// file : bpkg/pkg-build.cxx -*- C++ -*- // license : MIT; see accompanying LICENSE file #include #include #include #include #include // strlen() #include // cout #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; using namespace butl; namespace bpkg { // @@ Overall TODO: // // - Configuration vars (both passed and preserved) // // Try to find an available stub package in the imaginary system repository. // Such a repository contains stubs corresponding to the system packages // specified by the user on the command line with version information // (sys:libfoo/1.0, ?sys:libfoo/* but not ?sys:libfoo; the idea is that a // real stub won't add any extra information to such a specification so we // shouldn't insist on its presence). Semantically this imaginary repository // complements all real repositories. // static vector> imaginary_stubs; static shared_ptr find_imaginary_stub (const package_name& name) { auto i (find_if (imaginary_stubs.begin (), imaginary_stubs.end (), [&name] (const shared_ptr& p) { return p->id.name == name; })); return i != imaginary_stubs.end () ? *i : nullptr; } // Try to find packages that optionally satisfy the specified version // constraint. Return the list of packages and repository fragments in which // each was found or empty list if none were found. Note that a stub // satisfies any constraint. // static vector, shared_ptr>> find_available (database& db, const package_name& name, const optional& c) { vector, shared_ptr>> r; for (shared_ptr ap: pointer_result (query_available (db, name, c))) { // An available package should come from at least one fetched // repository fragment. // assert (!ap->locations.empty ()); // All repository fragments the package comes from are equally good, so // we pick the first one. // r.emplace_back (move (ap), ap->locations[0].repository_fragment.load ()); } // Adding a stub from the imaginary system repository to the non-empty // results isn't necessary but may end up with a duplicate. That's why we // only add it if nothing else is found. // if (r.empty ()) { shared_ptr ap (find_imaginary_stub (name)); if (ap != nullptr) r.emplace_back (move (ap), nullptr); } return r; } // As above but only look for packages from the specified list of repository // fragments, their prerequisite repositories, and their complements, // recursively (note: recursivity applies to complements, not // prerequisites). // static vector, shared_ptr>> find_available (database& db, const package_name& name, const optional& c, const vector>& rfs, bool prereq = true) { // Filter the result based on the repository fragments to which each // version belongs. // vector, shared_ptr>> r ( filter (rfs, query_available (db, name, c), prereq)); if (r.empty ()) { shared_ptr ap (find_imaginary_stub (name)); if (ap != nullptr) r.emplace_back (move (ap), nullptr); } return r; } // As above but only look for a single package from the specified repository // fragment, its prerequisite repositories, and their complements, // recursively (note: recursivity applies to complements, not // prerequisites). Return the package and the repository fragment in which // it was found or NULL for both if not found. // static pair, shared_ptr> find_available_one (database& db, const package_name& name, const optional& c, const shared_ptr& rf, bool prereq = true) { // Filter the result based on the repository fragment to which each // version belongs. // auto r (filter_one (rf, query_available (db, name, c), prereq)); if (r.first == nullptr) r.first = find_imaginary_stub (name); return r; } // As above but look for a single package from a list of repository // fragments. // static pair, shared_ptr> find_available_one (database& db, const package_name& name, const optional& c, const vector>& rfs, bool prereq = true) { // Filter the result based on the repository fragments to which each // version belongs. // auto r (filter_one (rfs, query_available (db, name, c), prereq)); if (r.first == nullptr) r.first = find_imaginary_stub (name); return r; } // Create a transient (or fake, if you prefer) available_package object // corresponding to the specified selected object. Note that the package // locations list is left empty and that the returned repository fragment // could be NULL if the package is an orphan. // // Note also that in our model we assume that make_available() is only // called if there is no real available_package. This makes sure that if // the package moves (e.g., from testing to stable), then we will be using // stable to resolve its dependencies. // static pair, shared_ptr> make_available (const common_options& options, database& db, const shared_ptr& sp) { assert (sp != nullptr && sp->state != package_state::broken); if (sp->system ()) return make_pair (make_shared (sp->name, sp->version), nullptr); // First see if we can find its repository fragment. // // Note that this is package's "old" repository fragment and there is no // guarantee that its dependencies are still resolvable from it. But this // is our best chance (we could go nuclear and point all orphans to the // root repository fragment but that feels a bit too drastic at the // moment). // shared_ptr af ( db.main_database ().find ( sp->repository_fragment.canonical_name ())); // The package is in at least fetched state, which means we should // be able to get its manifest. // const optional& a (sp->archive); package_manifest m ( sp->state == package_state::fetched ? pkg_verify (options, a->absolute () ? *a : db.config_orig / *a, true /* ignore_unknown */, false /* expand_values */) : pkg_verify (sp->effective_src_root (db.config_orig), true /* ignore_unknown */, // Copy potentially fixed up version from selected package. [&sp] (version& v) {v = sp->version;})); return make_pair (make_shared (move (m)), move (af)); } // Return true if the version constraint represents the wildcard version. // static inline bool wildcard (const version_constraint& vc) { bool r (vc.min_version && *vc.min_version == wildcard_version); if (r) assert (vc.max_version == vc.min_version); return r; } // Compare two shared pointers via the pointed-to object addresses. // struct compare_shared_ptr { template bool operator() (const P& x, const P& y) const { return x.get () < y.get (); } }; // The current configuration dependents being "repointed" to prerequisites // in other configurations, together with their replacement flags. The flag // is true for the replacement prerequisites ("new") and false for the // prerequisites being replaced ("old"). The unamended prerequisites have no // entries. // using repointed_dependents = map, map, compare_shared_ptr>; // List of the private configuration paths, relative to the containing // configuration directories (.bpkg/host/, etc), together with the // containing configuration databases. // using private_configs = vector>; // A "dependency-ordered" list of packages and their prerequisites. // That is, every package on the list only possibly depending on the // ones after it. In a nutshell, the usage is as follows: we first // add one or more packages (the "initial selection"; for example, a // list of packages the user wants built). The list then satisfies all // the prerequisites of the packages that were added, recursively. At // the end of this process we have an ordered list of all the packages // that we have to build, from last to first, in order to build our // initial selection. // // This process is split into two phases: satisfaction of all the // dependencies (the collect_build() function) and ordering of the list // (the order() function). // // During the satisfaction phase, we collect all the packages, their // prerequisites (and so on, recursively) in a map trying to satisfy // any version constraints. Specifically, during this step, we may // "upgrade" or "downgrade" a package that is already in a map as a // result of another package depending on it and, for example, requiring // a different version. One notable side-effect of this process is that // we may end up with a lot more packages in the map (but not in the list) // than we will have on the list. This is because some of the prerequisites // of "upgraded" or "downgraded" packages may no longer need to be built. // // Note also that we don't try to do exhaustive constraint satisfaction // (i.e., there is no backtracking). Specifically, if we have two // candidate packages each satisfying a constraint of its dependent // package, then if neither of them satisfy both constraints, then we // give up and ask the user to resolve this manually by explicitly // specifying the version that will satisfy both constraints. // struct build_package { enum action_type { // Available package is not NULL. // build, // Selected package is not NULL, available package is NULL. // drop, // Selected package is not NULL, available package is NULL. // // This is the "only adjustments" action for a selected package. // Adjustment flags (see below) are unhold (the package should be // treated as a dependency) and reconfigure (dependent package that // needs to be reconfigured because its prerequisite is being // up/down-graded or reconfigured). // // Note that this action is "replaceable" with either drop or build // action but in the latter case the adjustments must be copied over. // adjust }; // An object with an absent action is there to "pre-enter" information // about a package (constraints and flags) in case it is used. // optional action; reference_wrapper db; // Needs to be move-assignable. shared_ptr selected; // NULL if not selected. shared_ptr available; // Can be NULL, fake/transient. // Can be NULL (orphan) or root. // shared_ptr repository_fragment; const package_name& name () const { return selected != nullptr ? selected->name : available->id.name; } // Hold flags. Note that we only "increase" the hold_package value that is // already in the selected package. // optional hold_package; optional hold_version; // Constraint value plus, normally, the dependent package name that placed // this constraint but can also be some other name for the initial // selection (e.g., package version specified by the user on the command // line). This why we use the string type, rather than package_name. // struct constraint_type { reference_wrapper db; // Main database for non-packages. string dependent; version_constraint value; constraint_type (database& d, string dp, version_constraint v) : db (d), dependent (move (dp)), value (move (v)) {} }; vector constraints; // System package indicator. See also a note in the merge() function. // bool system; // If this flag is set and the external package is being replaced with an // external one, then keep its output directory between upgrades and // downgrades. // bool keep_out; // If this flag is set, then don't build this package, only configure. // // Note: use configure_only() to query. // bool configure_only_; // If present, then check out the package into the specified directory // rather than into the configuration directory, if it comes from a // version control-based repository. Optionally, remove this directory // when the package is purged. // optional checkout_root; bool checkout_purge; // Command line configuration variables. Only meaningful for non-system // packages. // strings config_vars; // Set of packages (dependents or dependencies but not a mix) that caused // this package to be built or adjusted. Empty name signifies user // selection and can be present regardless of the required_by_dependents // flag value. // set required_by; // If this flags is true, then required_by contains dependents. // // We need this because required_by packages have different semantics for // different actions: the dependent for regular builds and dependency for // adjustments and repointed dependent reconfiguration builds. Mixing them // would break prompts/diagnostics. // bool required_by_dependents; bool user_selection () const { return required_by.find (config_package {db.get ().main_database (), ""}) != required_by.end (); } // State flags. // uint16_t flags; // Set if we also need to clear the hold package flag. // static const uint16_t adjust_unhold = 0x0001; bool unhold () const { return (flags & adjust_unhold) != 0; } // Set if we also need to reconfigure this package. Note that in some // cases reconfigure is naturally implied. For example, if an already // configured package is being up/down-graded. For such cases we don't // guarantee that the reconfigure flag is set. We only make sure to set it // for cases that would otherwise miss the need for reconfiguration. As a // result, use the reconfigure() predicate which detects both explicit and // implied cases. // // At first, it may seem that this flag is redundant and having the // available package set to NULL is sufficient. But consider the case // where the user asked us to build a package that is already in the // configured state (so all we have to do is pkg-update). Next, add to // this a prerequisite package that is being upgraded. Now our original // package has to be reconfigured. But without this flag we won't know // (available for our package won't be NULL). // static const uint16_t adjust_reconfigure = 0x0002; bool reconfigure () const { assert (action && *action != drop); return selected != nullptr && selected->state == package_state::configured && ((flags & adjust_reconfigure) != 0 || (*action == build && (selected->system () != system || selected->version != available_version () || (!system && !config_vars.empty ())))); } // Set if this build action is for repointing of prerequisite. // static const uint16_t build_repoint = 0x0004; bool configure_only () const { assert (action); return configure_only_ || (*action == build && (flags & build_repoint) != 0); } const version& available_version () const { // This should have been diagnosed before creating build_package object. // assert (available != nullptr && (system ? available->system_version (db) != nullptr : !available->stub ())); return system ? *available->system_version (db) : available->version; } string available_name_version () const { assert (available != nullptr); return package_string (available->id.name, available_version (), system); } string available_name_version_db () const { string s (db.get ().string ()); return !s.empty () ? available_name_version () + ' ' + s : available_name_version (); } // Merge constraints, required-by package names, hold_* flags, state // flags, and user-specified options/variables. // void merge (build_package&& p) { // We don't merge objects from different configurations. // assert (db == p.db); // We don't merge into pre-entered objects, and from/into drops. // assert (action && *action != drop && (!p.action || *p.action != drop)); // Copy the user-specified options/variables. // if (p.user_selection ()) { // We don't allow a package specified on the command line multiple // times to have different sets of options/variables. Given that, it's // tempting to assert that the options/variables don't change if we // merge into a user selection. That's, however, not the case due to // the iterative plan refinement implementation details (--checkout-* // options and variables are only saved into the pre-entered // dependencies, etc.). // if (p.keep_out) keep_out = p.keep_out; if (p.configure_only_) configure_only_ = p.configure_only_; if (p.checkout_root) checkout_root = move (p.checkout_root); if (p.checkout_purge) checkout_purge = p.checkout_purge; if (!p.config_vars.empty ()) config_vars = move (p.config_vars); // Propagate the user-selection tag. // required_by.emplace (db.get ().main_database (), package_name ()); } // Copy the required-by package names only if semantics matches. // if (p.required_by_dependents == required_by_dependents) required_by.insert (p.required_by.begin (), p.required_by.end ()); // Copy constraints. // // Note that we may duplicate them, but this is harmless. // constraints.insert (constraints.end (), make_move_iterator (p.constraints.begin ()), make_move_iterator (p.constraints.end ())); // Copy hold_* flags if they are "stronger". // if (!hold_package || (p.hold_package && *p.hold_package > *hold_package)) hold_package = p.hold_package; if (!hold_version || (p.hold_version && *p.hold_version > *hold_version)) hold_version = p.hold_version; // Copy state flags. // flags |= p.flags; if (*action == build) { // We never merge two repointed dependent reconfigurations. // assert ((flags & build_repoint) == 0 || (p.flags & build_repoint) == 0); // Upgrade repoint to the full build. // flags &= ~build_repoint; } // Note that we don't copy the build_package::system flag. If it was // set from the command line ("strong system") then we will also have // the '==' constraint which means that this build_package object will // never be replaced. // // For other cases ("weak system") we don't want to copy system over in // order not prevent, for example, system to non-system upgrade. } }; using build_package_list = list>; struct build_packages: build_package_list { // Packages collection of whose prerequisites has been postponed due the // inability to find a version satisfying the pre-entered constraint from // repositories available to this package. The idea is that this // constraint could still be satisfied from a repository fragment of some // other package (that we haven't processed yet) that also depends on this // prerequisite. // using postponed_packages = set; // Pre-enter a build_package without an action. No entry for this package // may already exists. // void enter (package_name name, build_package pkg) { assert (!pkg.action); database& db (pkg.db); // Save before the move() call. auto p (map_.emplace (config_package {db, move (name)}, data_type {end (), move (pkg)})); assert (p.second); } // Collect the package being built. Return its pointer if this package // version was, in fact, added to the map and NULL if it was already there // or the existing version was preferred. So can be used as bool. // // Also, in the recursive mode: // // - Use the custom search function to find the package dependency // databases. // // - For the repointed dependents collect the prerequisite replacements // rather than prerequisites being replaced. // // - Add paths of the created private configurations, together with the // containing configuration databases, into the specified list (see // private_configs for details). // build_package* collect_build (const common_options& options, build_package pkg, const function& fdb, const repointed_dependents& rpt_depts, private_configs& priv_cfgs, postponed_packages* recursively = nullptr) { using std::swap; // ...and not list::swap(). tracer trace ("collect_build"); // Only builds are allowed here. // assert (pkg.action && *pkg.action == build_package::build && pkg.available != nullptr); auto i (map_.find (pkg.db, pkg.available->id.name)); // If we already have an entry for this package name, then we // have to pick one over the other. // // If the existing entry is a pre-entered or is non-build one, then we // merge it into the new build entry. Otherwise (both are builds), we // pick one and merge the other into it. // if (i != map_.end ()) { build_package& bp (i->second.package); // Can't think of the scenario when this happens. We would start // collecting from scratch (see below). // assert (!bp.action || *bp.action != build_package::drop); if (!bp.action || *bp.action != build_package::build) // Non-build. { pkg.merge (move (bp)); bp = move (pkg); } else // Build. { // At the end we want p1 to point to the object that we keep // and p2 to the object that we merge from. // build_package* p1 (&bp); build_package* p2 (&pkg); // Pick with the following preference order: user selection over // implicit one, source package over a system one, newer version // over an older one. So get the preferred into p1 and the other // into p2. // { int us (p1->user_selection () - p2->user_selection ()); int sf (p1->system - p2->system); if (us < 0 || (us == 0 && sf > 0) || (us == 0 && sf == 0 && p2->available_version () > p1->available_version ())) swap (p1, p2); } // If the versions differ, pick the satisfactory one and if both are // satisfactory, then keep the preferred. // if (p1->available_version () != p2->available_version ()) { using constraint_type = build_package::constraint_type; // See if pv's version satisfies pc's constraints. Return the // pointer to the unsatisfied constraint or NULL if all are // satisfied. // auto test = [] (build_package* pv, build_package* pc) -> const constraint_type* { for (const constraint_type& c: pc->constraints) { if (!satisfies (pv->available_version (), c.value)) return &c; } return nullptr; }; // First see if p1 satisfies p2's constraints. // if (auto c2 = test (p1, p2)) { // If not, try the other way around. // if (auto c1 = test (p2, p1)) { const package_name& n (i->first.name); const string& d1 (c1->dependent); const string& d2 (c2->dependent); fail << "unable to satisfy constraints on package " << n << info << d1 << c1->db << " depends on (" << n << " " << c1->value << ")" << info << d2 << c2->db << " depends on (" << n << " " << c2->value << ")" << info << "available " << p1->available_name_version () << info << "available " << p2->available_name_version () << info << "explicitly specify " << n << " version to manually " << "satisfy both constraints"; } else swap (p1, p2); } l4 ([&]{trace << "pick " << p1->available_name_version_db () << " over " << p2->available_name_version_db ();}); } // See if we are replacing the object. If not, then we don't // need to collect its prerequisites since that should have // already been done. Remember, p1 points to the object we // want to keep. // bool replace (p1 != &i->second.package); if (replace) { swap (*p1, *p2); swap (p1, p2); // Setup for merge below. } p1->merge (move (*p2)); if (!replace) return nullptr; } } else { // This is the first time we are adding this package name to the map. // l4 ([&]{trace << "add " << pkg.available_name_version_db ();}); // Note: copy; see emplace() below. // database& db (pkg.db); // Save before the move() call. package_name n (pkg.available->id.name); i = map_.emplace (config_package {db, move (n)}, data_type {end (), move (pkg)}).first; } build_package& p (i->second.package); // Recursively collect build prerequisites, if requested. // // Note that detecting dependency cycles during the satisfaction phase // would be premature since they may not be present in the final package // list. Instead we check for them during the ordering phase. // // The question, of course, is whether we can still end up with an // infinite recursion here? Note that for an existing map entry we only // recurse after the entry replacement. The infinite recursion would // mean that we may replace a package in the map with the same version // multiple times: // // ... p1 -> p2 -> ... p1 // // Every replacement increases the entry version and/or tightens the // constraints the next replacement will need to satisfy. It feels // impossible that a package version can "return" into the map being // replaced once. So let's wait until some real use case proves this // reasoning wrong. // if (recursively != nullptr) collect_build_prerequisites (options, p, recursively, fdb, rpt_depts, priv_cfgs); return &p; } // Collect prerequisites of the package being built recursively. // // But first "prune" this process if the package we build is a system one // or is already configured and is not a repointed dependent, since that // would mean all its prerequisites are configured as well. Note that this // is not merely an optimization: the package could be an orphan in which // case the below logic will fail (no repository fragment in which to // search for prerequisites). By skipping the prerequisite check we are // able to gracefully handle configured orphans. // // For the repointed dependent, we still need to collect its prerequisite // replacements to make sure its constraints over them are satisfied. Note // that, as it was said above, we can potentially fail if the dependent is // an orphan, but this is exactly what we need to do in that case, since // we won't be able to be reconfigure it anyway. // void collect_build_prerequisites (const common_options& options, const build_package& pkg, postponed_packages* postponed, const function& fdb, const repointed_dependents& rpt_depts, private_configs& priv_cfgs) { tracer trace ("collect_build_prerequisites"); assert (pkg.action && *pkg.action == build_package::build); if (pkg.system) return; const shared_ptr& sp (pkg.selected); // True if this is an up/down-grade. // bool ud (false); // If this is a repointed dependent, then it points to its prerequisite // replacements flag map (see repointed_dependents for details). // const map* rpt_prereq_flags (nullptr); // Bail out if this is a configured non-system package and no // up/down-grade nor collecting prerequisite replacements are required. // if (sp != nullptr && sp->state == package_state::configured && sp->substate != package_substate::system) { ud = sp->version != pkg.available_version (); repointed_dependents::const_iterator i (rpt_depts.find (sp)); if (i != rpt_depts.end ()) rpt_prereq_flags = &i->second; if (!ud && rpt_prereq_flags == nullptr) return; } // Show how we got here if things go wrong. // auto g ( make_exception_guard ( [&pkg] () { info << "while satisfying " << pkg.available_name_version_db (); })); const shared_ptr& ap (pkg.available); const shared_ptr& af (pkg.repository_fragment); const package_name& name (ap->id.name); database& pdb (pkg.db); database& mdb (pdb.main_database ()); for (const dependency_alternatives_ex& da: ap->dependencies) { if (da.conditional) // @@ TODO fail << "conditional dependencies are not yet supported"; if (da.size () != 1) // @@ TODO fail << "multiple dependency alternatives not yet supported"; const dependency& dp (da.front ()); const package_name& dn (dp.name); if (da.buildtime) { // Handle special names. // if (dn == "build2") { if (dp.constraint) satisfy_build2 (options, name, dp); continue; } else if (dn == "bpkg") { if (dp.constraint) satisfy_bpkg (options, name, dp); continue; } } bool system (false); bool dep_optional (false); // If the user specified the desired dependency version constraint, // then we will use it to overwrite the constraint imposed by the // dependent package, checking that it is still satisfied. // // Note that we can't just rely on the execution plan refinement that // will pick up the proper dependency version at the end of the day. // We may just not get to the plan execution simulation, failing due // to inability for dependency versions collected by two dependents to // satisfy each other constraints (for an example see the // pkg-build/dependency/apply-constraints/resolve-conflict{1,2} // tests). // Points to the desired dependency version constraint, if specified, // and is NULL otherwise. Can be used as boolean flag. // const version_constraint* dep_constr (nullptr); database* ddb (fdb (pdb, dn, da.buildtime)); auto i (ddb != nullptr ? map_.find (*ddb, dn) : map_.find_dependency (pdb, dn, da.buildtime)); if (i != map_.end ()) { const build_package& bp (i->second.package); dep_optional = !bp.action; // Is pre-entered. if (dep_optional && // // The version constraint is specified, // bp.hold_version && *bp.hold_version) { assert (bp.constraints.size () == 1); const build_package::constraint_type& c (bp.constraints[0]); dep_constr = &c.value; system = bp.system; // If the user-specified dependency constraint is the wildcard // version, then it satisfies any dependency constraint. // if (!wildcard (*dep_constr) && !satisfies (*dep_constr, dp.constraint)) fail << "unable to satisfy constraints on package " << dn << info << name << pdb << " depends on (" << dn << " " << *dp.constraint << ")" << info << c.dependent << c.db << " depends on (" << dn << " " << c.value << ")" << info << "specify " << dn << " version to satisfy " << name << " constraint"; } } const dependency& d (!dep_constr ? dp : dependency {dn, *dep_constr}); // First see if this package is already selected. If we already have // it in the configuration and it satisfies our dependency version // constraint, then we don't want to be forcing its upgrade (or, // worse, downgrade). // // If the prerequisite configuration is explicitly specified by the // user, then search for the prerequisite in this specific // configuration. Otherwise, search recursively in the explicitly // linked configurations of the dependent configuration. // // Note that for the repointed dependent we will always find the // prerequisite replacement rather than the prerequisite being // replaced. // pair, database*> spd ( ddb != nullptr ? make_pair (ddb->find (dn), ddb) : find_dependency (pdb, dn, da.buildtime)); if (ddb == nullptr) ddb = &pdb; shared_ptr& dsp (spd.first); pair, shared_ptr> rp; shared_ptr& dap (rp.first); bool force (false); if (dsp != nullptr) { // Switch to the selected package configuration. // ddb = spd.second; // If we are collecting prerequisites of the repointed dependent, // then only proceed further if this is either a replacement or // unamended prerequisite and we are up/down-grading (only for the // latter). // if (rpt_prereq_flags != nullptr) { auto i (rpt_prereq_flags->find (config_package {*ddb, dn})); bool unamended (i == rpt_prereq_flags->end ()); bool replacement (!unamended && i->second); // We can never end up with the prerequisite being replaced, since // the fdb() function should always return the replacement instead // (see above). // assert (unamended || replacement); if (!(replacement || (unamended && ud))) continue; } if (dsp->state == package_state::broken) fail << "unable to build broken package " << dn << *ddb << info << "use 'pkg-purge --force' to remove"; // If the constraint is imposed by the user we also need to make sure // that the system flags are the same. // if (satisfies (dsp->version, d.constraint) && (!dep_constr || dsp->system () == system)) { system = dsp->system (); // First try to find an available package for this exact version. // In particular, this handles the case where a package moves from // one repository to another (e.g., from testing to stable). For a // system package we pick the latest one (its exact version // doesn't really matter). // shared_ptr root ( mdb.load ("")); rp = system ? find_available_one (mdb, dn, nullopt, root) : find_available_one (mdb, dn, version_constraint (dsp->version), root); // A stub satisfies any version constraint so we weed them out // (returning stub as an available package feels wrong). // if (dap == nullptr || dap->stub ()) rp = make_available (options, *ddb, dsp); } else // Remember that we may be forcing up/downgrade; we will deal with // it below. // force = true; } // If this is a build-time dependency and we build it for the first // time, then we need to find a suitable configuration (of the host or // build2 type) to build it in. // // If the current configuration (ddb) is of the suitable type, then we // use that. Otherwise, we go through its immediate explicit links. If // only one of them has the suitable type, then we use that. If there // are multiple of them, then we fail advising the user to pick one // explicitly. If there are none, then we create the private // configuration and use that. // // Note that if the user has explicitly specified the configuration // for this dependency on the command line (using --config-*), then // this configuration is used as the starting point for this search. // if (da.buildtime && dsp == nullptr) { database* db (nullptr); const string& type (buildtime_dependency_type (dn)); // Note that the first returned link is for ddb itself. // for (const linked_config& lc: ddb->explicit_links ()) { database& ldb (lc.db); if (ldb.type == type) { // We are done if the self-link is of the suitable type. // if (lc.id == 0) { db = &ldb; break; } if (db == nullptr) db = &ldb; else fail << "multiple possible " << type << " configurations for " << "build-time dependency (" << dp << ")" << info << db->config_orig << info << ldb.config_orig << info << "use --config-* to select the configuration"; } } // If no suitable configuration is found, then create and link it. // if (db == nullptr) { const strings mods {"cc"}; const strings vars { "config.config.load=~" + type, "config.config.persist+='config.*'@unused=drop"}; dir_path cd (bpkg_dir / dir_path (type)); // Wipe a potentially existing un-linked private configuration // left from a previous faulty run. Note that trying to reuse it // would be a bad idea since it can be half-prepared, with an // outdated database schema version, etc. // cfg_create (options, ddb->config_orig / cd, optional (type) /* name */, type /* type */, mods, vars, false /* existing */, true /* wipe */); // Note that we will copy the name from the configuration unless // it clashes with one of the existing links. // shared_ptr lc (cfg_link (*ddb, ddb->config / cd, true /* relative */, nullopt /* name */, true /* sys_rep */)); // Save the newly-created private configuration, together with the // containing configuration database, for their subsequent re- // link. // priv_cfgs.emplace_back (*ddb, move (cd)); db = &ddb->find_attached (*lc->id); } ddb = db; // Switch to the dependency configuration. } // Note that building a dependent which is not a build2 module in the // same configuration with the build2 module it depends upon is an // error. // if (da.buildtime && !build2_module (name) && build2_module (dn) && pdb == *ddb) { // Note that the dependent package information is printed by the // above exception guard. // fail << "unable to build build system module " << dn << " in its " << "dependent package configuration " << pdb.config_orig << info << "use --config-* to select suitable configuration"; } // If we didn't get the available package corresponding to the // selected package, look for any that satisfies the constraint. // if (dap == nullptr) { // And if we have no repository fragment to look in, then that means // the package is an orphan (we delay this check until we actually // need the repository fragment to allow orphans without // prerequisites). // if (af == nullptr) fail << "package " << pkg.available_name_version_db () << " is orphaned" << info << "explicitly upgrade it to a new version"; // We look for prerequisites only in the repositories of this // package (and not in all the repositories of this configuration). // At first this might look strange, but it also kind of makes // sense: we only use repositories "approved" for this package // version. Consider this scenario as an example: hello/1.0.0 and // libhello/1.0.0 in stable and libhello/2.0.0 in testing. As a // prerequisite of hello, which version should libhello resolve to? // While one can probably argue either way, resolving it to 1.0.0 is // the conservative choice and the user can always override it by // explicitly building libhello. // // Note though, that if this is a test package, then its special // test dependencies (main packages that refer to it) should be // searched upstream through the complement repositories // recursively, since the test packages may only belong to the main // package's repository and its complements. // // @@ Currently we don't implement the reverse direction search for // the test dependencies, effectively only supporting the common // case where the main and test packages belong to the same // repository. Will need to fix this eventually. // // Note that this logic (naturally) does not apply if the package is // already selected by the user (see above). // // Also note that for the user-specified dependency version // constraint we rely on the satisfying package version be present // in repositories of the first dependent met. As a result, we may // fail too early if such package version doesn't belong to its // repositories, but belongs to the ones of some dependent that // we haven't met yet. Can we just search all repositories for an // available package of the appropriate version and just take it, // if present? We could, but then which repository should we pick? // The wrong choice can introduce some unwanted repositories and // package versions into play. So instead, we will postpone // collecting the problematic dependent, expecting that some other // one will find the appropriate version in its repositories. // // For a system package we pick the latest version just to make sure // the package is recognized. An unrecognized package means the // broken/stale repository (see below). // rp = find_available_one (mdb, dn, !system ? d.constraint : nullopt, af); if (dap == nullptr) { if (dep_constr && !system && postponed) { postponed->insert (&pkg); return; } diag_record dr (fail); dr << "unknown dependency " << dn; // We need to be careful not to print the wildcard-based // constraint. // if (d.constraint && (!dep_constr || !wildcard (*dep_constr))) dr << ' ' << *d.constraint; dr << " of package " << name << pdb; if (!af->location.empty () && (!dep_constr || system)) dr << info << "repository " << af->location << " appears to " << "be broken" << info << "or the repository state could be stale" << info << "run 'bpkg rep-fetch' to update"; } // If all that's available is a stub then we need to make sure the // package is present in the system repository and it's version // satisfies the constraint. If a source package is available but // there is a system package specified on the command line and it's // version satisfies the constraint then the system package should // be preferred. To recognize such a case we just need to check if // the authoritative system version is set and it satisfies the // constraint. If the corresponding system package is non-optional // it will be preferred anyway. // if (dap->stub ()) { // Note that the constraint can safely be printed as it can't // be a wildcard (produced from the user-specified dependency // version constraint). If it were, then the system version // wouldn't be NULL and would satisfy itself. // if (dap->system_version (*ddb) == nullptr) fail << "dependency " << d << " of package " << name << " is " << "not available in source" << info << "specify ?sys:" << dn << " if it is available from " << "the system"; if (!satisfies (*dap->system_version (*ddb), d.constraint)) fail << "dependency " << d << " of package " << name << " is " << "not available in source" << info << package_string (dn, *dap->system_version (*ddb), true /* system */) << " does not satisfy the constrains"; system = true; } else { auto p (dap->system_version_authoritative (*ddb)); if (p.first != nullptr && p.second && // Authoritative. satisfies (*p.first, d.constraint)) system = true; } } build_package bp { build_package::build, *ddb, dsp, dap, rp.second, nullopt, // Hold package. nullopt, // Hold version. {}, // Constraints. system, false, // Keep output directory. false, // Configure-only. nullopt, // Checkout root. false, // Checkout purge. strings (), // Configuration variables. {config_package {pdb, name}}, // Required by (dependent). true, // Required by dependents. 0}; // State flags. // Add our constraint, if we have one. // // Note that we always add the constraint implied by the dependent. // The user-implied constraint, if present, will be added when merging // from the pre-entered entry. So we will have both constraints for // completeness. // if (dp.constraint) bp.constraints.emplace_back (pdb, name.string (), *dp.constraint); // Now collect this prerequisite. If it was actually collected // (i.e., it wasn't already there) and we are forcing a downgrade or // upgrade, then refuse for a held version, warn for a held package, // and print the info message otherwise, unless the verbosity level is // less than two. // // Note though that while the prerequisite was collected it could have // happen because it is an optional package and so not being // pre-collected earlier. Meanwhile the package was specified // explicitly and we shouldn't consider that as a dependency-driven // up/down-grade enforcement. // // Here is an example of the situation we need to handle properly: // // repo: foo/2(->bar/2), bar/0+1 // build sys:bar/1 // build foo ?sys:bar/2 // const build_package* p ( collect_build (options, move (bp), fdb, rpt_depts, priv_cfgs, postponed)); if (p != nullptr && force && !dep_optional) { // Fail if the version is held. Otherwise, warn if the package is // held. // bool f (dsp->hold_version); bool w (!f && dsp->hold_package); if (f || w || verb >= 2) { const version& av (p->available_version ()); bool u (av > dsp->version); bool c (d.constraint); diag_record dr; (f ? dr << fail : w ? dr << warn : dr << info) << "package " << name << pdb << " dependency on " << (c ? "(" : "") << d << (c ? ")" : "") << " is forcing " << (u ? "up" : "down") << "grade of " << *dsp << *ddb << " to "; // Print both (old and new) package names in full if the system // attribution changes. // if (dsp->system ()) dr << p->available_name_version (); else dr << av; // Can't be a system version so is never wildcard. if (dsp->hold_version) dr << info << "package version " << *dsp << *ddb << " is held"; if (f) dr << info << "explicitly request version " << (u ? "up" : "down") << "grade to continue"; } } } } // Collect the repointed dependents and their replaced prerequisites, // recursively. // // If a repointed dependent is already pre-entered or collected with an // action other than adjustment, then just mark it for reconfiguration // unless it is already implied. Otherwise, collect the package build with // the repoint sub-action and reconfigure adjustment flag. // void collect_repointed_dependents ( const common_options& o, database& mdb, const repointed_dependents& rpt_depts, build_packages::postponed_packages& postponed, const function& fdb, private_configs& priv_cfgs) { for (const auto& rd: rpt_depts) { const shared_ptr& sp (rd.first); auto i (map_.find (mdb, sp->name)); if (i != map_.end ()) { build_package& b (i->second.package); if (!b.action || *b.action != build_package::adjust) { if (!b.action || (*b.action != build_package::drop && !b.reconfigure ())) b.flags |= build_package::adjust_reconfigure; continue; } } // The repointed dependent can be an orphan, so just create the // available package from the selected package. // auto rp (make_available (o, mdb, sp)); // Add the prerequisite replacements as the required-by packages. // set required_by; for (const auto& prq: rd.second) { if (prq.second) // Prerequisite replacement? { const config_package& cp (prq.first); required_by.emplace (cp.db, cp.name); } } build_package p { build_package::build, mdb, sp, move (rp.first), move (rp.second), nullopt, // Hold package. nullopt, // Hold version. {}, // Constraints. sp->system (), false, // Keep output directory. false, // Configure-only. nullopt, // Checkout root. false, // Checkout purge. strings (), // Configuration variables. move (required_by), // Required by (dependencies). false, // Required by dependents. build_package::adjust_reconfigure | build_package::build_repoint}; collect_build (o, move (p), fdb, rpt_depts, priv_cfgs, &postponed); } } // Collect the package being dropped. // void collect_drop (database& db, shared_ptr sp) { const package_name& nm (sp->name); build_package p { build_package::drop, db, move (sp), nullptr, nullptr, nullopt, // Hold package. nullopt, // Hold version. {}, // Constraints. false, // System package. false, // Keep output directory. false, // Configure-only. nullopt, // Checkout root. false, // Checkout purge. strings (), // Configuration variables. {}, // Required by. false, // Required by dependents. 0}; // State flags. auto i (map_.find (db, nm)); if (i != map_.end ()) { build_package& bp (i->second.package); // Overwrite the existing (possibly pre-entered, adjustment, or // repoint) entry. // bp = move (p); } else map_.emplace (config_package {db, nm}, data_type {end (), move (p)}); } // Collect the package being unheld. // void collect_unhold (database& db, const shared_ptr& sp) { auto i (map_.find (db, sp->name)); // Currently, it must always be pre-entered. // assert (i != map_.end ()); build_package& bp (i->second.package); if (!bp.action) // Pre-entered. { build_package p { build_package::adjust, db, sp, nullptr, nullptr, nullopt, // Hold package. nullopt, // Hold version. {}, // Constraints. false, // System package. false, // Keep output directory. false, // Configure-only. nullopt, // Checkout root. false, // Checkout purge. strings (), // Configuration variables. {}, // Required by. false, // Required by dependents. build_package::adjust_unhold}; p.merge (move (bp)); bp = move (p); } else bp.flags |= build_package::adjust_unhold; } void collect_build_prerequisites (const common_options& o, database& db, const package_name& name, postponed_packages& postponed, const function& fdb, const repointed_dependents& rpt_depts, private_configs& priv_cfgs) { auto mi (map_.find (db, name)); assert (mi != map_.end ()); collect_build_prerequisites (o, mi->second.package, &postponed, fdb, rpt_depts, priv_cfgs); } void collect_build_postponed (const common_options& o, postponed_packages& pkgs, const function& fdb, const repointed_dependents& rpt_depts, private_configs& priv_cfgs) { // Try collecting postponed packages for as long as we are making // progress. // for (bool prog (true); !pkgs.empty (); ) { postponed_packages npkgs; for (const build_package* p: pkgs) collect_build_prerequisites (o, *p, prog ? &npkgs : nullptr, fdb, rpt_depts, priv_cfgs); assert (prog); // collect_build_prerequisites() should have failed. prog = (npkgs != pkgs); pkgs.swap (npkgs); } } // Order the previously-collected package with the specified name // returning its positions. // // If buildtime is nullopt, then search for the specified package build in // only the specified configuration. Otherwise, treat the package as a // dependency and use the custom search function to find its build // configuration. Failed that, search for it recursively (see // config_package_map::find_dependency() for details). // // Recursively order the package dependencies being ordered failing if a // dependency cycle is detected. If reorder is true, then reorder this // package to be considered as "early" as possible. // iterator order (database& db, const package_name& name, optional buildtime, const function& fdb, bool reorder = true) { config_package_names chain; return order (db, name, buildtime, chain, fdb, reorder); } // If a configured package is being up/down-graded then that means // all its dependents could be affected and we have to reconfigure // them. This function examines every package that is already on // the list and collects and orders all its dependents. We also need // to make sure the dependents are ok with the up/downgrade. // // Should we reconfigure just the direct depends or also include // indirect, recursively? Consider this plauisible scenario as an // example: We are upgrading a package to a version that provides // an additional API. When its direct dependent gets reconfigured, // it notices this new API and exposes its own extra functionality // that is based on it. Now it would make sense to let its own // dependents (which would be our original package's indirect ones) // to also notice this. // void collect_order_dependents (const repointed_dependents& rpt_depts) { // For each package on the list we want to insert all its dependents // before it so that they get configured after the package on which // they depend is configured (remember, our build order is reverse, // with the last package being built first). This applies to both // packages that are already on the list as well as the ones that // we add, recursively. // for (auto i (begin ()); i != end (); ++i) { const build_package& p (*i); // Prune if this is not a configured package being up/down-graded // or reconfigured. // assert (p.action); // Dropped package may have no dependents. // if (*p.action != build_package::drop && p.reconfigure ()) collect_order_dependents (i, rpt_depts); } } void collect_order_dependents (iterator pos, const repointed_dependents& rpt_depts) { tracer trace ("collect_order_dependents"); assert (pos != end ()); build_package& p (*pos); database& pdb (p.db); const shared_ptr& sp (p.selected); const package_name& n (sp->name); // See if we are up/downgrading this package. In particular, the // available package could be NULL meaning we are just adjusting. // int ud (p.available != nullptr ? sp->version.compare (p.available_version ()) : 0); for (database& ddb: pdb.dependent_configs ()) { for (auto& pd: query_dependents (ddb, n, pdb)) { package_name& dn (pd.name); auto i (map_.find (ddb, dn)); // Make sure the up/downgraded package still satisfies this // dependent. But first "prune" if this is a replaced prerequisite // of the repointed dependent. // // Note that the repointed dependents are always collected and have // all their collected prerequisites ordered (including new and old // ones). See collect_build_prerequisites() and order() for details. // bool check (ud != 0 && pd.constraint); if (i != map_.end () && i->second.position != end ()) { build_package& dp (i->second.package); const shared_ptr& dsp (dp.selected); repointed_dependents::const_iterator j (rpt_depts.find (sp)); if (j != rpt_depts.end ()) { const map& prereqs_flags (j->second); auto k (prereqs_flags.find (config_package {pdb, n})); if (k != prereqs_flags.end () && !k->second) continue; } // There is one tricky aspect: the dependent could be in the // process of being up/downgraded as well. In this case all we // need to do is detect this situation and skip the test since all // the (new) contraints of this package have been satisfied in // collect_build(). // if (check) { check = dp.available == nullptr || (dsp->system () == dp.system && dsp->version == dp.available_version ()); } } if (check) { const version& av (p.available_version ()); const version_constraint& c (*pd.constraint); if (!satisfies (av, c)) { diag_record dr (fail); dr << "unable to " << (ud < 0 ? "up" : "down") << "grade " << "package " << *sp << pdb << " to "; // Print both (old and new) package names in full if the system // attribution changes. // if (p.system != sp->system ()) dr << p.available_name_version (); else dr << av; // Can't be the wildcard otherwise would satisfy. dr << info << "because package " << dn << ddb << " depends on (" << n << " " << c << ")"; string rb; if (!p.user_selection ()) { for (const config_package& cp: p.required_by) rb += ' ' + cp.string (); } if (!rb.empty ()) dr << info << "package " << p.available_name_version () << " required by" << rb; dr << info << "explicitly request up/downgrade of package " << dn; dr << info << "or explicitly specify package " << n << " version to manually satisfy these constraints"; } // Add this contraint to the list for completeness. // p.constraints.emplace_back (ddb, dn.string (), c); } auto adjustment = [&dn, &ddb, &n, &pdb] () -> build_package { shared_ptr dsp (ddb.load (dn)); bool system (dsp->system ()); // Save before the move(dsp) call. return build_package { build_package::adjust, ddb, move (dsp), nullptr, // No available pkg/repo fragment. nullptr, nullopt, // Hold package. nullopt, // Hold version. {}, // Constraints. system, false, // Keep output directory. false, // Configure-only. nullopt, // Checkout root. false, // Checkout purge. strings (), // Configuration variables. {config_package {pdb, n}}, // Required by (dependency). false, // Required by dependents. build_package::adjust_reconfigure}; }; // We can have three cases here: the package is already on the // list, the package is in the map (but not on the list) and it // is in neither. // // If the existing entry is a drop, then we skip it. If it is // pre-entered, is an adjustment, or is a build that is not supposed // to be built (not in the list), then we merge it into the new // adjustment entry. Otherwise (is a build in the list), we just add // the reconfigure adjustment flag to it. // if (i != map_.end ()) { build_package& dp (i->second.package); iterator& dpos (i->second.position); if (!dp.action || // Pre-entered. *dp.action != build_package::build || // Non-build. dpos == end ()) // Build not in the list. { // Skip the droped package. // if (dp.action && *dp.action == build_package::drop) continue; build_package bp (adjustment ()); bp.merge (move (dp)); dp = move (bp); } else // Build in the list. dp.flags |= build_package::adjust_reconfigure; // It may happen that the dependent is already in the list but is // not properly ordered against its dependencies that get into the // list via another dependency path. Thus, we check if the // dependent is to the right of its dependency and, if that's the // case, reinsert it in front of the dependency. // if (dpos != end ()) { for (auto i (pos); i != end (); ++i) { if (i == dpos) { erase (dpos); dpos = insert (pos, dp); break; } } } else dpos = insert (pos, dp); } else { // Don't move dn since it is used by adjustment(). // i = map_.emplace (config_package {ddb, dn}, data_type {end (), adjustment ()}).first; i->second.position = insert (pos, i->second.package); } // Recursively collect our own dependents inserting them before us. // // Note that we cannot end up with an infinite recursion for // configured packages due to a dependency cycle (see order() for // details). // collect_order_dependents (i->second.position, rpt_depts); } } } void clear () { build_package_list::clear (); map_.clear (); } void clear_order () { build_package_list::clear (); for (auto& p: map_) p.second.position = end (); } private: struct config_package_name { database& db; const package_name& name; bool operator== (const config_package_name& v) { return name == v.name && db == v.db; } }; using config_package_names = small_vector; iterator order (database& db, const package_name& name, optional buildtime, config_package_names& chain, const function& fdb, bool reorder) { config_package_map::iterator mi; if (buildtime) { database* ddb (fdb (db, name, *buildtime)); mi = ddb != nullptr ? map_.find (*ddb, name) : map_.find_dependency (db, name, *buildtime); } else mi = map_.find (db, name); // Every package that we order should have already been collected. // assert (mi != map_.end ()); build_package& p (mi->second.package); assert (p.action); // Can't order just a pre-entered package. database& pdb (p.db); // Make sure there is no dependency cycle. // config_package_name cp {pdb, name}; { auto i (find (chain.begin (), chain.end (), cp)); if (i != chain.end ()) { diag_record dr (fail); dr << "dependency cycle detected involving package " << name << pdb; auto nv = [this] (const config_package_name& cp) { auto mi (map_.find (cp.db, cp.name)); assert (mi != map_.end ()); build_package& p (mi->second.package); assert (p.action); // See above. // We cannot end up with a dependency cycle for actions other than // build since these packages are configured and we would fail on // a previous run while building them. // assert (p.available != nullptr); return p.available_name_version_db (); }; // Note: push_back() can invalidate the iterator. // size_t j (i - chain.begin ()); for (chain.push_back (cp); j != chain.size () - 1; ++j) dr << info << nv (chain[j]) << " depends on " << nv (chain[j + 1]); } } // If this package is already in the list, then that would also // mean all its prerequisites are in the list and we can just // return its position. Unless we want it reordered. // iterator& pos (mi->second.position); if (pos != end ()) { if (reorder) erase (pos); else return pos; } // Order all the prerequisites of this package and compute the // position of its "earliest" prerequisite -- this is where it // will be inserted. // const shared_ptr& sp (p.selected); const shared_ptr& ap (p.available); bool build (*p.action == build_package::build); // Package build must always have the available package associated. // assert (!build || ap != nullptr); // Unless this package needs something to be before it, add it to // the end of the list. // iterator i (end ()); // Figure out if j is before i, in which case set i to j. The goal // here is to find the position of our "earliest" prerequisite. // auto update = [this, &i] (iterator j) { for (iterator k (j); i != j && k != end ();) if (++k == i) i = j; }; // Similar to collect_build(), we can prune if the package is already // configured, right? While in collect_build() we didn't need to add // prerequisites of such a package, it doesn't mean that they actually // never ended up in the map via another dependency path. For example, // some can be a part of the initial selection. And in that case we must // order things properly. // // Also, if the package we are ordering is not a system one and needs to // be disfigured during the plan execution, then we must order its // (current) dependencies that also need to be disfigured. // // And yet, if the package we are ordering is a repointed dependent, // then we must order not only its unamended and new prerequisites but // also its replaced prerequisites, which can also be disfigured. // bool src_conf (sp != nullptr && sp->state == package_state::configured && sp->substate != package_substate::system); auto disfigure = [] (const build_package& p) { return p.action && (*p.action == build_package::drop || p.reconfigure ()); }; bool order_disfigured (src_conf && disfigure (p)); chain.push_back (cp); // Order the build dependencies. // if (build && !p.system) { // So here we are going to do things differently depending on // whether the package is already configured or not. If it is and // not as a system package, then that means we can use its // prerequisites list. Otherwise, we use the manifest data. // if (src_conf && sp->version == p.available_version ()) { for (const auto& p: sp->prerequisites) { database& db (p.first.database ()); const package_name& name (p.first.object_id ()); // The prerequisites may not necessarily be in the map. // // Note that for the repointed dependent we also order its new and // replaced prerequisites here, since they all are in the selected // package prerequisites set. // auto i (map_.find (db, name)); if (i != map_.end () && i->second.package.action) update (order (db, name, nullopt /* buildtime */, chain, fdb, false /* reorder */)); } // We just ordered them among other prerequisites. // order_disfigured = false; } else { // We are iterating in reverse so that when we iterate over // the dependency list (also in reverse), prerequisites will // be built in the order that is as close to the manifest as // possible. // for (const dependency_alternatives_ex& da: reverse_iterate (ap->dependencies)) { assert (!da.conditional && da.size () == 1); // @@ TODO const dependency& d (da.front ()); const package_name& dn (d.name); // Skip special names. // if (da.buildtime && (dn == "build2" || dn == "bpkg")) continue; // Note that for the repointed dependent we only order its new and // unamended prerequisites here. Its replaced prerequisites will // be ordered below. // update (order (pdb, d.name, da.buildtime, chain, fdb, false /* reorder */)); } } } // Order the dependencies being disfigured. // if (order_disfigured) { for (const auto& p: sp->prerequisites) { database& db (p.first.database ()); const package_name& name (p.first.object_id ()); // The prerequisites may not necessarily be in the map. // auto i (map_.find (db, name)); // Note that for the repointed dependent we also order its replaced // and potentially new prerequisites here (see above). The latter is // redundant (we may have already ordered them above) but harmless, // since we do not reorder. // if (i != map_.end () && disfigure (i->second.package)) update (order (db, name, nullopt /* buildtime */, chain, fdb, false /* reorder */)); } } chain.pop_back (); return pos = insert (i, p); } private: struct data_type { iterator position; // Note: can be end(), see collect_build(). build_package package; }; class config_package_map: public map { public: using base_type = map; iterator find (database& db, const package_name& pn) { return base_type::find (config_package {db, pn}); } // Try to find a package build in the dependency configurations (see // database::dependency_configs() for details). Return the end iterator // if no build is found and issue diagnostics and fail if multiple // builds (in multiple configurations) are found. // iterator find_dependency (database& db, const package_name& pn, bool buildtime) { iterator r (end ()); linked_databases ldbs (db.dependency_configs (pn, buildtime)); for (database& ldb: ldbs) { iterator i (find (ldb, pn)); if (i != end ()) { if (r == end ()) r = i; else fail << "building package " << pn << " in multiple " << "configurations" << info << r->first.db.config_orig << info << ldb.config_orig << info << "use --config-* to select package configuration"; } } return r; } }; config_package_map map_; }; // Return a patch version constraint for the selected package if it has a // standard version, otherwise, if requested, issue a warning and return // nullopt. // // Note that the function may also issue a warning and return nullopt if the // selected package minor version reached the limit (see // standard-version.cxx for details). // static optional patch_constraint (const shared_ptr& sp, bool quiet = false) { const package_name& nm (sp->name); const version& sv (sp->version); // Note that we don't pass allow_stub flag so the system wildcard version // will (naturally) not be patched. // string vs (sv.string ()); optional v (parse_standard_version (vs)); if (!v) { if (!quiet) warn << "unable to patch " << package_string (nm, sv) << info << "package is not using semantic/standard version"; return nullopt; } try { return version_constraint ("~" + vs); } // Note that the only possible reason for invalid_argument exception to // be thrown is that minor version reached the 99999 limit (see // standard-version.cxx for details). // catch (const invalid_argument&) { if (!quiet) warn << "unable to patch " << package_string (nm, sv) << info << "minor version limit reached"; return nullopt; } } // List of dependency packages (specified with ? on the command line). // struct dependency_package { database& db; package_name name; optional constraint; // nullopt if unspecified. shared_ptr selected; // NULL if not present. bool system; bool patch; // Only for an empty version. bool keep_out; optional checkout_root; bool checkout_purge; strings config_vars; // Only if not system. }; using dependency_packages = vector; // Evaluate a dependency package and return a new desired version. If the // result is absent (nullopt), then there are no user expectations regarding // this dependency. If the result is a NULL available_package, then it is // either no longer used and can be dropped, or no changes to the dependency // are necessary. Otherwise, the result is available_package to // upgrade/downgrade to as well as the repository fragment it must come // from, and the system flag. // // If the package version that satisfies explicitly specified dependency // version constraint can not be found in the dependents repositories, then // return the "no changes are necessary" result if ignore_unsatisfiable // argument is true and fail otherwise. The common approach is to pass true // for this argument until the execution plan is finalized, assuming that // the problematic dependency might be dropped. // struct evaluate_result { reference_wrapper db; shared_ptr available; shared_ptr repository_fragment; bool unused; bool system; // Is meaningless if unused. }; struct config_package_dependent { database& db; shared_ptr package; optional constraint; config_package_dependent (database& d, shared_ptr p, optional c) : db (d), package (move (p)), constraint (move (c)) {} }; using config_package_dependents = vector; static optional evaluate_dependency (database&, const shared_ptr&, const optional& desired, bool desired_sys, database& desired_db, bool patch, bool explicitly, const set>&, const config_package_dependents&, bool ignore_unsatisfiable); // If there are no user expectations regarding this dependency, then we give // no up/down-grade recommendation, unless there are no dependents in which // case we recommend to drop the dependency. // // Note that the user expectations are only applied for dependencies that // have dependents in the current configuration. // static optional evaluate_dependency (database& db, const shared_ptr& sp, const dependency_packages& deps, bool ignore_unsatisfiable) { tracer trace ("evaluate_dependency"); assert (sp != nullptr && !sp->hold_package); const package_name& nm (sp->name); database& mdb (db.main_database ()); // Only search for the user expectations regarding this dependency if it // has dependents in the current configuration. // auto mdb_deps (query_dependents (mdb, nm, db)); // Stash not re-query. bool mdb_dep (!mdb_deps.empty ()); auto i (mdb_dep ? find_if (deps.begin (), deps.end (), [&nm] (const dependency_package& i) { return i.name == nm; }) : deps.end ()); bool user_exp (i != deps.end () && i->db.type == db.type); bool copy_dep (user_exp && i->db != db); // If the dependency needs to be copied, then only consider it dependents // in the current configuration for the version constraints, etc. // linked_databases dbs (copy_dep ? linked_databases ({mdb}) : db.dependent_configs ()); vector> pds; for (database& ddb: dbs) { auto ds (ddb.main () ? move (mdb_deps) : query_dependents (ddb, nm, db)); // Bail out if the dependency is used but there are no user expectations // regrading it. // if (!ds.empty ()) { if (!user_exp) return nullopt; for (auto& d: ds) pds.emplace_back (ddb, move (d)); } } // Bail out if the dependency is unused. // if (pds.empty ()) { l5 ([&]{trace << *sp << db << ": unused";}); return evaluate_result {db, nullptr /* available */, nullptr /* repository_fragment */, true /* unused */, false /* system */}; } // If the selected package matches the user expectations then no package // change is required. // const version& sv (sp->version); bool ssys (sp->system ()); // The requested dependency version constraint and system flag. // const optional& dvc (i->constraint); // May be nullopt. bool dsys (i->system); database& ddb (i->db); if (ssys == dsys && dvc && (ssys ? sv == *dvc->min_version : satisfies (sv, dvc)) && db == ddb) { l5 ([&]{trace << *sp << db << ": unchanged";}); return evaluate_result {db, nullptr /* available */, nullptr /* repository_fragment */, false /* unused */, false /* system */}; } // Build a set of repository fragments the dependent packages now come // from. Also cache the dependents and the constraints they apply to this // dependency. // set> repo_frags; config_package_dependents dependents; for (auto& pd: pds) { database& ddb (pd.first); package_dependent& dep (pd.second); shared_ptr dsp ( ddb.load (dep.name)); shared_ptr dap ( mdb.find ( available_package_id (dsp->name, dsp->version))); if (dap != nullptr) { assert (!dap->locations.empty ()); for (const auto& pl: dap->locations) repo_frags.insert (pl.repository_fragment.load ()); } dependents.emplace_back (ddb, move (dsp), move (dep.constraint)); } return evaluate_dependency (db, sp, dvc, dsys, ddb, i->patch, true /* explicitly */, repo_frags, dependents, ignore_unsatisfiable); } struct config_selected_package { database& db; const shared_ptr& package; config_selected_package (database& d, const shared_ptr& p) : db (d), package (p) {} bool operator== (const config_selected_package& v) const { return package->name == v.package->name && db == v.db; } bool operator< (const config_selected_package& v) const { int r (package->name.compare (v.package->name)); return r != 0 ? (r < 0) : (db < v.db); } }; static optional evaluate_dependency (database& db, const shared_ptr& sp, const optional& dvc, bool dsys, database& ddb, bool patch, bool explicitly, const set>& rfs, const config_package_dependents& dependents, bool ignore_unsatisfiable) { tracer trace ("evaluate_dependency"); const package_name& nm (sp->name); const version& sv (sp->version); auto no_change = [&db] () { return evaluate_result {db, nullptr /* available */, nullptr /* repository_fragment */, false /* unused */, false /* system */}; }; // Build the list of available packages for the potential up/down-grade // to, in the version-descending order. If patching, then we constrain the // choice with the latest patch version and place no constraints if // upgrading. For a system package we also put no constraints just to make // sure that the package is recognized. // optional c; if (!dvc) { assert (!dsys); // The version can't be empty for the system package. if (patch) { c = patch_constraint (sp, ignore_unsatisfiable); if (!c) { l5 ([&]{trace << *sp << db << ": non-patchable";}); return no_change (); } } } else if (!dsys) c = dvc; vector, shared_ptr>> afs ( find_available (db.main_database (), nm, c, vector> (rfs.begin (), rfs.end ()))); // Go through up/down-grade candidates and pick the first one that // satisfies all the dependents. Collect (and sort) unsatisfied dependents // per the unsatisfiable version in case we need to print them. // using sp_set = set; vector> unsatisfiable; bool stub (false); bool ssys (sp->system ()); assert (!dsys || (db.system_repository && db.system_repository->find (nm) != nullptr)); for (auto& af: afs) { shared_ptr& ap (af.first); const version& av (!dsys ? ap->version : *ap->system_version (db)); // If we aim to upgrade to the latest version and it tends to be less // then the selected one, then what we currently have is the best that // we can get, and so we return the "no change" result. // // Note that we also handle a package stub here. // if (!dvc && av < sv && db == ddb) { assert (!dsys); // Version can't be empty for the system package. // For the selected system package we still need to pick a source // package version to downgrade to. // if (!ssys) { l5 ([&]{trace << *sp << db << ": best";}); return no_change (); } // We can not upgrade the (system) package to a stub version, so just // skip it. // if (ap->stub ()) { stub = true; continue; } } // Check if the version satisfies all the dependents and collect // unsatisfied ones. // bool satisfactory (true); sp_set unsatisfied_dependents; for (const auto& dp: dependents) { if (!satisfies (av, dp.constraint)) { satisfactory = false; // Continue to collect dependents of the unsatisfiable version if // we need to print them before failing. // if (ignore_unsatisfiable) break; unsatisfied_dependents.emplace (dp.db, dp.package); } } if (!satisfactory) { if (!ignore_unsatisfiable) unsatisfiable.emplace_back (av, move (unsatisfied_dependents)); // If the dependency is expected to be configured as system, then bail // out, as an available package version will always resolve to the // system one (see above). // if (dsys) break; continue; } // If the best satisfactory version and the desired system flag perfectly // match the ones of the selected package, then no package change is // required. Otherwise, recommend an up/down-grade. // if (av == sv && ssys == dsys && db == ddb) { l5 ([&]{trace << *sp << db << ": unchanged";}); return no_change (); } l5 ([&]{trace << *sp << db << ": update to " << package_string (nm, av, dsys) << ddb;}); return evaluate_result { ddb, move (ap), move (af.second), false /* unused */, dsys}; } // If we aim to upgrade to the latest version, then what we currently have // is the only thing that we can get, and so returning the "no change" // result, unless we need to upgrade a package configured as system. // if (!dvc && !ssys && db == ddb) { assert (!dsys); // Version cannot be empty for the system package. l5 ([&]{trace << *sp << db << ": only";}); return no_change (); } // If the version satisfying the desired dependency version constraint is // unavailable or unsatisfiable for some dependents then we fail, unless // requested not to do so. In the latter case we return the "no change" // result. // if (ignore_unsatisfiable) { l5 ([&]{trace << package_string (nm, dvc, dsys) << ddb << (unsatisfiable.empty () ? ": no source" : ": unsatisfiable");}); return no_change (); } // If there are no unsatisfiable versions then the package is not present // (or is not available in source) in its dependents' repositories. // if (unsatisfiable.empty ()) { diag_record dr (fail); if (!dvc && patch) { assert (ssys); // Otherwise, we would bail out earlier (see above). // Patch (as any upgrade) of a system package is always explicit, so // we always fail and never treat the package as being up to date. // assert (explicitly); fail << "patch version for " << *sp << db << " is not available " << "from its dependents' repositories"; } else if (!stub) fail << package_string (nm, dsys ? nullopt : dvc) << ddb << " is not available from its dependents' repositories"; else // The only available package is a stub. { // Note that we don't advise to "build" the package as a system one as // it is already as such (see above). // assert (!dvc && !dsys && ssys); fail << package_string (nm, dvc) << ddb << " is not available in " << "source from its dependents' repositories"; } } // Issue the diagnostics and fail. // diag_record dr (fail); dr << "package " << nm << ddb << " doesn't satisfy its dependents"; // Print the list of unsatisfiable versions together with dependents they // don't satisfy: up to three latest versions with no more than five // dependents each. // size_t nv (0); for (const auto& u: unsatisfiable) { dr << info << package_string (nm, u.first) << " doesn't satisfy"; size_t n (0); const sp_set& ps (u.second); for (const config_selected_package& p: ps) { dr << ' ' << *p.package << p.db; if (++n == 5 && ps.size () != 6) // Printing 'and 1 more' looks stupid. break; } if (n != ps.size ()) dr << " and " << ps.size () - n << " more"; if (++nv == 3 && unsatisfiable.size () != 4) break; } if (nv != unsatisfiable.size ()) dr << info << "and " << unsatisfiable.size () - nv << " more"; dr << endf; } // List of dependent packages whose immediate/recursive dependencies must be // upgraded (specified with -i/-r on the command line). // struct recursive_package { database& db; package_name name; bool upgrade; // true -- upgrade, false -- patch. bool recursive; // true -- recursive, false -- immediate. }; using recursive_packages = vector; // Recursively check if immediate dependencies of this dependent must be // upgraded or patched. Return true if it must be upgraded, false if // patched, and nullopt otherwise. // static optional upgrade_dependencies (database& db, const package_name& nm, const recursive_packages& rs, bool recursion = false) { auto i (find_if (rs.begin (), rs.end (), [&nm, &db] (const recursive_package& i) -> bool { return i.name == nm && i.db == db; })); optional r; if (i != rs.end () && i->recursive >= recursion) { r = i->upgrade; if (*r) // Upgrade (vs patch)? return r; } for (database& ddb: db.dependent_configs ()) { for (auto& pd: query_dependents (ddb, nm, db)) { // Note that we cannot end up with an infinite recursion for // configured packages due to a dependency cycle (see order() for // details). // if (optional u = upgrade_dependencies (ddb, pd.name, rs, true)) { if (!r || *r < *u) // Upgrade wins patch. { r = u; if (*r) // Upgrade (vs patch)? return r; } } } } return r; } // Evaluate a package (not necessarily dependency) and return a new desired // version. If the result is absent (nullopt), then no changes to the // package are necessary. Otherwise, the result is available_package to // upgrade/downgrade to as well as the repository fragment it must come // from. // // If the system package cannot be upgraded to the source one, not being // found in the dependents repositories, then return nullopt if // ignore_unsatisfiable argument is true and fail otherwise (see the // evaluate_dependency() function description for details). // static optional evaluate_recursive (database& db, const shared_ptr& sp, const recursive_packages& recs, bool ignore_unsatisfiable) { tracer trace ("evaluate_recursive"); assert (sp != nullptr); // Build a set of repository fragment the dependent packages come from. // Also cache the dependents and the constraints they apply to this // dependency. // set> repo_frags; config_package_dependents dependents; // Only collect repository fragments (for best version selection) of // (immediate) dependents that have a hit (direct or indirect) in recs. // Note, however, that we collect constraints from all the dependents. // optional upgrade; database& mdb (db.main_database ()); for (database& ddb: db.dependent_configs ()) { for (auto& pd: query_dependents (ddb, sp->name, db)) { shared_ptr dsp ( ddb.load (pd.name)); dependents.emplace_back (ddb, dsp, move (pd.constraint)); if (optional u = upgrade_dependencies (ddb, pd.name, recs)) { if (!upgrade || *upgrade < *u) // Upgrade wins patch. upgrade = u; } else continue; // While we already know that the dependency upgrade is required, we // continue to iterate over dependents, collecting the repository // fragments and the constraints. // shared_ptr dap ( mdb.find ( available_package_id (dsp->name, dsp->version))); if (dap != nullptr) { assert (!dap->locations.empty ()); for (const auto& pl: dap->locations) repo_frags.insert (pl.repository_fragment.load ()); } } } if (!upgrade) { l5 ([&]{trace << *sp << db << ": no hit";}); return nullopt; } // Recommends the highest possible version. // optional r ( evaluate_dependency (db, sp, nullopt /* desired */, false /*desired_sys */, db, !*upgrade /* patch */, false /* explicitly */, repo_frags, dependents, ignore_unsatisfiable)); // Translate the "no change" result into nullopt. // assert (!r || !r->unused); return r && r->available == nullptr ? nullopt : r; } // Return false if the plan execution was noop. // static bool execute_plan (const pkg_build_options&, build_package_list&, bool simulate, const function&); using pkg_options = pkg_build_pkg_options; static void validate_options (const pkg_options& o, const string& pkg) { diag_record dr; if (o.upgrade () && o.patch ()) dr << fail << "both --upgrade|-u and --patch|-p specified"; if (o.immediate () && o.recursive ()) dr << fail << "both --immediate|-i and --recursive|-r specified"; // The --immediate or --recursive option can only be specified with an // explicit --upgrade or --patch. // if (const char* n = (o.immediate () ? "--immediate" : o.recursive () ? "--recursive" : nullptr)) { if (!o.upgrade () && !o.patch ()) dr << fail << n << " requires explicit --upgrade|-u or --patch|-p"; } if (((o.upgrade_immediate () ? 1 : 0) + (o.upgrade_recursive () ? 1 : 0) + (o.patch_immediate () ? 1 : 0) + (o.patch_recursive () ? 1 : 0)) > 1) dr << fail << "multiple --(upgrade|patch)-(immediate|recursive) " << "specified"; if (((o.config_id_specified () ? 1 : 0) + (o.config_name_specified () ? 1 : 0) + (o.config_uuid_specified () ? 1 : 0)) > 1) dr << fail << "multiple --config-* specified"; if (!dr.empty () && !pkg.empty ()) dr << info << "while validating options for " << pkg; } static void merge_options (const pkg_options& src, pkg_options& dst) { if (!(dst.recursive () || dst.immediate ())) { dst.immediate (src.immediate ()); dst.recursive (src.recursive ()); // If -r|-i was specified at the package level, then so should // -u|-p. // if (!(dst.upgrade () || dst.patch ())) { dst.upgrade (src.upgrade ()); dst.patch (src.patch ()); } } if (!(dst.upgrade_immediate () || dst.upgrade_recursive () || dst.patch_immediate () || dst.patch_recursive ())) { dst.upgrade_immediate (src.upgrade_immediate ()); dst.upgrade_recursive (src.upgrade_recursive ()); dst.patch_immediate (src.patch_immediate ()); dst.patch_recursive (src.patch_recursive ()); } dst.dependency (src.dependency () || dst.dependency ()); dst.keep_out (src.keep_out () || dst.keep_out ()); if (!dst.checkout_root_specified () && src.checkout_root_specified ()) { dst.checkout_root (src.checkout_root ()); dst.checkout_root_specified (true); } dst.checkout_purge (src.checkout_purge () || dst.checkout_purge ()); if (!dst.config_id_specified () && !dst.config_name_specified () && !dst.config_uuid_specified ()) { if (src.config_id_specified ()) { dst.config_id (src.config_id ()); dst.config_id_specified (true); } if (src.config_name_specified ()) { dst.config_name (src.config_name ()); dst.config_name_specified (true); } if (src.config_uuid_specified ()) { dst.config_uuid (src.config_uuid ()); dst.config_uuid_specified (true); } } } static bool compare_options (const pkg_options& x, const pkg_options& y) { return x.keep_out () == y.keep_out () && x.dependency () == y.dependency () && x.upgrade () == y.upgrade () && x.patch () == y.patch () && x.immediate () == y.immediate () && x.recursive () == y.recursive () && x.upgrade_immediate () == y.upgrade_immediate () && x.upgrade_recursive () == y.upgrade_recursive () && x.patch_immediate () == y.patch_immediate () && x.patch_recursive () == y.patch_recursive () && x.checkout_root () == y.checkout_root () && x.checkout_purge () == y.checkout_purge () && x.config_id () == y.config_id () && x.config_name () == y.config_name () && x.config_uuid () == y.config_uuid (); } int pkg_build (const pkg_build_options& o, cli::group_scanner& args) { tracer trace ("pkg_build"); const dir_path& c (o.directory ()); l4 ([&]{trace << "configuration: " << c;}); validate_options (o, ""); // Global package options. if (o.update_dependent () && o.leave_dependent ()) fail << "both --update-dependent|-U and --leave-dependent|-L " << "specified" << info << "run 'bpkg help pkg-build' for more information"; if (!args.more () && !o.upgrade () && !o.patch ()) fail << "package name argument expected" << info << "run 'bpkg help pkg-build' for more information"; // Also populates the system repository. // database mdb (c, trace, true /* pre_attach */, true /* sys_rep */); // Note that the session spans all our transactions. The idea here is that // selected_package objects in build_packages below will be cached in this // session. When subsequent transactions modify any of these objects, they // will modify the cached instance, which means our list will always "see" // their updated state. // // Also note that rep_fetch() must be called in session. // session ses; // Preparse the (possibly grouped) package specs splitting them into the // packages and location parts, and also parsing their options and // configuration variables. // // Also collect repository locations for the subsequent fetch, suppressing // duplicates. Note that the last repository location overrides the // previous ones with the same canonical name. // struct pkg_spec { database* db; // A pointer since we build these objects incrementally. string packages; repository_location location; pkg_options options; strings config_vars; }; vector specs; { // Read the common configuration variables until we reach the "--" // separator, eos or an argument. Non-empty variables list should always // be terminated with the "--". Furthermore, argument list that contains // anything that looks like a variable (has the '=' character) should be // preceded with "--". // strings cvars; bool sep (false); // Seen '--'. while (args.more ()) { const char* a (args.peek ()); // If we see the "--" separator, then we are done parsing variables. // if (strcmp (a, "--") == 0) { sep = true; args.next (); break; } // Bail out if arguments have started. We will perform the validation // later (together with the eos case). // if (strchr (a, '=') == nullptr) break; string v (args.next ()); // Make sure this is not an argument having an option group. // if (args.group ().more ()) fail << "unexpected options group for configuration variable '" << v << "'"; cvars.push_back (move (v)); } if (!cvars.empty () && !sep) fail << "configuration variables must be separated from packages " << "with '--'"; vector locations; transaction t (mdb); while (args.more ()) { string a (args.next ()); // Make sure the argument can not be misinterpreted as a configuration // variable. // if (a.find ('=') != string::npos && !sep) fail << "unexpected configuration variable '" << a << "'" << info << "use the '--' separator to treat it as a package"; specs.emplace_back (); pkg_spec& ps (specs.back ()); try { auto& po (ps.options); cli::scanner& ag (args.group ()); po.parse (ag, cli::unknown_mode::fail, cli::unknown_mode::stop); // Merge the common and package-specific configuration variables // (commons go first). // ps.config_vars = cvars; while (ag.more ()) { string a (ag.next ()); if (a.find ('=') == string::npos) fail << "unexpected group argument '" << a << "'"; ps.config_vars.push_back (move (a)); } // We have to manually merge global options into local since just // initializing local with global and then parsing local may end up // with an invalid set (say, both --immediate and --recursive true). // merge_options (o, po); validate_options (po, a); } catch (const cli::exception& e) { fail << e << " grouped for argument '" << a << "'"; } // Note: main database if no --config-* option is specified. // if (ps.options.config_name_specified ()) ps.db = &mdb.find_attached (ps.options.config_name ()); else if (ps.options.config_uuid_specified ()) ps.db = &mdb.find_dependency_config (ps.options.config_uuid ()); else ps.db = &mdb.find_attached (ps.options.config_id ()); if (!a.empty () && a[0] == '?') { ps.options.dependency (true); a.erase (0, 1); } // Check if the argument has the []@ form or looks // like a URL. Find the position of if that's the case and // set it to string::npos otherwise. // // Note that we consider '@' to be such a delimiter only if it comes // before ":/" (think a URL which could contain its own '@'). // size_t p (0); using url_traits = url::traits_type; // Skip leading ':' that are not part of a URL. // while ((p = a.find_first_of ("@:", p)) != string::npos && a[p] == ':' && url_traits::find (a, p) == string::npos) ++p; if (p != string::npos) { if (a[p] == ':') { // The whole thing must be the location. // p = url_traits::find (a, p) == 0 ? 0 : string::npos; } else p += 1; // Skip '@'. } // Split the spec into the packages and location parts. Also save the // location for the subsequent fetch operation. // if (p != string::npos) { string l (a, p); if (l.empty ()) fail << "empty repository location in '" << a << "'"; // Search for the repository location in the database before trying // to parse it. Note that the straight parsing could otherwise fail, // being unable to properly guess the repository type. // // Also note that the repository location URL is not unique and we // can potentially end up with multiple repositories. For example: // // $ bpkg add git+file:/path/to/git/repo dir+file:/path/to/git/repo // $ bpkg build @/path/to/git/repo // // That's why we pick the repository only if there is exactly one // match. // shared_ptr r; { using query = query; // For case-insensitive filesystems (Windows) we need to match the // location case-insensitively against the local repository URLs // and case-sensitively against the remote ones. // // Note that the root repository will never be matched, since its // location is empty. // const auto& url (query::location.url); #ifndef _WIN32 query q (url == l); #else string u (url.table ()); u += '.'; u += url.column (); query q ( (!query::local && url == l) || ( query::local && u + " COLLATE nocase = " + query::_val (l))); #endif auto rs (mdb.query (q)); auto i (rs.begin ()); if (i != rs.end ()) { r = i.load (); // Fallback to parsing the location if several repositories // match. // if (++i != rs.end ()) r = nullptr; } } ps.location = r != nullptr ? r->location : parse_location (l, nullopt /* type */); if (p > 1) ps.packages = string (a, 0, p - 1); if (!o.no_fetch ()) { auto pr = [&ps] (const repository_location& i) -> bool { return i.canonical_name () == ps.location.canonical_name (); }; auto i (find_if (locations.begin (), locations.end (), pr)); if (i != locations.end ()) *i = ps.location; else locations.push_back (ps.location); } } else ps.packages = move (a); } t.commit (); // Fetch the repositories in the current configuration. // // Note that during this build only the repositories information from // the main database will be used. // if (!locations.empty ()) rep_fetch (o, mdb, locations, o.fetch_shallow (), string () /* reason for "fetching ..." */); } // Expand the package specs into individual package args, parsing them // into the package scheme, name, and version constraint components, and // also saving associated options and configuration variables. // // Note that the package specs that have no scheme and location cannot be // unambiguously distinguished from the package archive and directory // paths. We will save such package arguments unparsed (into the value // data member) and will handle them later. // struct pkg_arg { reference_wrapper db; package_scheme scheme; package_name name; optional constraint; string value; pkg_options options; strings config_vars; }; // Create the parsed package argument. // auto arg_package = [] (database& db, package_scheme sc, package_name nm, optional vc, pkg_options os, strings vs) -> pkg_arg { assert (!vc || !vc->empty ()); // May not be empty if present. pkg_arg r { db, sc, move (nm), move (vc), string (), move (os), move (vs)}; switch (sc) { case package_scheme::sys: { if (!r.constraint) r.constraint = version_constraint (wildcard_version); // The system package may only have an exact/wildcard version // specified. // assert (r.constraint->min_version == r.constraint->max_version); assert (db.system_repository); const system_package* sp (db.system_repository->find (r.name)); // Will deal with all the duplicates later. // if (sp == nullptr || !sp->authoritative) { assert (db.system_repository); db.system_repository->insert (r.name, *r.constraint->min_version, true /* authoritative */); } break; } case package_scheme::none: break; // Nothing to do. } return r; }; // Create the unparsed package argument. // auto arg_raw = [] (database& db, string v, pkg_options os, strings vs) -> pkg_arg { return pkg_arg {db, package_scheme::none, package_name (), nullopt /* constraint */, move (v), move (os), move (vs)}; }; auto arg_parsed = [] (const pkg_arg& a) {return !a.name.empty ();}; auto arg_sys = [&arg_parsed] (const pkg_arg& a) { assert (arg_parsed (a)); return a.scheme == package_scheme::sys; }; auto arg_string = [&arg_parsed, &arg_sys] (const pkg_arg& a, bool options = true) -> string { string r (options && a.options.dependency () ? "?" : string ()); // Quote an argument if empty or contains spaces. // auto append = [] (const string& a, string& r) { if (a.empty () || a.find (' ') != string::npos) r += '"' + a + '"'; else r += a; }; if (arg_parsed (a)) r += package_string (a.name, (a.constraint && !wildcard (*a.constraint) ? a.constraint : nullopt), arg_sys (a)); else append (a.value, r); if (options) { // Compose the options string. // string s; auto add_bool = [&s] (const char* o, bool v) { if (v) { if (!s.empty ()) s += ' '; s += o; } }; auto add_string = [&s, &append] (const char* o, const string& v) { if (!s.empty ()) s += ' '; s += o; s += ' '; append (v, s); }; auto add_num = [&add_string] (const char* o, auto v) { add_string (o, to_string (v)); }; const pkg_options& o (a.options); add_bool ("--keep-out", o.keep_out ()); add_bool ("--upgrade", o.upgrade ()); add_bool ("--patch", o.patch ()); add_bool ("--immediate", o.immediate ()); add_bool ("--recursive", o.recursive ()); add_bool ("--upgrade-immediate", o.upgrade_immediate ()); add_bool ("--upgrade-recursive", o.upgrade_recursive ()); add_bool ("--patch-immediate", o.patch_immediate ()); add_bool ("--patch-recursive", o.patch_recursive ()); if (o.checkout_root_specified ()) add_string ("--checkout-root", o.checkout_root ().string ()); add_bool ("--checkout-purge", o.checkout_purge ()); if (o.config_id_specified ()) add_num ("--config-id", o.config_id ()); if (o.config_name_specified ()) add_string ("--config-name", o.config_name ()); if (o.config_uuid_specified ()) add_string ("--config-uuid", o.config_uuid ().string ()); // Compose the option/variable group. // if (!s.empty () || !a.config_vars.empty ()) { r += " +{ "; if (!s.empty ()) r += s + ' '; for (const string& v: a.config_vars) { append (v, r); r += ' '; } r += '}'; } } return r; }; vector pkg_args; { // Cache the system stubs to create the imaginary system repository at // the end of the package args parsing. This way we make sure that // repositories searched for available packages during the parsing are // not complemented with the half-cooked imaginary system repository // containing packages that appeared on the command line earlier. // vector> stubs; transaction t (mdb); // Don't fold the zero revision if building the package from source so // that we build the exact X+0 package revision if it is specified. // auto fold_zero_rev = [] (package_scheme sc) { bool r (false); switch (sc) { case package_scheme::none: r = false; break; case package_scheme::sys: r = true; break; } return r; }; // The system package may only be constrained with an exact/wildcard // version. // auto version_only = [] (package_scheme sc) { bool r (false); switch (sc) { case package_scheme::none: r = false; break; case package_scheme::sys: r = true; break; } return r; }; for (pkg_spec& ps: specs) { if (ps.location.empty ()) { // Parse if it is clear that this is the package name/version, // otherwise add unparsed. // const char* s (ps.packages.c_str ()); package_scheme sc (parse_package_scheme (s)); if (sc != package_scheme::none) // Add parsed. { bool sys (sc == package_scheme::sys); package_name n (parse_package_name (s)); optional vc ( parse_package_version_constraint ( s, sys, fold_zero_rev (sc), version_only (sc))); // For system packages not associated with a specific repository // location add the stub package to the imaginary system // repository (see above for details). // if (sys && vc) stubs.push_back (make_shared (n)); pkg_args.push_back (arg_package (*ps.db, sc, move (n), move (vc), move (ps.options), move (ps.config_vars))); } else // Add unparsed. pkg_args.push_back (arg_raw (*ps.db, move (ps.packages), move (ps.options), move (ps.config_vars))); continue; } // Expand the [[]@] spec. Fail if the repository // is not found in this configuration, that can be the case in the // presence of --no-fetch option. // shared_ptr r ( mdb.find (ps.location.canonical_name ())); if (r == nullptr) fail << "repository '" << ps.location << "' does not exist in this configuration"; // If no packages are specified explicitly (the argument starts with // '@' or is a URL) then we select latest versions of all the packages // from this repository. Otherwise, we search for the specified // packages and versions (if specified) or latest versions (if // unspecified) in the repository and its complements (recursively), // failing if any of them are not found. // if (ps.packages.empty ()) // No packages are specified explicitly. { // Collect the latest package versions. // map pvs; for (const repository::fragment_type& rf: r->fragments) { using query = query; for (const auto& rp: mdb.query ( (query::repository_fragment::name == rf.fragment.load ()->name) + order_by_version_desc (query::package::id.version))) { const shared_ptr& p (rp); if (p->stub ()) // Skip stubs. continue; const package_name& nm (p->id.name); if (ps.options.patch ()) { shared_ptr sp ( ps.db->find (nm)); // It seems natural in the presence of --patch option to only // patch the selected packages and not to build new packages if // they are not specified explicitly. // // @@ Note that the dependencies may be held now, that can be // unexpected for the user, who may think "I only asked to // patch the packages". We probably could keep the hold flag // for the patched packages unless --dependency option is // specified explicitly. Sounds like a complication, so // let's see if it ever becomes a problem. // // We still save these package names with the special empty // version to later issue info messages about them. // if (sp == nullptr) { pvs.emplace (nm, version ()); continue; } optional c (patch_constraint (sp)); // Skip the non-patchable selected package. Note that the // warning have already been issued in this case. // // We also skip versions that can not be considered as a // patch for the selected package. // if (!c || !satisfies (p->version, c)) continue; } auto i (pvs.emplace (nm, p->version)); if (!i.second && i.first->second < p->version) i.first->second = p->version; } } // Populate the argument list with the latest package versions. // // Don't move options and variables as they may be reused. // for (auto& pv: pvs) { if (pv.second.empty ()) // Non-existent and so un-patchable? info << "package " << pv.first << " is not present in " << "configuration"; else pkg_args.push_back (arg_package (*ps.db, package_scheme::none, pv.first, version_constraint (pv.second), ps.options, ps.config_vars)); } } else // Packages with optional versions in the coma-separated list. { for (size_t b (0), p; b != string::npos; b = p != string::npos ? p + 1 : p) { // Extract the package. // p = ps.packages.find (',', b); string pkg (ps.packages, b, p != string::npos ? p - b : p); const char* s (pkg.c_str ()); package_scheme sc (parse_package_scheme (s)); bool sys (sc == package_scheme::sys); package_name n (parse_package_name (s)); optional vc ( parse_package_version_constraint ( s, sys, fold_zero_rev (sc), version_only (sc))); // Check if the package is present in the repository and its // complements, recursively. If the version is not specified then // find the latest allowed one. // // Note that for the system package we don't care about its exact // version available from the repository (which may well be a // stub). All we need is to make sure that it is present in the // repository. // bool complements (false); vector> rfs; rfs.reserve (r->fragments.size ()); for (const repository::fragment_type& rf: r->fragments) { shared_ptr fr (rf.fragment.load ()); if (!fr->complements.empty ()) complements = true; rfs.push_back (move (fr)); } optional c; shared_ptr sp; database& pdb (*ps.db); if (!sys) { if (!vc) { if (ps.options.patch () && (sp = pdb.find (n)) != nullptr) { c = patch_constraint (sp); // Skip the non-patchable selected package. Note that the // warning have already been issued in this case. // if (!c) continue; } } else c = vc; } shared_ptr ap ( find_available_one (mdb, n, c, rfs, false /* prereq */).first); // Fail if no available package is found or only a stub is // available and we are building a source package. // if (ap == nullptr || (ap->stub () && !sys)) { diag_record dr (fail); // If the selected package is loaded then we aim to patch it. // if (sp != nullptr) dr << "patch version for " << *sp << pdb << " is not found in " << r->name; else if (ap == nullptr) dr << "package " << pkg << " is not found in " << r->name; else // Is a stub. dr << "package " << pkg << " is not available in source from " << r->name; if (complements) dr << " or its complements"; if (sp == nullptr && ap != nullptr) // Is a stub. dr << info << "specify " << package_string (n, vc, true /* system */) << " if it is available from the system"; } // Note that for a system package the wildcard version will be set // (see arg_package() for details). // if (!vc && !sys) vc = version_constraint (ap->version); // Don't move options and variables as they may be reused. // pkg_args.push_back (arg_package (*ps.db, sc, move (n), move (vc), ps.options, ps.config_vars)); } } } t.commit (); imaginary_stubs = move (stubs); } // List of packages specified on the command line. // vector conf_pkgs; // Separate the packages specified on the command line into to hold and to // up/down-grade as dependencies, and save dependents whose dependencies // must be upgraded recursively. // vector hold_pkgs; dependency_packages dep_pkgs; recursive_packages rec_pkgs; { // Check if the package is a duplicate. Return true if it is but // harmless. // map package_map; auto check_dup = [&package_map, &arg_string, &arg_parsed] (const pkg_arg& pa) -> bool { assert (arg_parsed (pa)); auto r (package_map.emplace (pa.name, pa)); const pkg_arg& a (r.first->second); assert (arg_parsed (a)); // Note that the variable order may matter. // // @@ Later we may relax this and replace one package argument with // another if they only differ with the version constraint and one // constraint satisfies the other. We will also need to carefully // maintain the above *_pkgs lists. // if (!r.second && (a.scheme != pa.scheme || a.name != pa.name || a.db != pa.db || a.constraint != pa.constraint || !compare_options (a.options, pa.options) || a.config_vars != pa.config_vars)) fail << "duplicate package " << pa.name << info << "first mentioned as " << arg_string (r.first->second) << info << "second mentioned as " << arg_string (pa); return !r.second; }; transaction t (mdb); shared_ptr root ( mdb.load ("")); // Here is what happens here: for unparsed package args we are going to // try and guess whether we are dealing with a package archive, package // directory, or package name/version by first trying it as an archive, // then as a directory, and then assume it is name/version. Sometimes, // however, it is really one of the first two but just broken. In this // case things are really confusing since we suppress all diagnostics // for the first two "guesses". So what we are going to do here is // re-run them with full diagnostics if the name/version guess doesn't // pan out. // bool diag (false); for (auto i (pkg_args.begin ()); i != pkg_args.end (); ) { pkg_arg& pa (*i); database& pdb (pa.db); // Reduce all the potential variations (archive, directory, package // name, package name/version) to a single available_package object. // shared_ptr af; shared_ptr ap; if (!arg_parsed (pa)) { const char* package (pa.value.c_str ()); // Is this a package archive? // bool package_arc (false); try { path a (package); if (exists (a)) { if (diag) info << "'" << package << "' does not appear to be a valid " << "package archive: "; package_manifest m ( pkg_verify (o, a, true /* ignore_unknown */, false /* expand_values */, true /* complete_depends */, diag)); // This is a package archive. // // Note that throwing failed from here on will be fatal. // package_arc = true; l4 ([&]{trace << "archive '" << a << "': " << arg_string (pa);}); // Supporting this would complicate things a bit, but we may add // support for it one day. // if (pa.options.dependency ()) fail << "package archive '" << a << "' may not be built as a dependency"; pa = arg_package (pdb, package_scheme::none, m.name, version_constraint (m.version), move (pa.options), move (pa.config_vars)); af = root; ap = make_shared (move (m)); ap->locations.push_back (package_location {root, move (a)}); } } catch (const invalid_path&) { // Not a valid path so cannot be an archive. } catch (const failed&) { // If this is a valid package archive but something went wrong // afterwards, then we are done. // if (package_arc) throw; } // Is this a package directory? // // We used to just check any name which led to some really bizarre // behavior where a sub-directory of the working directory happened // to contain a manifest file and was therefore treated as a package // directory. So now we will only do this test if the name ends with // the directory separator. // size_t pn (strlen (package)); if (pn != 0 && path::traits_type::is_separator (package[pn - 1])) { bool package_dir (false); try { dir_path d (package); if (exists (d)) { if (diag) info << "'" << package << "' does not appear to be a valid " << "package directory: "; package_manifest m ( pkg_verify ( d, true /* ignore_unknown */, [&o, &d] (version& v) { if (optional pv = package_version (o, d)) v = move (*pv); }, diag)); // This is a package directory. // // Note that throwing failed from here on will be fatal. // package_dir = true; l4 ([&]{trace << "directory '" << d << "': " << arg_string (pa);}); // Supporting this would complicate things a bit, but we may // add support for it one day. // if (pa.options.dependency ()) fail << "package directory '" << d << "' may not be built as a dependency"; // Fix-up the package version to properly decide if we need to // upgrade/downgrade the package. // if (optional v = package_iteration (o, pdb, t, d, m.name, m.version, true /* check_external */)) m.version = move (*v); pa = arg_package (pdb, package_scheme::none, m.name, version_constraint (m.version), move (pa.options), move (pa.config_vars)); ap = make_shared (move (m)); af = root; ap->locations.push_back (package_location {root, move (d)}); } } catch (const invalid_path&) { // Not a valid path so cannot be a package directory. } catch (const failed&) { // If this is a valid package directory but something went wrong // afterwards, then we are done. // if (package_dir) throw; } } } // If this was a diagnostics "run", then we are done. // if (diag) throw failed (); // Then it got to be a package name with optional version. // shared_ptr sp; bool patch (false); if (ap == nullptr) { try { if (!arg_parsed (pa)) { const char* package (pa.value.c_str ()); // Make sure that we can parse both package name and version, // prior to saving them into the package arg. // package_name n (parse_package_name (package)); // Don't fold the zero revision so that we build the exact X+0 // package revision, if it is specified. // optional vc ( parse_package_version_constraint ( package, false /* allow_wildcard */, false /* fold_zero_revision */)); pa = arg_package (pdb, package_scheme::none, move (n), move (vc), move (pa.options), move (pa.config_vars)); } l4 ([&]{trace << "package: " << arg_string (pa);}); if (!pa.options.dependency ()) { // Either get the user-specified version or the latest allowed // for a source code package. For a system package we pick the // latest one just to make sure the package is recognized. // optional c; if (!pa.constraint) { assert (!arg_sys (pa)); if (pa.options.patch () && (sp = pdb.find (pa.name)) != nullptr) { c = patch_constraint (sp); // Skip the non-patchable selected package. Note that the // warning have already been issued in this case. // if (!c) { ++i; continue; } patch = true; } } else if (!arg_sys (pa)) c = pa.constraint; auto rp (find_available_one (mdb, pa.name, c, root)); ap = move (rp.first); af = move (rp.second); } } catch (const failed&) { diag = true; continue; } } // We are handling this argument. // if (check_dup (*i++)) continue; // Save (both packages to hold and dependencies) as dependents for // recursive upgrade. // { optional u; optional r; const auto& po (pa.options); if (po.upgrade_immediate ()) { u = true; r = false; } else if (po.upgrade_recursive ()) { u = true; r = true; } else if ( po.patch_immediate ()) { u = false; r = false; } else if ( po.patch_recursive ()) { u = false; r = true; } else if ( po.immediate ()) { u = po.upgrade (); r = false; } else if ( po.recursive ()) { u = po.upgrade (); r = true; } if (r) { l4 ([&]{trace << "stashing recursive package " << arg_string (pa);}); rec_pkgs.push_back (recursive_package {pdb, pa.name, *u, *r}); } } // Add the dependency package to the list. // if (pa.options.dependency ()) { l4 ([&]{trace << "stashing dependency package " << arg_string (pa);}); bool sys (arg_sys (pa)); // Make sure that the package is known. // auto apr (!pa.constraint || sys ? find_available (mdb, pa.name, nullopt) : find_available (mdb, pa.name, *pa.constraint)); if (apr.empty ()) { diag_record dr (fail); dr << "unknown package " << arg_string (pa, false /* options */); check_any_available (mdb, t, &dr); } // Save before the name move. // sp = pdb.find (pa.name); conf_pkgs.emplace_back (pdb, pa.name); dep_pkgs.push_back ( dependency_package {pdb, move (pa.name), move (pa.constraint), move (sp), sys, pa.options.patch (), pa.options.keep_out (), (pa.options.checkout_root_specified () ? move (pa.options.checkout_root ()) : optional ()), pa.options.checkout_purge (), move (pa.config_vars)}); continue; } // Add the held package to the list. // // Load the package that may have already been selected (if not done // yet) and figure out what exactly we need to do here. The end goal // is the available_package object corresponding to the actual // package that we will be building (which may or may not be // the same as the selected package). // if (sp == nullptr) sp = pdb.find (pa.name); if (sp != nullptr && sp->state == package_state::broken) fail << "unable to build broken package " << pa.name << pdb << info << "use 'pkg-purge --force' to remove"; bool found (true); bool sys_advise (false); // If the package is not available from the repository we can try to // create it from the orphaned selected package. Meanwhile that // doesn't make sense for a system package. The only purpose to // configure a system package is to build its dependent. But if the // package is not in the repository then there is no dependent for it // (otherwise the repository would be broken). // if (!arg_sys (pa)) { // If we failed to find the requested package we can still check if // the package name is present in the repositories and if that's the // case to inform a user about the possibility to configure the // package as a system one on failure. Note we still can end up // creating an orphan from the selected package and so succeed. // if (ap == nullptr) { if (pa.constraint && find_available_one (mdb, pa.name, nullopt, root).first != nullptr) sys_advise = true; } else if (ap->stub ()) { sys_advise = true; ap = nullptr; } // If the user constrained the version, then that's what we ought to // be building. // if (pa.constraint) { for (;;) { if (ap != nullptr) // Must be that version, see above. break; // Otherwise, our only chance is that the already selected object // satisfies the version constraint. // if (sp != nullptr && !sp->system () && satisfies (sp->version, pa.constraint)) break; // Derive ap from sp below. found = false; break; } } // // No explicit version was specified by the user (not relevant for a // system package, see above). // else { assert (!arg_sys (pa)); if (ap != nullptr) { assert (!ap->stub ()); // Even if this package is already in the configuration, should // we have a newer version, we treat it as an upgrade request; // otherwise, why specify the package in the first place? We just // need to check if what we already have is "better" (i.e., // newer). // if (sp != nullptr && !sp->system () && ap->version < sp->version) ap = nullptr; // Derive ap from sp below. } else { if (sp == nullptr || sp->system ()) found = false; // Otherwise, derive ap from sp below. } } } else if (ap == nullptr) found = false; if (!found) { // We can always fallback to making available from the selected // package. // assert (!patch); diag_record dr (fail); if (!sys_advise) { dr << "unknown package " << pa.name; // Let's help the new user out here a bit. // check_any_available (mdb, t, &dr); } else { assert (!arg_sys (pa)); dr << arg_string (pa, false /* options */) << " is not available in source"; pa.scheme = package_scheme::sys; dr << info << "specify " << arg_string (pa, false /* options */) << " if it is available from the system"; } } // If the available_package object is still NULL, then it means // we need to get one corresponding to the selected package. // if (ap == nullptr) { assert (sp != nullptr && sp->system () == arg_sys (pa)); auto rp (make_available (o, pdb, sp)); ap = move (rp.first); af = move (rp.second); // Could be NULL (orphan). } // We will keep the output directory only if the external package is // replaced with an external one. Note, however, that at this stage // the available package is not settled down yet, as we still need to // satisfy all the constraints. Thus the available package check is // postponed until the package disfiguring. // bool keep_out (pa.options.keep_out () && sp != nullptr && sp->external ()); // Finally add this package to the list. // // @@ Pass pa.configure_only() when support for package-specific // --configure-only is added. // build_package p { build_package::build, pdb, move (sp), move (ap), move (af), true, // Hold package. pa.constraint.has_value (), // Hold version. {}, // Constraints. arg_sys (pa), keep_out, false, // Configure-only. (pa.options.checkout_root_specified () ? move (pa.options.checkout_root ()) : optional ()), pa.options.checkout_purge (), move (pa.config_vars), {config_package {mdb, ""}}, // Required by (command line). false, // Required by dependents. 0}; // State flags. l4 ([&]{trace << "stashing held package " << p.available_name_version_db ();}); // "Fix" the version the user asked for by adding the constraint. // // Note: for a system package this must always be present (so that // this build_package instance is never replaced). // if (pa.constraint) p.constraints.emplace_back ( mdb, "command line", move (*pa.constraint)); conf_pkgs.emplace_back (p.db, p.name ()); hold_pkgs.push_back (move (p)); } // If this is just pkg-build -u|-p, then we are upgrading all held // packages. // // Should we also upgrade the held packages in the explicitly linked // configurations, recursively? Maybe later and we probably will need a // command line option to enable this behavior. // if (hold_pkgs.empty () && dep_pkgs.empty () && (o.upgrade () || o.patch ())) { using query = query; for (shared_ptr sp: pointer_result ( mdb.query (query::state == "configured" && query::hold_package))) { // Let's skip upgrading system packages as they are, probably, // configured as such for a reason. // if (sp->system ()) continue; const package_name& name (sp->name); optional pc; if (o.patch ()) { pc = patch_constraint (sp); // Skip the non-patchable selected package. Note that the warning // have already been issued in this case. // if (!pc) continue; } auto apr (find_available_one (mdb, name, pc, root)); shared_ptr ap (move (apr.first)); if (ap == nullptr || ap->stub ()) { diag_record dr (fail); dr << name << " is not available"; if (ap != nullptr) dr << " in source" << info << "consider building it as " << package_string (name, version (), true /* system */) << " if it is available from the system"; // Let's help the new user out here a bit. // check_any_available (mdb, t, &dr); } // We will keep the output directory only if the external package is // replaced with an external one (see above for details). // bool keep_out (o.keep_out () && sp->external ()); // @@ Pass pa.configure_only() when support for package-specific // --configure-only is added. // build_package p { build_package::build, mdb, move (sp), move (ap), move (apr.second), true, // Hold package. false, // Hold version. {}, // Constraints. false, // System package. keep_out, false, // Configure-only. nullopt, // Checkout root. false, // Checkout purge. strings (), // Configuration variables. {config_package {mdb, ""}}, // Required by (command line). false, // Required by dependents. 0}; // State flags. l4 ([&]{trace << "stashing held package " << p.available_name_version_db ();}); hold_pkgs.push_back (move (p)); // If there are also -i|-r, then we are also upgrading dependencies // of all held packages. // if (o.immediate () || o.recursive ()) rec_pkgs.push_back ( recursive_package {mdb, name, o.upgrade (), o.recursive ()}); } } t.commit (); } if (hold_pkgs.empty () && dep_pkgs.empty ()) { assert (rec_pkgs.empty ()); info << "nothing to build"; return 0; } // Search for the package prerequisite among packages specified on the // command line and, if found, return its desired database. Return NULL // otherwise. The `db` argument specifies the dependent database. // // Note that the semantics of a package specified on the command line is: // build the package in the specified configuration (current by default) // and repoint all dependents in the current configuration of this // prerequisite to this new prerequisite. Thus, the function always // returns NULL for dependents not in the current configuration. // // Also note that we rely on "small function object" optimization here. // const function find_prereq_database ( [&conf_pkgs] (database& db, const package_name& nm, bool buildtime) -> database* { if (db.main ()) { auto i (find_if (conf_pkgs.begin (), conf_pkgs.end (), [&nm] (const config_package& i) { return i.name == nm; })); if (i != conf_pkgs.end () && i->db.type == dependency_type (db, nm, buildtime)) return &i->db; } return nullptr; }); // Assemble the list of packages we will need to build-to-hold, still used // dependencies to up/down-grade, and unused dependencies to drop. We call // this the plan. // // The way we do it is tricky: we first create the plan based on build-to- // holds (i.e., the user selected). Next, to decide whether we need to // up/down-grade or drop any dependecies we need to take into account an // existing state of the package database plus the changes that would be // made to it once we executed the plan (think about it: when the user // says "I want to upgrade a package and all its dependencies", they want // to upgrade dependencies that are still used after upgrading the // package, not those that were used before by the old version). // // As you can probably imagine, figuring out the desired state of the // dependencies based on the current package database and to-be-executed // plan won't be an easy task. So instead what we are going to do is // simulate the plan execution by only applying it to the package database // (but not to the filesystem/packages themselves). We then use this // simulated database as the sole (and convenient) source of the // dependency information (i.e., which packages are still used and by // whom) to decide which dependencies we need to upgrade, downgrade, or // drop. Once this is done, we rollback the database (and reload any // in-memory objects that might have changed during the simulation) and // add the up/down-grades and drops to the plan. // // Of course, adding dependency up/down-grade to the plan can change the // plan. For example, a new version of a dependency we are upgrading may // force an upgrade of one of the packages from the user selected. And // that, in turn, can pretty much rewrite the plan entirely (including // rendering our earlier decisions about up/down-grades/drops of other // dependencies invalid). // // So what we have to do is refine the plan over several iterations. // Specifically, if we added a new up/down-grade/drop, then we need to // re-simulate this plan and (1) re-example if any new dependencies now // need up/down-grade/drop and, this one is tricky, (2) that none of the // already made decisions have changed. If we detect (2), then we need to // cancel all such decisions and also rebuild the plan from scratch. The // intuitive feeling here is that this process will discover an up/down- // grade order where any subsequent entry does not affect the decision of // the previous ones. // // Package managers are an easy, already solved problem, right? // build_packages pkgs; { struct dep { reference_wrapper db; package_name name; // Empty if up/down-grade. // Both are NULL if drop. // shared_ptr available; shared_ptr repository_fragment; bool system; }; vector deps; // Map the repointed dependents to the replacement flags (see // repointed_dependents for details). // // Note that the overall plan is to add the replacement prerequisites to // the repointed dependents prerequisites sets at the beginning of the // refinement loop iteration and remove them right before the plan // execution simulation. This will allow the collecting/ordering // functions to see both kinds of prerequisites (being replaced and // their replacements) and only consider one kind or another or both, as // appropriate. // repointed_dependents rpt_depts; { transaction t (mdb); using query = query; query q (query::state == "configured"); for (shared_ptr sp: pointer_result (mdb.query (q))) { map ps; // Old/new prerequisites. for (const auto& p: sp->prerequisites) { database& db (p.first.database ()); const package_name& name (p.first.object_id ()); auto i (find_if (conf_pkgs.begin (), conf_pkgs.end (), [&name] (const config_package& i) { return i.name == name; })); // Only consider a prerequisite if its new configuration is of the // same type as an old one. // if (i != conf_pkgs.end () && i->db != db && i->db.type == db.type) { ps.emplace (config_package {i->db, name}, true); ps.emplace (config_package { db, name}, false); } } if (!ps.empty ()) rpt_depts.emplace (move (sp), move (ps)); } t.commit (); } // Iteratively refine the plan with dependency up/down-grades/drops. // for (bool refine (true), scratch (true); refine; ) { l4 ([&]{trace << "refining execution plan" << (scratch ? " from scratch" : "");}); transaction t (mdb); // Temporarily add the replacement prerequisites to the repointed // dependent prerequisites sets and persist the changes. // // Note that we don't copy the prerequisite constraints into the // replacements, since they are unused in the collecting/ordering // logic. // for (auto& rd: rpt_depts) { const shared_ptr& sp (rd.first); for (const auto& prq: rd.second) { if (prq.second) // Prerequisite replacement? { const config_package& cp (prq.first); auto i (sp->prerequisites.emplace ( lazy_shared_ptr (cp.db, cp.name), nullopt)); // The selected package should only contain the old // prerequisites at this time, so adding a replacement should // always succeed. // assert (i.second); } } mdb.update (sp); } // Private configurations that were created during collection of the // package builds. // // Note that the private configurations are linked to their parent // configurations right after being created, so that the subsequent // collecting, ordering, and plan execution simulation logic can use // them. However, we can not easily commit these changes at some // point, since there could also be some other changes made to the // database which needs to be rolled back at the end of the refinement // iteration. // // Thus, the plan is to collect configurations where the private // configurations were created and, after the transaction is rolled // back, re-link these configurations and persist the changes using // the new transaction. // private_configs priv_cfgs; build_packages::postponed_packages postponed; if (scratch) { pkgs.clear (); // Pre-enter dependencies to keep track of the desired versions and // options specified on the command line. In particular, if the // version is specified and the dependency is used as part of the // plan, then the desired version must be used. We also need it to // distinguish user-driven dependency up/down-grades from the // dependent-driven ones, not to warn/refuse. // // Also, if a dependency package already has selected package that // is held, then we need to unhold it. // for (const dependency_package& p: dep_pkgs) { build_package bp { nullopt, // Action. p.db, nullptr, // Selected package. nullptr, // Available package/repository frag. nullptr, false, // Hold package. p.constraint.has_value (), // Hold version. {}, // Constraints. p.system, p.keep_out, false, // Configure-only. p.checkout_root, p.checkout_purge, p.config_vars, {config_package {mdb, ""}}, // Required by (command line). false, // Required by dependents. 0}; // State flags. if (p.constraint) bp.constraints.emplace_back ( mdb, "command line", *p.constraint); pkgs.enter (p.name, move (bp)); } // Pre-collect user selection to make sure dependency-forced // up/down-grades are handled properly (i.e., the order in which we // specify packages on the command line does not matter). // for (const build_package& p: hold_pkgs) pkgs.collect_build (o, p, find_prereq_database, rpt_depts, priv_cfgs); // Collect all the prerequisites of the user selection. // for (const build_package& p: hold_pkgs) pkgs.collect_build_prerequisites (o, p.db, p.name (), postponed, find_prereq_database, rpt_depts, priv_cfgs); // Note that we need to collect unheld after prerequisites, not to // overwrite the pre-entered entries before they are used to provide // additional constraints for the collected prerequisites. // for (const dependency_package& p: dep_pkgs) { if (p.selected != nullptr && p.selected->hold_package) pkgs.collect_unhold (p.db, p.selected); } // Collect dependents whose dependencies need to be repointed to // packages from different configurations. // pkgs.collect_repointed_dependents (o, mdb, rpt_depts, postponed, find_prereq_database, priv_cfgs); scratch = false; } else pkgs.clear_order (); // Only clear the ordered list. // Add to the plan dependencies to up/down-grade/drop that were // discovered on the previous iterations. // for (const dep& d: deps) { database& ddb (d.db); if (d.available == nullptr) { pkgs.collect_drop (ddb, ddb.load (d.name)); } else { shared_ptr sp ( ddb.find (d.name)); // We will keep the output directory only if the external package // is replaced with an external one (see above for details). // bool keep_out (o.keep_out () && sp->external ()); // Marking upgraded dependencies as "required by command line" may // seem redundant as they should already be pre-entered as such // (see above). But remember dependencies upgraded with -i|-r? // Note that the required_by data member should never be empty, as // it is used in prompts/diagnostics. // build_package p { build_package::build, ddb, move (sp), d.available, d.repository_fragment, nullopt, // Hold package. nullopt, // Hold version. {}, // Constraints. d.system, keep_out, false, // Configure-only. nullopt, // Checkout root. false, // Checkout purge. strings (), // Configuration variables. {config_package {mdb, ""}}, // Required by (command line). false, // Required by dependents. 0}; // State flags. pkgs.collect_build (o, move (p), find_prereq_database, rpt_depts, priv_cfgs, &postponed /* recursively */); } } // Handle the (combined) postponed collection. // if (!postponed.empty ()) pkgs.collect_build_postponed (o, postponed, find_prereq_database, rpt_depts, priv_cfgs); // Now that we have collected all the package versions that we need to // build, arrange them in the "dependency order", that is, with every // package on the list only possibly depending on the ones after // it. Iterate over the names we have collected on the previous step // in reverse so that when we iterate over the packages (also in // reverse), things will be built as close as possible to the order // specified by the user (it may still get altered if there are // dependencies between the specified packages). // // The order of dependency upgrades/downgrades/drops is not really // deterministic. We, however, do them before hold_pkgs so that they // appear (e.g., on the plan) last. // for (const dep& d: deps) pkgs.order (d.db, d.name, nullopt /* buildtime */, find_prereq_database, false /* reorder */); for (const build_package& p: reverse_iterate (hold_pkgs)) pkgs.order (p.db, p.name (), nullopt /* buildtime */, find_prereq_database); for (const auto& rd: rpt_depts) pkgs.order (mdb, rd.first->name, nullopt /* buildtime */, find_prereq_database, false /* reorder */); // Collect and order all the dependents that we will need to // reconfigure because of the up/down-grades of packages that are now // on the list. // pkgs.collect_order_dependents (rpt_depts); // And, finally, make sure all the packages that we need to unhold // are on the list. // for (const dependency_package& p: dep_pkgs) { if (p.selected != nullptr && p.selected->hold_package) pkgs.order (p.db, p.name, nullopt /* buildtime */, find_prereq_database, false /* reorder */); } // Now, as we are done with package builds collecting/ordering, erase // the replacements from the repointed dependents prerequisite sets // and persist the changes. // for (auto& rd: rpt_depts) { const shared_ptr& sp (rd.first); for (const auto& prq: rd.second) { if (prq.second) // Prerequisite replacement? { const config_package& cp (prq.first); size_t n (sp->prerequisites.erase ( lazy_shared_ptr (cp.db, cp.name))); // The selected package should always contain the prerequisite // replacement at this time, so its removal should always // succeed. // assert (n == 1); } } mdb.update (sp); } // We are about to execute the plan on the database (but not on the // filesystem / actual packages). Save the session state for the // selected_package objects so that we can restore it later (see // below for details). // using selected_packages = session::object_map; auto sp_session = [] (const auto& tm) -> selected_packages* { auto i (tm.find (&typeid (selected_package))); return (i != tm.end () ? &static_cast (*i->second) : nullptr); }; map old_sp; for (const auto& dps: ses.map ()) { if (const selected_packages* sps = sp_session (dps.second)) old_sp.emplace (dps.first, *sps); } // Note that we need to perform the execution on the copies of the // build/drop_package objects to preserve the original ones. The // selected_package objects will still be changed so we will reload // them afterwards (see below). // // After the plan execution simulation, save the packages being built // (selected non-system packages) for the subsequent dependency // hierarchies verification. // bool changed; vector>> build_pkgs; { vector tmp (pkgs.begin (), pkgs.end ()); build_package_list bl (tmp.begin (), tmp.end ()); changed = execute_plan (o, bl, true /* simulate */, find_prereq_database); if (changed) { for (build_package& p: bl) { shared_ptr& sp (p.selected); if (sp != nullptr) { if (!sp->system ()) build_pkgs.emplace_back (p.db, move (sp)); } else assert (p.action && *p.action == build_package::drop); } } } // Return nullopt if no changes to the dependency are necessary. This // value covers both the "no change is required" and the "no // recommendation available" cases. // auto eval_dep = [&dep_pkgs, &rec_pkgs] ( database& db, const shared_ptr& sp, bool ignore_unsatisfiable = true) -> optional { optional r; // See if there is an optional dependency upgrade recommendation. // if (!sp->hold_package) r = evaluate_dependency (db, sp, dep_pkgs, ignore_unsatisfiable); // If none, then see for the recursive dependency upgrade // recommendation. // // Let's skip upgrading system packages as they are, probably, // configured as such for a reason. // if (!r && !sp->system () && !rec_pkgs.empty ()) r = evaluate_recursive (db, sp, rec_pkgs, ignore_unsatisfiable); // Translate the "no change" result to nullopt. // return r && r->available == nullptr && !r->unused ? nullopt : r; }; // The empty version means that the package must be dropped. // const version ev; auto target_version = [&ev] (database& db, const shared_ptr& ap, bool sys) -> const version& { if (ap == nullptr) return ev; if (sys) { assert (ap->system_version (db) != nullptr); return *ap->system_version (db); } return ap->version; }; // Verify that none of the previously-made upgrade/downgrade/drop // decisions have changed. // for (auto i (deps.begin ()); i != deps.end (); ) { bool s (false); database& db (i->db); // Here we scratch if evaluate changed its mind or if the resulting // version doesn't match what we expect it to be. // if (auto sp = db.find (i->name)) { const version& dv (target_version (db, i->available, i->system)); if (optional r = eval_dep (db, sp)) s = dv != target_version (db, r->available, r->system) || i->system != r->system; else s = dv != sp->version || i->system != sp->system (); } else s = i->available != nullptr; if (s) { scratch = true; // Rebuild the plan from scratch. i = deps.erase (i); } else ++i; } // If the execute_plan() call was noop, there are no user expectations // regarding any dependency, and no upgrade is requested, then the // only possible refinement outcome can be recommendations to drop // unused dependencies (that the user has refused to drop on the // previous build or drop command run). Thus, if the --keep-unused|-K // or --no-refinement option is also specified, then we omit the // need_refinement() call altogether and assume that no refinement is // required. // if (!changed && dep_pkgs.empty () && rec_pkgs.empty ()) { assert (!scratch); // No reason to change any previous decision. if (o.keep_unused () || o.no_refinement ()) refine = false; } if (!scratch && refine) { // First, we check if the refinement is required, ignoring the // unsatisfiable dependency version constraints. If we end up // refining the execution plan, such dependencies might be dropped, // and then there will be nothing to complain about. When no more // refinements are necessary we will run the diagnostics check, to // make sure that the unsatisfiable dependency, if left, is // reported. // auto need_refinement = [&eval_dep, &deps, &rec_pkgs, &mdb, &o] ( bool diag = false) -> bool { // Examine the new dependency set for any up/down-grade/drops. // bool r (false); // Presumably no more refinements are necessary. using query = query; query q (query::state == "configured"); if (rec_pkgs.empty ()) q = q && !query::hold_package; // It seems right to only evaluate dependencies in the explicitly // linked configurations, recursively. Indeed, we shouldn't be // up/down-grading or dropping packages in configurations that // only contain dependents, some of which we may only reconfigure. // for (database& ldb: mdb.dependency_configs ()) { for (shared_ptr sp: pointer_result (ldb.query (q))) { if (optional er = eval_dep (ldb, sp, !diag)) { // Skip unused if we were instructed to keep them. // if (o.keep_unused () && er->available == nullptr) continue; if (!diag) deps.push_back (dep {er->db, sp->name, move (er->available), move (er->repository_fragment), er->system}); r = true; } } } return r; }; refine = need_refinement (); if (!refine) need_refinement (true /* diag */); } // Note that we prevent building multiple instances of the same // package dependency in different configurations (of the same type) // while creating the build plan. However, we may potentially end up // with the same dependency in multiple configurations since we do not // descend into prerequisites of already configured packages which // require no up/downgrade. // // To prevent this, we additionally verify that none of the dependency // hierarchies of the packages being built contains the same runtime // dependency, built in multiple configurations. // // Note that we also fail for a system dependency configured in // multiple configurations, since these configurations can potentially // be configured differently and so these system packages can refer to // different targets. // if (changed && !refine) { // Verify the specified package dependency hierarchy and return the // set of packages plus their runtime dependencies, including // indirect ones. Fail if a dependency cycle is detected. // // Also add the result into the `package_prereqs` map, to use it as // a cache and for subsequent additional dependency verification. // // Note that all the encountered dependency sub-hierarchies that // reside in configurations of different types (or beneath them) are // also verified but not included into the resulting set. // using prerequisites = set, compare_lazy_ptr_id>; map package_prereqs; small_vector chain; auto verify_dependencies = [&package_prereqs, &chain] (database& db, shared_ptr sp, const auto& verify_dependencies) -> const prerequisites& { // Return the cached value, if present. // config_package cp {db, sp->name}; { auto i (package_prereqs.find (cp)); if (i != package_prereqs.end ()) return i->second; } // Make sure there is no dependency cycle. // config_selected_package csp {db, sp}; { auto i (find (chain.begin (), chain.end (), csp)); if (i != chain.end ()) { diag_record dr (fail); dr << "dependency cycle detected involving package " << *sp << db; // Note: push_back() can invalidate the iterator. // size_t j (i - chain.begin ()); for (chain.push_back (csp); j != chain.size () - 1; ++j) dr << info << *chain[j].package << chain[j].db << " depends on " << *chain[j + 1].package << chain[j + 1].db; } } chain.push_back (csp); // Verify all prerequisites, but only collect those corresponding // to the runtime dependencies. // // Indeed, we don't care if a linked host configuration contains a // configured package that we also have configured in our target // configuration. It's also fine if some of our runtime // dependencies from different configurations build-time depend on // the same package (of potentially different versions) configured // in different host configurations. // // Note, however, that we cannot easily determine if the // prerequisite corresponds to the runtime or build-time // dependency, since we only store its version constraint. The // current implementation relies on the fact that the build-time // dependency configuration type (host or build2) differs from the // dependent configuration type (target is a common case) and // doesn't work well, for example, for the self-hosted // configurations. For them it can fail erroneously. We can // potentially fix that by additionally storing the build-time // flag besides the version constraint. However, let's first see // if it ever becomes a problem. // prerequisites r; const package_prerequisites& prereqs (sp->prerequisites); for (const auto& prereq: prereqs) { const lazy_shared_ptr& p (prereq.first); database& pdb (p.database ()); // Validate prerequisite sub-hierarchy also in configuration of // different type but do not collect it. // const prerequisites& ps ( verify_dependencies (pdb, p.load (), verify_dependencies)); if (pdb.type != db.type) continue; // Collect prerequisite sub-hierarchy, checking that none of the // packages are already collected. // for (const lazy_shared_ptr& p: ps) { // Note: compare_id_lazy_ptr only considers package names. // auto i (r.find (p)); if (i != r.end ()) { database& db1 (p.database ()); database& db2 (i->database ()); if (db1 != db2) { bool indirect (prereqs.find (p) == prereqs.end ()); fail << "package " << p.object_id () << (indirect ? " indirectly" : "") << " required by " << *sp << db << " is configured in multiple " << "configurations" << info << *p.load () << db1 << info << *i->load () << db2; } } else r.insert (p); } } chain.pop_back (); // Collect the dependent package itself. // r.insert (lazy_shared_ptr (db, move (sp))); // Cache the resulting package prerequisites set and return a // reference to it. // auto j (package_prereqs.emplace (move (cp), move (r))); assert (j.second); // A package cannot depend on itself. return j.first->second; }; for (auto& p: build_pkgs) verify_dependencies (p.first, move (p.second), verify_dependencies); // Now, verify that none of the build2 modules may simultaneously be // built in multiple configurations, accross all (potentially // unrelated) dependency trees. // // For that we use the `package_prereqs` map: its key set refers to // all the packages potentially involved into the build (explicitly // or implicitly). // { map build2_mods; for (const auto& pp: package_prereqs) { const config_package& cp (pp.first); // Skip packages other than the build2 modules. // if (!build2_module (cp.name)) continue; // Skip build2 modules configured as system. // { shared_ptr sp ( cp.db.find (cp.name)); assert (sp != nullptr); if (sp->system ()) continue; } auto i (build2_mods.emplace (cp.name, cp.db)); if (!i.second) { database& db (i.first->second); // The `package_prereqs` map can only contain the same package // twice if databases differ. // assert (db != cp.db); fail << "building build system module " << cp.name << " in " << "multiple configurations" << info << db.config_orig << info << cp.db.config_orig; } } } } // Rollback the changes to the database and reload the changed // selected_package objects. // t.rollback (); { transaction t (mdb); // First reload all the selected_package object that could have been // modified (conceptually, we should only modify what's on the // plan). And in case of drop the object is removed from the session // so we need to bring it back. // // Make sure that selected packages are only owned by the session // and the build package list. // build_pkgs.clear (); // Note: we use the original pkgs list since the executed ones may // contain newly created (but now gone) selected_package objects. // for (build_package& p: pkgs) { assert (p.action); database& pdb (p.db); if (*p.action == build_package::drop) { assert (p.selected != nullptr); ses.cache_insert ( pdb, p.selected->name, p.selected); } if (p.selected != nullptr) pdb.reload (*p.selected); } // Now remove all the newly created selected_package objects from // the session. The tricky part is to distinguish newly created ones // from newly loaded (and potentially cached). // for (bool rescan (true); rescan; ) { rescan = false; for (const auto& dps: ses.map ()) { if (selected_packages* sps = sp_session (dps.second)) { auto j (old_sp.find (dps.first)); // Find the database. // Note that if a database has been introduced only during // simulation, then we could just clear all its selected // packages in one shot. Let's however, be cautious and remove // them iteratively to make sure that none of them are left at // the end (no more rescan is necessary). If any of them is // left, then that would mean that is is referenced from // somewhere besides the session object, which would be a bug. // if (j == old_sp.end ()) { if (!sps->empty ()) { for (auto i (sps->begin ()); i != sps->end (); ) { if (i->second.use_count () == 1) { // This might cause another object's use count to drop. // i = sps->erase (i); rescan = true; } else ++i; } } continue; } const selected_packages& osp (j->second); for (auto i (sps->begin ()); i != sps->end (); ) { bool erased (false); auto j (osp.find (i->first)); if (j == osp.end ()) { if (i->second.use_count () == 1) { // This might cause another object's use count to drop. // i = sps->erase (i); erased = true; rescan = true; } } // It may also happen that the object was erased from the // database and then recreated. In this case we restore the // pointer that is stored in the session. // else if (i->second != j->second) { // This might cause another object's use count to drop. // i->second = j->second; rescan = true; } if (!erased) ++i; } } } // Verify that all the selected packages of the newly introduced // during simulation databases are erased (see above for the // verification reasoning). // if (!rescan) { for (const auto& dps: ses.map ()) { if (const selected_packages* sps = sp_session (dps.second)) { if (old_sp.find (dps.first) == old_sp.end ()) assert (sps->empty ()); } } } } // Re-link the private configurations that were created during the // collection of the package builds with their parent // configurations. Note that these links were lost on the previous // transaction rollback. // for (const pair& pc: priv_cfgs) cfg_link (pc.first, pc.first.config / pc.second, true /* relative */, nullopt /* name */, true /* sys_rep */); t.commit (); } } } // Print what we are going to do, then ask for the user's confirmation. // While at it, detect if we have any dependents that the user may want to // update. // bool update_dependents (false); // We need the plan and to ask for the user's confirmation only if some // implicit action (such as building prerequisite or reconfiguring // dependent package) is to be taken or there is a selected package which // version must be changed. But if the user explicitly requested it with // --plan, then we print it as long as it is not empty. // string plan; bool need_prompt (false); if (o.print_only () || !o.yes () || o.plan_specified ()) { bool first (true); // First entry in the plan. for (const build_package& p: reverse_iterate (pkgs)) { database& pdb (p.db); const shared_ptr& sp (p.selected); string act; assert (p.action); if (*p.action == build_package::drop) { act = "drop " + sp->string (pdb) + " (unused)"; need_prompt = true; } else { string cause; if (*p.action == build_package::adjust) { assert (sp != nullptr && (p.reconfigure () || p.unhold ())); // This is a dependent needing reconfiguration. // // This is an implicit reconfiguration which requires the plan to // be printed. Will flag that later when composing the list of // prerequisites. // if (p.reconfigure ()) { act = "reconfigure"; cause = "dependent of"; if (!o.configure_only ()) update_dependents = true; } // This is a held package needing unhold. // if (p.unhold ()) { if (act.empty ()) act = "unhold"; else act += "/unhold"; } act += ' ' + sp->name.string (); string s (pdb.string ()); if (!s.empty ()) act += ' ' + s; } else { // Even if we already have this package selected, we have to // make sure it is configured and updated. // if (sp == nullptr) act = p.system ? "configure" : "new"; else if (sp->version == p.available_version ()) { // If this package is already configured and is not part of the // user selection (or we are only configuring), then there is // nothing we will be explicitly doing with it (it might still // get updated indirectly as part of the user selection update). // if (!p.reconfigure () && sp->state == package_state::configured && (!p.user_selection () || o.configure_only () || p.configure_only ())) continue; act = p.system ? "reconfigure" : (p.reconfigure () ? (o.configure_only () || p.configure_only () ? "reconfigure" : "reconfigure/update") : "update"); } else { act = p.system ? "reconfigure" : sp->version < p.available_version () ? "upgrade" : "downgrade"; need_prompt = true; } if (p.unhold ()) act += "/unhold"; act += ' ' + p.available_name_version_db (); cause = p.required_by_dependents ? "required by" : "dependent of"; if (p.configure_only ()) update_dependents = true; } string rb; if (!p.user_selection ()) { for (const config_package& cp: p.required_by) rb += ' ' + cp.string (); // If not user-selected, then there should be another (implicit) // reason for the action. // assert (!rb.empty ()); need_prompt = true; } if (!rb.empty ()) act += " (" + cause + rb + ')'; } if (first) { // If the plan header is not empty, now is the time to print it. // if (!o.plan ().empty ()) { if (o.print_only ()) cout << o.plan () << endl; else plan += o.plan (); } first = false; } if (o.print_only ()) cout << act << endl; else // Print indented for better visual separation. // plan += (plan.empty () ? " " : "\n ") + act; } } if (o.print_only ()) return 0; if (need_prompt || (o.plan_specified () && !plan.empty ())) text << plan; // Ask the user if we should continue. // if (!(o.yes () || !need_prompt || yn_prompt ("continue? [Y/n]", 'y'))) return 1; // Figure out if we also should update dependents. // if (o.leave_dependent ()) update_dependents = false; else if (o.yes () || o.update_dependent ()) update_dependents = true; else if (update_dependents) // Don't prompt if there aren't any. update_dependents = yn_prompt ("update dependent packages? [Y/n]", 'y'); // Ok, we have "all systems go". The overall action plan is as follows. // // 1. disfigure up/down-graded, reconfigured [left to right] // 2. purge up/down-graded [right to left] // 3.a fetch/unpack new, up/down-graded // 3.b checkout new, up/down-graded // 4. configure all // 5. unhold unheld // 6. build user selection [right to left] // // Note that for some actions, e.g., purge or fetch, the order is not // really important. We will, however, do it right to left since that // is the order closest to that of the user selection. // // We are also going to combine purge and fetch/unpack|checkout into a // single step and use the replace mode so it will become just // fetch/unpack|checkout. // // We also have the dependent packages that we reconfigure because their // prerequsites got upgraded/downgraded and that the user may want to in // addition update (that update_dependents flag above). // execute_plan (o, pkgs, false /* simulate */, find_prereq_database); if (o.configure_only ()) return 0; // update // // Here we want to update all the packages at once, to facilitate // parallelism. // vector upkgs; // First add the user selection. // for (const build_package& p: reverse_iterate (pkgs)) { assert (p.action); if (*p.action != build_package::build || p.configure_only ()) continue; database& db (p.db); const shared_ptr& sp (p.selected); if (!sp->system () && // System package doesn't need update. p.user_selection ()) upkgs.push_back (pkg_command_vars {db.config_orig, db.main (), sp, strings () /* vars */, false /* cwd */}); } // Then add dependents. We do it as a separate step so that they are // updated after the user selection. // if (update_dependents) { for (const build_package& p: reverse_iterate (pkgs)) { assert (p.action); database& db (p.db); if ((*p.action == build_package::adjust && p.reconfigure ()) || (*p.action == build_package::build && (p.flags & build_package::build_repoint) != 0)) upkgs.push_back (pkg_command_vars {db.config_orig, db.main (), p.selected, strings () /* vars */, false /* cwd */}); } } pkg_update (o, o.for_ (), strings (), upkgs); if (verb && !o.no_result ()) { for (const pkg_command_vars& pv: upkgs) text << "updated " << pv.string (); } return 0; } static bool execute_plan (const pkg_build_options& o, build_package_list& build_pkgs, bool simulate, const function& fdb) { tracer trace ("execute_plan"); l4 ([&]{trace << "simulate: " << (simulate ? "yes" : "no");}); bool r (false); uint16_t verbose (!simulate ? verb : 0); // disfigure // for (build_package& p: build_pkgs) { // We are only interested in configured packages that are either being // up/down-graded, need reconfiguration (e.g., dependents), or dropped. // assert (p.action); if (*p.action != build_package::drop && !p.reconfigure ()) continue; database& pdb (p.db); shared_ptr& sp (p.selected); // Each package is disfigured in its own transaction, so that we // always leave the configuration in a valid state. // transaction t (pdb, !simulate /* start */); // Reset the flag if the package being unpacked is not an external one. // if (p.keep_out && !simulate) { const shared_ptr& ap (p.available); const package_location& pl (ap->locations[0]); if (pl.repository_fragment.object_id () == "") // Special root. p.keep_out = !exists (pl.location); // Directory case. else { p.keep_out = false; // See if the package comes from the directory-based repository, and // so is external. // // Note that such repository fragments are always preferred over // others (see below). // for (const package_location& l: ap->locations) { if (l.repository_fragment.load ()->location.directory_based ()) { p.keep_out = true; break; } } } } // Commits the transaction. // pkg_disfigure (o, pdb, t, sp, !p.keep_out, simulate); r = true; assert (sp->state == package_state::unpacked || sp->state == package_state::transient); if (verbose && !o.no_result ()) text << (sp->state == package_state::transient ? "purged " : "disfigured ") << *sp << pdb; // Selected system package is now gone from the database. Before we drop // the object we need to make sure the hold state is preserved in the // package being reconfigured. // if (sp->state == package_state::transient) { if (!p.hold_package) p.hold_package = sp->hold_package; if (!p.hold_version) p.hold_version = sp->hold_version; sp = nullptr; } } // purge, fetch/unpack|checkout // for (build_package& p: reverse_iterate (build_pkgs)) { assert (p.action); database& pdb (p.db); shared_ptr& sp (p.selected); const shared_ptr& ap (p.available); // Purge the dropped or system package, fetch/unpack or checkout the // other one. // for (;;) // Breakout loop. { if (*p.action == build_package::drop) { // Note that the selected system package is gone once disfigured // (see above). // if (sp != nullptr) { assert (!sp->system ()); transaction t (pdb, !simulate /* start */); pkg_purge (pdb, t, sp, simulate); // Commits the transaction. r = true; if (verbose && !o.no_result ()) text << "purged " << *sp << pdb; sp = nullptr; } break; } if (*p.action == build_package::adjust) // Skip adjustments. { assert (ap == nullptr); break; } assert (ap != nullptr); // System package should not be fetched, it should only be configured // on the next stage. Here we need to purge selected non-system package // if present. Before we drop the object we need to make sure the hold // state is preserved for the package being reconfigured. // if (p.system) { if (sp != nullptr && !sp->system ()) { transaction t (pdb, !simulate /* start */); pkg_purge (pdb, t, sp, simulate); // Commits the transaction. r = true; if (verbose && !o.no_result ()) text << "purged " << *sp << pdb; if (!p.hold_package) p.hold_package = sp->hold_package; if (!p.hold_version) p.hold_version = sp->hold_version; sp = nullptr; } break; } // Fetch or checkout if this is a new package or if we are // up/down-grading. // if (sp == nullptr || sp->version != p.available_version ()) { sp = nullptr; // For the directory case below. // Distinguish between the package and archive/directory cases. // const package_location& pl (ap->locations[0]); // Got to have one. if (pl.repository_fragment.object_id () != "") // Special root? { transaction t (pdb, !simulate /* start */); // Go through package repository fragments to decide if we should // fetch, checkout or unpack depending on the available repository // basis. Preferring a local one over the remotes and the dir // repository type over the others seems like a sensible thing to // do. // optional basis; for (const package_location& l: ap->locations) { const repository_location& rl ( l.repository_fragment.load ()->location); if (!basis || rl.local ()) // First or local? { basis = rl.basis (); if (rl.directory_based ()) break; } } assert (basis); // All calls commit the transaction. // switch (*basis) { case repository_basis::archive: { sp = pkg_fetch (o, pdb, t, ap->id.name, p.available_version (), true /* replace */, simulate); break; } case repository_basis::version_control: { sp = p.checkout_root ? pkg_checkout (o, pdb, t, ap->id.name, p.available_version (), *p.checkout_root, true /* replace */, p.checkout_purge, simulate) : pkg_checkout (o, pdb, t, ap->id.name, p.available_version (), true /* replace */, simulate); break; } case repository_basis::directory: { sp = pkg_unpack (o, pdb, t, ap->id.name, p.available_version (), true /* replace */, simulate); break; } } } // Directory case is handled by unpack. // else if (exists (pl.location)) { transaction t (pdb, !simulate /* start */); sp = pkg_fetch ( o, pdb, t, pl.location, // Archive path. true, // Replace false, // Don't purge; commits the transaction. simulate); } if (sp != nullptr) // Actually fetched or checked out something? { r = true; assert (sp->state == package_state::fetched || sp->state == package_state::unpacked); if (verbose && !o.no_result ()) { const repository_location& rl (sp->repository_fragment); repository_basis basis ( !rl.empty () ? rl.basis () : repository_basis::archive); // Archive path case. diag_record dr (text); switch (basis) { case repository_basis::archive: { assert (sp->state == package_state::fetched); dr << "fetched " << *sp << pdb; break; } case repository_basis::directory: { assert (sp->state == package_state::unpacked); dr << "using " << *sp << pdb << " (external)"; break; } case repository_basis::version_control: { assert (sp->state == package_state::unpacked); dr << "checked out " << *sp << pdb; break; } } } } } // Unpack if required. Note that the package can still be NULL if this // is the directory case (see the fetch code above). // if (sp == nullptr || sp->state == package_state::fetched) { if (sp != nullptr) { transaction t (pdb, !simulate /* start */); // Commits the transaction. // sp = pkg_unpack (o, pdb, t, ap->id.name, simulate); if (verbose && !o.no_result ()) text << "unpacked " << *sp << pdb; } else { const package_location& pl (ap->locations[0]); assert (pl.repository_fragment.object_id () == ""); // Special root. transaction t (pdb, !simulate /* start */); sp = pkg_unpack (o, pdb, t, path_cast (pl.location), true, // Replace. false, // Don't purge; commits the transaction. simulate); if (verbose && !o.no_result ()) text << "using " << *sp << pdb << " (external)"; } r = true; assert (sp->state == package_state::unpacked); } break; // Get out from the breakout loop. } } // configure // for (build_package& p: reverse_iterate (build_pkgs)) { assert (p.action); shared_ptr& sp (p.selected); const shared_ptr& ap (p.available); if (*p.action == build_package::drop) // Skip package drops. continue; // Configure the package. // // At this stage the package is either selected, in which case it's a // source code one, or just available, in which case it is a system // one. Note that a system package gets selected as being configured. // assert (sp != nullptr || p.system); // We configure everything that isn't already configured. // if (sp != nullptr && sp->state == package_state::configured) continue; database& pdb (p.db); transaction t (pdb, !simulate /* start */); // Show how we got here if things go wrong, for example selecting a // prerequisite is ambiguous due to the dependency package being // configured in multiple linked configurations. // auto g ( make_exception_guard ( [&p] () { info << "while configuring " << p.name () << p.db; })); // Note that pkg_configure() commits the transaction. // if (p.system) sp = pkg_configure_system (ap->id.name, p.available_version (), pdb, t); else if (ap != nullptr) pkg_configure (o, pdb, t, sp, ap->dependencies, p.config_vars, simulate, fdb); else // Dependent. { // Must be in the unpacked state since it was disfigured on the first // pass (see above). // assert (sp->state == package_state::unpacked); package_manifest m ( pkg_verify (sp->effective_src_root (pdb.config_orig), true /* ignore_unknown */, [&sp] (version& v) {v = sp->version;})); pkg_configure (o, p.db, t, sp, convert (move (m.dependencies)), p.config_vars, simulate, fdb); } r = true; assert (sp->state == package_state::configured); if (verbose && !o.no_result ()) text << "configured " << *sp << pdb; } // Update the hold state. // // While we could have tried to "weave" it into one of the previous // actions, things there are already convoluted enough. // for (const build_package& p: reverse_iterate (build_pkgs)) { assert (p.action); if (*p.action == build_package::drop) continue; database& pdb (p.db); const shared_ptr& sp (p.selected); assert (sp != nullptr); // Note that if not explicitly requested to unhold, we should only // "increase" the hold_package state. For version, if the user requested // upgrade to the (unspecified) latest, then we want to reset it. // bool hp (p.unhold () ? false : p.hold_package ? *p.hold_package : sp->hold_package); bool hv (p.hold_version ? *p.hold_version : sp->hold_version); if (hp != sp->hold_package || hv != sp->hold_version) { sp->hold_package = hp; sp->hold_version = hv; transaction t (pdb, !simulate /* start */); pdb.update (sp); t.commit (); r = true; if (verbose > 1) { if (hp) text << "holding package " << sp->name << pdb; if (hv) text << "holding version " << *sp << pdb; } } } return r; } }