";
          }
          else
          {
            act = p.system
              ? "reconfigure "
              : sp->version < p.available_version ()
                ? "upgrade "
                : "downgrade ";

            print_plan = true;
          }

          act += p.available_name ();
          cause = "required by";
        }

        string rb;
        if (!p.user_selection ())
        {
          for (const string& n: p.required_by)
            rb += ' ' + n;

          // If not user-selected, then there should be another (implicit)
          // reason for the action.
          //
          assert (!rb.empty ());

          print_plan = true;
        }

        if (!rb.empty ())
          act += " (" + cause + rb + ')';

        if (o.print_only ())
          cout << act << endl;
        else if (verb)
          // Print indented for better visual separation.
          //
          plan += (plan.empty () ? "  " : "\n  ") + act;
      }
    }

    if (o.print_only ())
      return 0;

    if (print_plan)
      text << plan;

    // Ask the user if we should continue.
    //
    if (!(o.yes () || !print_plan || yn_prompt ("continue? [Y/n]", 'y')))
      return 1;

    // Figure out if we also should update dependents.
    //
    if (o.leave_dependent ())
      update_dependents = false;
    else if (o.yes () || o.update_dependent ())
      update_dependents = true;
    else if (update_dependents) // Don't prompt if there aren't any.
      update_dependents = yn_prompt ("update dependent packages? [Y/n]", 'y');

    // Ok, we have "all systems go". The overall action plan is as follows.
    //
    // 1. disfigure  up/down-graded, reconfigured [left to right]
    // 2. purge      up/down-graded
    // 3. fetch      new, up/down-graded
    // 4. unpack     new, up/down-graded
    // 5. configure  all                          [right to left]
    // 6. build      user selection               [right to left]
    //
    // Note that for some actions, e.g., purge or fetch, the order is not
    // really important. We will, however, do it right to left since that
    // is the order closest to that of the user selection.
    //
    // We are also going to combine purge/fetch/unpack into a single step
    // and use the replace mode so it will become just fetch/unpack.
    //
    // Almost forgot, there is one more thing: when we upgrade or downgrade a
    // package, it may change the list of its prerequisites. Which means we
    // may end up with packages that are no longer necessary and it would be
    // nice to offer to drop those. This, howeve, is a tricky business and is
    // the domain of pkg_drop(). For example, a prerequisite may still have
    // other dependents (so it looks like we shouldn't be dropping it) but
    // they are all from the "drop set" (so we should offer to drop it after
    // all); pkg_drop() knows how to deal with all this.
    //
    // So what we are going to do is this: before disfiguring packages we will
    // collect all their old prerequisites. This will be the "potentially to
    // drop" list. Then, after configuration, when the new dependencies are
    // established, we will pass them to pkg_drop() whose job will be to
    // figure out which ones can be dropped, prompt the user, etc.
    //
    // We also have the other side of this logic: dependent packages that we
    // reconfigure because their prerequsites got upgraded/downgraded and that
    // the user may want to in addition update (that update_dependents flag
    // above). This case we handle in house.
    //
    set<shared_ptr<selected_package>> drop_pkgs;

    // disfigure
    //
    for (build_package& p: pkgs)
    {
      // We are only interested in configured packages that are either
      // up/down-graded or need reconfiguration (e.g., dependents).
      //
      if (!p.reconfigure ())
        continue;

      shared_ptr<selected_package>& sp (p.selected);

      // Each package is disfigured in its own transaction, so that we
      // always leave the configuration in a valid state.
      //
      transaction t (db.begin ());

      // Collect prerequisites to be potentially dropped.
      //
      if (!o.keep_prerequisite ())
      {
        for (const auto& pair: sp->prerequisites)
        {
          shared_ptr<selected_package> pp (pair.first.load ());

          if (!pp->hold_package)
            drop_pkgs.insert (move (pp));
        }
      }

      pkg_disfigure (c, o, t, sp); // Commits the transaction.
      assert (sp->state == package_state::unpacked ||
              sp->state == package_state::transient);

      if (verb)
        text << (sp->state == package_state::transient
                 ? "purged "
                 : "disfigured ") << *sp;

      // Selected system package is now gone from the database. Before we drop
      // the object we need to make sure the hold state is preserved in the
      // package being reconfigured.
      //
      if (sp->state == package_state::transient)
      {
        if (!p.hold_package)
          p.hold_package = sp->hold_package;

        if (!p.hold_version)
          p.hold_version = sp->hold_version;

        sp.reset ();
      }
    }

    // purge/fetch/unpack
    //
    for (build_package& p: reverse_iterate (pkgs))
    {
      shared_ptr<selected_package>& sp (p.selected);
      const shared_ptr<available_package>& ap (p.available);

      if (ap == nullptr) // Skip dependents.
        continue;

      // System package should not be fetched, it should only be configured on
      // the next stage. Here we need to purge selected non-system package if
      // present. Before we drop the object we need to make sure the hold
      // state is preserved for the package being reconfigured.
      //
      if (p.system)
      {
        if (sp != nullptr && !sp->system ())
        {
          transaction t (db.begin ());
          pkg_purge (c, t, sp); // Commits the transaction.

          if (verb)
            text << "purged " << *sp;

          if (!p.hold_package)
            p.hold_package = sp->hold_package;

          if (!p.hold_version)
            p.hold_version = sp->hold_version;

          sp.reset ();
        }

        continue;
      }

      // Fetch if this is a new package or if we are up/down-grading.
      //
      if (sp == nullptr || sp->version != p.available_version ())
      {
        sp.reset (); // For the directory case below.

        // Distinguish between the package and archive/directory cases.
        //
        const package_location& pl (ap->locations[0]); // Got to have one.

        if (pl.repository.object_id () != "") // Special root?
        {
          transaction t (db.begin ());
          sp = pkg_fetch (o,
                          c,
                          t,
                          ap->id.name,
                          p.available_version (),
                          true); // Replace; commits the transaction.
        }
        else if (exists (pl.location)) // Directory case is handled by unpack.
        {
          transaction t (db.begin ());
          sp = pkg_fetch (o,
                          c,
                          t,
                          pl.location, // Archive path.
                          true,        // Replace
                          false);      // Don't purge; commits the transaction.
        }

        if (sp != nullptr) // Actually unpacked something?
        {
          assert (sp->state == package_state::fetched);

          if (verb)
            text << "fetched " << *sp;
        }
      }

      // Unpack. Note that the package can still be NULL if this is the
      // directory case (see the fetch code above).
      //
      if (sp == nullptr || sp->state == package_state::fetched)
      {
        if (sp != nullptr)
        {
          transaction t (db.begin ());
          sp = pkg_unpack (o, c, t, ap->id.name); // Commits the transaction.
        }
        else
        {
          const package_location& pl (ap->locations[0]);
          assert (pl.repository.object_id () == ""); // Special root.

          transaction t (db.begin ());
          sp = pkg_unpack (c,
                           t,
                           path_cast<dir_path> (pl.location),
                           true,   // Replace.
                           false); // Don't purge; commits the transaction.
        }

        assert (sp->state == package_state::unpacked);

        if (verb)
          text << "unpacked " << *sp;
      }
    }

    // configure
    //
    for (build_package& p: reverse_iterate (pkgs))
    {
      shared_ptr<selected_package>& sp (p.selected);
      const shared_ptr<available_package>& ap (p.available);

      // At this stage the package is either selected, in which case it's a
      // source code one, or just available, in which case it is a system
      // one. Note that a system package gets selected as being configured.
      //
      assert (sp != nullptr || p.system);

      // We configure everything that isn't already configured.
      //
      if (sp != nullptr && sp->state == package_state::configured)
        continue;

      transaction t (db.begin ());

      // Note that pkg_configure() commits the transaction.
      //
      if (p.system)
        sp = pkg_configure_system (ap->id.name, p.available_version (), t);
      else
        pkg_configure (c, o, t, sp, strings ());

      assert (sp->state == package_state::configured);

      if (verb)
        text << "configured " << *sp;
    }

    // Small detour: update the hold state. While we could have tried
    // to "weave" it into one of the previous actions, things there
    // are already convoluted enough.
    //
    for (const build_package& p: reverse_iterate (pkgs))
    {
      const shared_ptr<selected_package>& sp (p.selected);
      assert (sp != nullptr);

      // Note that we should only "increase" the hold_package state. For
      // version, if the user requested upgrade to the (unspecified) latest,
      // then we want to reset it.
      //
      bool hp (p.hold_package ? *p.hold_package : sp->hold_package);
      bool hv (p.hold_version ? *p.hold_version : sp->hold_version);

      if (hp != sp->hold_package || hv != sp->hold_version)
      {
        sp->hold_package = hp;
        sp->hold_version = hv;

        transaction t (db.begin ());
        db.update (sp);
        t.commit ();

        // Clean up if this package ended up in the potention drop set.
        //
        if (hp)
        {
          auto i (drop_pkgs.find (sp));
          if (i != drop_pkgs.end ())
            drop_pkgs.erase (i);
        }

        if (verb > 1)
        {
          if (hp)
            text << "hold package " << sp->name;

          if (hv)
            text << "hold version " << *sp;
        }
      }
    }

    // Now that we have the final dependency state, see if we need to drop
    // packages that are no longer necessary.
    //
    if (!drop_pkgs.empty ())
      drop_pkgs = pkg_drop (
        c, o, db, drop_pkgs, !(o.yes () || o.drop_prerequisite ()));

    if (o.configure_only ())
      return 0;

    // update
    //
    // Here we want to update all the packages at once, to facilitate
    // parallelism.
    //
    vector<pkg_command_vars> upkgs;

    // First add the user selection.
    //
    for (const build_package& p: reverse_iterate (pkgs))
    {
      const shared_ptr<selected_package>& sp (p.selected);

      if (!sp->system () && // System package doesn't need update.
          p.user_selection ())
        upkgs.push_back (pkg_command_vars {sp, strings ()});
    }

    // Then add dependents. We do it as a separate step so that they are
    // updated after the user selection.
    //
    if (update_dependents)
    {
      for (const build_package& p: reverse_iterate (pkgs))
      {
        const shared_ptr<selected_package>& sp (p.selected);

        if (p.reconfigure () && p.available == nullptr)
        {
          // Note that it is entirely possible this package got dropped so
          // we need to check for that.
          //
          if (drop_pkgs.find (sp) == drop_pkgs.end ())
            upkgs.push_back (pkg_command_vars {sp, strings ()});
        }
      }
    }

    pkg_update (c, o, strings (), upkgs);

    if (verb)
    {
      for (const pkg_command_vars& pv: upkgs)
        text << "updated " << *pv.pkg;
    }

    return 0;
  }
}